
Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 QUADRATIC SETTING

Meta Mirror Descent is deployed on a family of 2D quadratic optimisation problems from which we
can sample a disjoint set of meta-training and meta-testing optimisation problems. We sample tasks
of the form:

min
✓

✓TQ✓ � bT ✓

where Q and b are random variables. b follows a Gaussian distribution with mean vector [1, 1]T and
identity covariance. To generate Q which controls the flatness of the quadratic function, we sample
Q0,0 and Q1,1, independently with different Gaussian distributions. For example on the top row in
Figure 1: the mean of Q0,0 and Q1,1 are 0.3 and 14 while on the bottom row, the mean of Q0,0 and
Q1,1 are 0.02 and 14 respectively. In addition, the initialisation of each optimisation problem is also
a random variable.

A.2 DERIVE OF THE CLOSED FORM MIRROR LOOP

In our setting, the mirror loop is described as

✓t+1 = argmin
✓

hr✓L(✓t), ✓i+
1

2⌘
B�(✓||✓t) (14)

or, equivalently,

✓t+1 = argmin
✓

⌘hr✓Ltr(✓t), ✓i+B�(✓||✓t). (15)

Setting the gradient w.r.t. ✓ to zero, we have

⌘rL(✓t) +r�(✓t+1)�r�(✓t) = 0, (16)

which when rearranged yields

r�(✓t+1) = r�(✓t)� ⌘rL(✓t) (17)

✓t+1 = r��1(r�(✓t)� ⌘rL(✓t)). (18)

In our case

�(✓) =
1

2
✓TM✓, (19)

where M is a block diagonal matrix. Therefore,

r�(✓) = M✓ (20)

r��1(✓) = M�1✓. (21)

As a result, we also have

✓t+1 = r��1(r�(✓t)� ⌘rL(✓t)) (22)

= M�1(M✓t � ⌘rL(✓t)) (23)

= ✓t � ⌘M�1rL(✓t). (24)

A.3 PROOF OF THEOREM 4.1

We will make use of a well-known bound on suprema of empirical processes due to Bartlett &
Mendelson (2002).
Theorem A.1. For all functions f 2 F with kfk1  a, and i.i.d. Zi, the following holds with

probability at least 1� �,

E[f(Z)]  1

n

nX

i=1

f(Zi) + 2R̂n(F) + 3a

r
ln(2/�)

2n
. (25)

13

Under review as a conference paper at ICLR 2023

In this theorem, R̂n(F) is the empirical Rademacher complexity of the class F , defined as

R̂n(F) = E✏

"
sup
f2F

1

n

nX

i=1

✏if(Zi)

#
, (26)

where ✏i is a Rademacher random variable, so P (✏i = �1) = P (✏i = 1) = 0.5.

Proof. It suffices to bound, with high confidence, the difference between the first term of the meta-
objective, and the expected Bregman divergence between initializations and solutions on new tasks
sampled from the same task distribution. We will obtain such a bound using Rademacher complexity,
and the main result will follow from standard applications of Rademacher complexity-based gener-
alisation bounds (Bartlett & Mendelson, 2002), along with the observation that B�(✓⇤||✓1)  Cr2

2 .
That is, we will treat the initial and final points of an optimisation trajectory for each task as a random
variable, and we will bound to what extent the mean Bregman divergence between initial and trained
parameters on some meta-train tasks can deviate from the expected Bregman divergence on unseen
tasks. In particular, we analyse the following class:

F = {(✓⇤, ✓1) 7! B�(✓⇤||✓1) : �(✓) =
1

2
✓TM✓, kM � IkF  C}. (27)

Denoting ✓(i)⇤ � ✓(i)1 by ✓̃i, we can bound the Rademacher complexity of this class from above by

R̂n(F) = E✏

"
sup

B�2F

1

n

nX

i=1

✏iB�(✓
(i)
⇤ ||✓(i)1)

#
(28)

=
1

2n
E✏

"
sup
M

nX

i=1

✏i✓̃
T
i M ✓̃i

#
(29)

=
1

2n
E✏

"
sup
M

nX

i=1

✏ihM, ✓̃i✓̃
T
i iF

#
(30)

=
1

2n
E✏

"
sup
M

hM,
nX

i=1

✏i✓̃i✓̃
T
i iF

#
(31)

=
1

2n
E✏

"
sup
M

h(M � I),
nX

i=1

✏i✓̃i✓̃
T
i iF

#
+

1

2n
E✏

"
hI,

nX

i=1

✏i✓̃i✓̃
T
i iF

#
, (32)

where h·, ·iF is the Frobenius inner product. Note that the second term in the final equality is equal
to zero. As such we can continue by further bounding the first term using the Cauchy-Schwarz
inequality,

R̂n(F)  C

2n
E✏

"�����

nX

i=1

✏i✓̃i✓̃
T
i

�����
F

#
(33)

The remainder of the proof follows a well-known sequence of steps using when bounding the expected
norm of a Rademacher sum (see, e.g., (Shalev-Shwartz & Ben-David, 2014)), which we include here
for completeness. Jensen’s inequality tells us that

E✏

"�����

nX

i=1

✏i✓̃i✓̃
T
i

�����
F

#


vuutE✏

"�����

nX

i=1

✏i✓̃i✓̃Ti

�����

2

F

#
(34)

=

vuutE✏

"
nX

i=1

nX

j=1

✏i✏jh✓̃i✓̃Ti , ✓̃j ✓̃Tj iF

#
. (35)

14

Under review as a conference paper at ICLR 2023

Noting that E[✏i✏j] is one if i = j and zero otherwise, we obtain
vuutE�

"
nX

i=1

nX

j=1

✏i✏jh✓̃i✓̃Ti , ✓̃j ✓̃Tj iF

#


vuut
nX

i=1

k✓̃i✓̃Ti k2F (36)



vuut
nX

i=1

(k✓̃ik2k✓̃ik2)2 (37)


p
nr4. (38)

Substituting this back into our earlier derivation yields

R̂n(F)  C
p
nr4

2n
(39)

=
Cr2

2
p
n
, (40)

which concludes the proof.

A.4 META REGULARISER COMPUTATION

We provide the meta regualriser computation details in this section. The proposed meta regulariser is
expressed as

||M � I||2F = ||M ||2F + ||� I||2F + 2hM,�IiF (41)

= ||M ||2F + ||I||2F � 2tr(M) (42)

= ||M ||2F + ||I||2F � 2tr(A)tr(B) (43)

=
X

i,j

�i(A)�j(B) + ||I||2F � 2tr(A)tr(B), (44)

where �i(·) denotes the i-th singular value of a matrix. To get from Eq. 42 to Eq. 43 we use that
tr(A ⌦ B) = tr(A)tr(B), and from Eq. 43 to Eq. 44 we use that kMk2F =

P
i �

2
i (A ⌦ B) =P

i,j �i(A)�j(B).

A.5 COMPUTING �

In this section, we provide the computation details for �, as used in Equation 8:
� = min

⇣
�min(M⇣) (45)

= min
⇣

�min(A⇣ ⌦B⇣) (46)

= min
⇣

min
i,j

(�i(A⇣)�j(B⇣)) (47)

where �i(·) denotes the i-th singular value of a matrix. From Eq. 46 to Eq. 47, we use that �(A⌦B) =
�(A) · �(B)T , where �(·) gives all the eigenvalues in the column vector form.

A.6 GRADIENT COMPUTATION FOR DIAGONAL MATRIX

Diagonal matrix is a special case of block diagonal matrix, which we applied in the 2D quadratic
setting in section 5.2. With this simple parameterisation, the exact hypergradient w.r.t. the target
optimiser can be computed with Forward Mode Differential (FMD). The gradient of the second term
in the proposed meta-objective in Eq.8 is easy to compute while the first term with respect to � is
expressed as:

@B�M (✓⇤, ✓1)

@M
⇡ @B�M (✓T , ✓1)

@M
(48)

=
@B�M (✓T , ✓1)

@M| {z }
direct gradient

+
@B�M (✓T , ✓1)

@✓T

@✓T
@M| {z }

indirect gradient

(49)

15

Under review as a conference paper at ICLR 2023

when T is large enough to satisfy that ✓⇤ ⇡ ✓T . The computation of the direct gradient can be easily
solved by the existing auto-differentiation library. The indirect gradient in Eq 49, usually termed
hypergradient, is much more computationally chanllenging as it is expressed in the form:

@✓T
@M

=
TX

t=1

TY

t0=t+1

At0

!
Bt (50)

s.t.At =
@⇡�M (✓t�1)

@✓t�1
= I � ⌘M�1 @2

@✓2
Ltr(✓t�1), (51)

Bt =
@⇡�M (✓t�1)

@M
= 2⌘

@

@✓
Ltr(✓t�1)M

�2. (52)

Forward-Mode Differentiation (FMD) and Reverse-Mode Differentiation Franceschi et al. (2017)
are two algorithms to compute Eq 50. RMD computes the gradient from the last to the initial step,
requiring one to store the entire optimisation trajectory in memory. When the optimisation trajectory
is long, this computation is very expensive. In comparison, FMD updates the hypergradient in parallel
with in inner loop optimisation by:

@✓t
@M

=
@⇡�M (✓t�1)

@✓t�1

@✓t�1

@M
+

@⇡�M (✓t�1)

@M
, (53)

where it only requires the information from step t� 1.

A.7 HYPERPARAMETER TUNING

Grid Search For tuning the hyperparameters on 3-layer MLPs model settings in section 5.2,
we sweep over the learning rates {0.1, 0.05, 0.01, 0.005, 0.001} and weight decay parameters of
{0.001, 0.0001, 0.0005} for the SGD, SGD-M and RMSprop. In terms of Adam, we do grid search
over the learn rates {0.3, 0.2, 0.1, 0.01, 0.001} and weight decay {0.001, 0.0001, 0.0005}. For L2O,
MetaCur, ARUBA and ARUBA++, we tune the models on the meta-test setting with the learning
rates {0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001} and weight decay {0.001, 0.0001, 0.0005}.

Bayesian Optimisation We implement our BayesOpt using (Balandat et al., 2020) for the hy-
perparameter tuning on the ResNet18 and CIFAR10 setting. The model the expected performance
using a Gaussian process with RBF kernel, which maps the learning rate and weight decay to the
estimated validation accuracy. This also provides uncertainty information to the Upper Confidence
Bound (UCB) acquisition function for exploring/exploiting the hyperparameter space. For each
model selection in the meta-test stage, we run the Bayesian optimisation for 25 iterations.

A.8 TRAINING LOSS LEARNING CURVE FOR DIVERSEDIGITS DATASET

We give all the training loss learning curves on DiverseDigits in Fig 5. It can be noticed that the
conclusion we drew that MetaMD is clearly faster than SGD and SGD-M in training convergence in
Section 5.2 is further supported.

Figure 5: Convergence comparison of different optimisers on DiverseDigits.

16

Under review as a conference paper at ICLR 2023

Figure 6: Learning curves on Caltech, DTD, Flowers and Pubfig. The left, middle and right collumn
represent Training loss, Training accuracy and Test accuracy respectively

A.9 EXPERIMENT DETAILS ON HIGH RESOLUTION IMAGE DATASETS

We provide a summary of each dataset applied in our High Resolution tasks and give a clear split for
the meta-train and meta-test datasets in Table 4. All the datasets except Caltech-256 has standard
training, testing splits. As a result, we build our own split with 60 and 20 examples for each classes
in training and testing stage respectively. Both MetaMD and competitors are tuned on learning rates,

Table 4: Statistics for the datasets used throughout the experiments. The Train, and Test columns
contain the number of instances in each of the corresponding subsets.

Dataset Train Test Classes

Meta-Train
Aircraft (Maji et al., 2013) 6,667 3,333 100
Butterfly (Chen et al., 2018) 10,270 15,009 200
Pets (Parkhi et al., 2012) 4,000 3,390 37

Meta-Test

Caltech (Griffin et al., 2007) 12,800 5,120 256
DTD (Cimpoi et al., 2014) 3,760 1,880 47
Flowers (Nilsback & Zisserman, 2008) 2,040 6,149 102
PubFig (Pinto et al., 2011) 12,178 1,660 83

{0.1, 0.01, 0.001, 0.0001} and weight decays, {0.001, 0.0005, 0.0001, 0.00001, 0}. The learning
curve for Caltech, DTD, Flowers and Pubfig are shown in Fig 6.

A.10 LOSS LANDSCAPE ANALYSIS

The generalisation ability is reflected by the flatness of the converged loss landscape (Foret et al.,
2021). Motivated by this, we compare the converged loss landscapes achieved by MetaMD with
those by SGD on the High Resolution Image setting. From Figure 7, it can be observed that the
landscapes reached by MetaMD are much more flattened than SGD.

17

Under review as a conference paper at ICLR 2023

Figure 7: 1D Training Loss Landscape on Caltech, DTD, Flowers and Pubfig, where perturbations
are performed in the direction of the eigenvector of the loss Hessian matrix corresponding to the
largest eigenvalue.

A.11 LOW RANK REPRESENTATION ANALYSIS

The recent research (Saunshi et al., 2021; Chen & Lee, 2021) claim that low rank representation
generalizes well. Following the low-rank representation analysis proposed in (Chen & Lee, 2021),
we compare the learned feature space of the model trained by SGD and that trained by MetaMD in
the high resolution setting in Fig. 8. �

P
i �̃ilog�̃i denotes the low rank level, where the smaller

value represents the lower rank and �̃i = �i/�max represent the normalized singular values. One
can observe that MetaMD has the lower rank feature spaces on all the meta-test tasks than SGD. The
decay speed of the normalized singular values also indicates that MetaMD learns the lower rank
feature space than SGD.

A.12 HYPERGRADIENT COMPUTATION

In this section, we introduce detailed inverse Hessian computation. The hypergradient of the meta-
objective E w.r.t. to the optimiser parameters M is computed through

@E
@M

=
@E
@✓

@2B�M

@✓ @✓

!�1
@2B�M

@✓ @M

�����
�M ,✓⇤(M)

= lim
i!1

@E
@✓

iX

j=0

I � @2B�M

@✓ @✓

!j
@2B�M

@✓ @M

�����
�M ,✓⇤(M)

,

where following (Lorraine et al., 2020) the inverse Hessian matrix is approximated by Neumann
series:

@2B�M

@✓ @✓

!�1

= lim
i!1

iX

j=0

I � @2B�M

@✓ @✓

!j

.

In practice, the approximation iteration j does not need to go to infinite and in our case, we set
it as 20. We give the implementation details for computing @E

@M in Algorithm 2 by adapting the
algorithm proposed in (Lorraine et al., 2020) to our problem and ↵ is the hyperparameter controlling
the iteration step length.

18

Under review as a conference paper at ICLR 2023

Figure 8: Low rank representation Analysis on Caltech, DTD, Flowers and Pubfig.

Algorithm 2 Computing the hypergradient of the meta-objective E , with respect to the optimiser
parameter M . The grad(·, ·, ·) function from PyTorch computes a Jacobian-vector product when
called with a non-scalar first argument. Inspired by Lorraine et al. (2020), we use this to efficiently
compute the Hessian required for approximating the Neumann series.

Input: B�M , E ,�M , ✓⇤i

Output:�p
@2B�M
@✓@M

v = p = @E
@✓ |�M ,✓⇤

i

for all j = 1, ..., J do
v� = ↵ · grad(@B�M

@✓ , ✓, v)
p += v

end for

A.13 CONVERGENCE RATE COMPARISON

We aim to learn optimisers with fast convergence speed. To evaluate the training speed of the learned
MetaMD and to compare it with other methods, we measure the area under the curve (AUC) of
the training loss (Rijn et al., 2015) where a small AUC value indicates an optimiser converges fast.
Table 5 shows that the learned MetaMD has the fastest convergence speed in the CIFAR10 and
ResNet18 setting while MetaMD ranks second in the High resolution setting in Table 6. To further
illustrate the property of MetaMD, we compute the wall clock time of each optimisation iteration for
each model in Table 7. Our model can still outperform other meta-learned precondition methods,
such as MetaCur.

A.14 FINE TUNING WITH LEARNED METAMD

We studied the transferability of the learned MetaMD by shifting dataset between the meta-train and
meta-test stage. A different kind of domain shift is to deploy the learned MetaMD for fine-tuning
the base model, which is different to the meta-train stage where the base model is learned from
scratch in each each inner loop. We reuse the High resolution setting in Section 5.2, MetaMD is
trained on all the meta-train datasets with the Algorithm 1 but deployed to fine-tune the ResNet18
pre-trained on ImageNet on each individual meta-test dataset in the meta-test stage. Compared
with the hand-craft optimisers including, SGD-M and Adam, with fair hyperparameters selection,
MetaMD has competitive performance in terms of test accuracy in Table 8.

19

Under review as a conference paper at ICLR 2023

Table 5: Area under the learning curve of the training loss for CIFAR10 and Resnet18. Comparison
with various optimisers.

Method SGD-M Adam AdamW KFAC PowerSign AddSign Meta-SGD MetaMD

CIFAR10 32.04 15.27 20.05 27.77 34.06 32.90 19.47 11.82

Table 6: Area under the learning curve of the training loss for high resolution task. Comparison with
various optimisers.

Method SGD-M Adam PowerSign AddSign Meta-SGD ARUBA ARUBA ++ MetaCur MetaMD

Caltech 106.80 69.77 108.23 111.86 176.59 409.97 327.83 736.83 90.20
DTD 434.23 94.35 138.44 133.88 153.68 509.23 379.49 469.52 132.84
Flowers 111.32 74.78 145.12 142.23 112.06 672.46 386.41 332.81 94.25
Pubfig 56.80 44.19 82.33 68.77 81.08 416.87 274.47 512.78 47.88

Average Rank 4.00 1.00 5.00 4.25 5.00 8.50 7.00 8.25 2.00

A.15 NUMBER OF META-PARAMETERS

We compute the number of the meta-parameters for every meta-optimiser including Meta-SGD
MetaCur and MetaMD in Table9. It can be noticed that MetaMD has a significantly small number
of meta-parameters to learn compared with other meta-optimiser, which is one of the reasons that
MetaMD suffers less from meta-overfitting.

20

Under review as a conference paper at ICLR 2023

Table 7: Wall clock time per iteration (mean and standard deviation) for High resolution task with
ResNet18. Comparison with various optimisers.

Method SGD-M Adam PowerSign AddSign Meta-SGD ARUBA ARUBA ++ MetaCur MetaMD

Time 118.21 ± 2.37 121.16 ± 2.62 121.30 ± 2.38 122.45 ± 3.21 120.29 ± 3.32 118.43 ± 3.63 118.38 ± 3.62 132.63 ± 3.63 131.12 ± 3.62

Table 8: Test Accuracy (%) and AUC on high resolution datasets by fine-tuning ImageNet pre-trained
ResNet18. Comparison with various optimisers.

Datasets Caltech DTD Flowers Pubfig Avg Rank

SGD-M (Fine-tuning) 77.81 ± 0.73 67.13 ± 0.58 91.56 ± 0.54 89.52 ± 0.39 2.5
Adam (Fine-tuning) 72.44 ± 0.19 68.46 ± 0.77 92.03 ± 0.81 90.12 ± 0.28 2.5
MetaMD (Fine-tuning) 77.93 ± 0.44 68.66 ± 0.93 91.67 ± 0.75 89.94 ± 0.41 1.5

SGD-M (AUC) 154.98 78.58 22.12 59.06 2.5
Adam (AUC) 70.64 42.39 26.86 59.62 2.0
MetaMD (AUC) 150.40 77.23 21.63 54.29 1.5

Table 9: Number of Meta-parameters for various Meta-optimisers
Model MetaSGD MetaCur MetaMD

11176512 2974717 37664

21

	Introduction
	Related work
	Stochastic Mirror Descent
	Meta-Learning a Bregman Divergence
	Optimiser learning framework
	Divergence Parameterisation
	Meta-Objective
	Meta-Gradient computation with Implicit Gradient

	Experiments
	Synthetic Problem: Meta-Quadratic Optimisation
	Learning Mirror Descent for Neural Networks

	Conclusion
	Appendix
	Quadratic setting
	Derive of the closed form mirror loop
	Proof of Theorem 4.1
	Meta Regulariser Computation
	Computing
	Gradient Computation for Diagonal Matrix
	Hyperparameter Tuning
	Training loss learning curve for DiverseDigits dataset
	Experiment details on High Resolution Image Datasets
	Loss Landscape Analysis
	Low rank representation Analysis
	Hypergradient Computation
	Convergence Rate comparison
	Fine tuning with Learned MetaMD
	Number of meta-parameters

