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A FLICKER-BANDING PATTERNS ACROSS DISPLAY TECHNOLOGIES

Despite the commonly observed flicker-banding artifacts shown in section 3 and simulate in section
4.1.1, the specific banding patterns can vary significantly across different display technologies. It’s
worth noting that various complex stripe types described below are all captured under extreme con-
ditions (very short exposure times). However, extremely severe FB degenerate into dark straight one
as the exposure time increases. In everyday photography, we don’t use excessively low exposure
time and the straight dark FB shown in our dataset is a much more common scene.

A.1 LED MATRIX DISPLAYS

LED matrix displays often use a scanning refresh scheme, where rows or columns of pixels are
activated in succession. The matrix is often refreshed in blocks or chunks of rows, leading to more
complex banding patterns when filmed. PWM is also commonly used in LED matrices, further
contributing to more complex banding effects.

a

b

c d g

f

e

h

Figure 1: Flicker-banding patterns on LED matrix displays with different scanning refresh mech-
anisms captured under various conditions. b) Thickening of dark stripes, likely due to changes in
PWM duty cycle. c-d) Different LED subpixel arrangements. e-f) Atypical banding patterns. h)
Complex banding patterns caused by per-block scanning refresh.

A.2 OLED DISPLAYS

OLED displays typically use a combination of PWM and current modulation to achieve smooth
brightness control (Geffroy et al. (2006)). In most cases, the duty cycle is same across the entire
panel at a given brightness level, resulting in uniform banding patterns when filmed with a camera.
However, some OLED panels may reduce the duty cycle in very dark scenes to enhance contrast,
leading to non-uniform banding artifacts. Color shifts may also occur on edges of banding stripes
due to phase differences in RGB subpixel driving.

a b c

Figure 2: Flicker-banding patterns on OLED displays with PWM driving. a) Non-uniform banding
in darker areas on an iPhone OLED screen. b) Horizontal gray banding on laptop OLED. c) Ex-
tremely bending and color shifts on banding edges.
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A.3 CRT DISPLAYS

In cathode-ray tube (CRT) monitors, stripe artifacts are primarily related to the scanning process of
the electron beam. The resulting banding patterns differ from those in OLED and LED displays, as
factors including different scanning methods (e.g., interlaced vs. progressive) and phosphor persis-
tence characteristics come into play.

a b

Figure 3: Flicker-banding patterns on CRT monitors with electron beam scanning. b) Phosphor
persistence effect causing trailing artifacts, leaving a ghosting effect.

A.4 PROJECTORS

Projectors, especially those using digital light processing (DLP), can also exhibit banding artifacts
when captured on camera (Han et al. (2014)). These systems often employ spinning color wheels to
generate full-color images, which can interact with the camera’s rolling shutter to produce unique
colored banding patterns. Brightness modulation is achieved through rapid micromirror switching,
which can introduce non-uniform banding under certain filming conditions.

c ed

ba

Figure 4: Flicker-banding patterns on DLP projectors with color wheel and micromirror switching.
a-b) Comparison between original and projected images, highlighting the width of color stripes
changes with brightness levels. c) Internal components adapted from DMahalko (CC BY-SA 3.0).

Across the surveyed display families, flicker-banding emerges from different timing mechanisms:
row/column or per-block scanning and PWM dimming on LED matrix panels, a mixture of PWM
and current-driven modulation with subpixel-phase offsets on OLEDs, raster scanning with phos-
phor persistence on CRTs, and time-sequential illumination (e.g., color wheels) in projectors. These
mechanisms create bands that can be straight or curved (due to rolling-shutter readout), globally pe-
riodic or piecewise-structured (under per-block scanning/local modulation), and purely luminance-
based or chromatic (due to subpixel phase shifts or color wheels).

Such diversity makes restoration challenging: the banding is frequently non-stationary, its frequency
and pattern are strongly device-specific, and its appearance can vary with scene content, exposure
settings, and viewing angle. Additionally, ISP processing and sensor noise further blur the boundary
between true scene detail and artifact. This calls for future work to develop more advanced, physics-
informed models and datasets that reflect this variety.
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B CLARIFICATION ON THE QUANTITATIVE RESULTS

Table 1: Additional ablation study results on cropped real-world flicker-banding datasets. ML
indicates masked loss, FPE indicates the flicker-banding prior estimator, and ML+FPE indicates the
whole RIFLE model. The better results in the same setting are colored with red.

Image Methods PSNR↑ SSIM↑ ms-SSIM↑ LPIPS↓ DISTS↓ FSIM↑ GMSD↓
LQ 15.39 0.6229 0.6152 0.4208 0.1922 0.7581 0.2524
ML 16.02 0.6543 0.8372 0.3163 0.1623 0.8413 0.1700Banding62 1

ML+FPE 16.08 0.6701 0.8607 0.2974 0.1559 0.8522 0.1550

LQ 20.79 0.4919 0.5879 0.3720 0.1850 0.7564 0.1865
ML 24.11 0.5264 0.7646 0.2858 0.1425 0.8793 0.1087Banding37 2

ML+FPE 23.97 0.5226 0.7201 0.3094 0.1566 0.8433 0.1194

Real-Flicker: Banding62 1 GT FPE ML+FPE

Real-Flicker: Banding37 2 GT ML ML+FPE

Figure 5: Additional Visual comparison of ablation study on ML vs ML+FPE.

To clarify the saturation of quantitative metrics, we select the comparative experiment, ML vs
ML+FPE, in ablation study that is the closest in numerical results. Table 1 and Figure 5 provide
detailed quantitative results and the visual comparison to describe the connection between the nu-
merical results and the real model performance of removing flicker-banding (FB). For Banding62 1,
there are almost no FB residues in the results of ML+FPE, while we are able to observe obvious FB
in the results of FPE. According to the visual comparison, ML+FPE should get an obviously higher
score of evaluation metrics. However, the numerical results of ML+FPE are slightly superior to ML,
which can explain why, even with significant improvements in model performance, the resulting
quantitative improvements are often very minor. The quantitative results and visual comparison of
Banding37 2 show that quantitative metrics and model performance can also exhibit rebound phe-
nomena. Although this situation is not as common as the one described above, it further reduces the
differences in numerical performance between different models across the entire test set.

What’s more, even the original FB input (LQ) can obtain a relatively high score in most of the eval-
uation metrics, indicating that these metrics are not sensitive to the degree of FB. Because these
referenced evaluation metrics mainly measure the difference between two images rather than com-
pare the degree of FB directly, many factors like the noise and brightness may have a significant
impact on numerical metrics. It further explains that even with great model performance improve-
ment, there are minor enhancement in the quantitative results. Designing a suitable metrics for FB
is also one of our future researching directions, but not the focus of this work.
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C ADDITIONAL COMPARISON EXPERIMENTS

Table 2: Quantitative experiments results of additional debanding methods on cropped real-world
flicker-banding datasets. All models are finetuned with simulated datasets. The best and second best
results are colored with red and blue. RIFLE gains a significant advantage over other methods.

Methods PSNR↑ SSIM↑ ms-SSIM↑ LPIPS↓ DISTS↓ FSIM↑ GMSD↓
LQ 19.43 0.5636 0.6364 0.3374 0.2213 0.7907 0.2091

Notch Filter 17.86 0.4067 0.5527 0.5340 0.3101 0.6734 0.2172
ESDNet (Yu et al. (2022)) 20.49 0.6077 0.7472 0.2782 0.2075 0.8424 0.1587

NeRD-Rain (Chen et al. (2024)) 20.30 0.6066 0.7447 0.2830 0.1950 0.8462 0.1702
RIFLE (ours) 20.66 0.6220 0.8067 0.2456 0.1723 0.8711 0.1433

Real-Flicker GT LQ Filter ESDNet NeRD-Rain RIFLE

Figure 6: Visual comparison with FB images (LQ), banding-free images (GT), and additional de-
banding methods on Real-Flicker dataset. RIFLE still gains great advantages over other methods.

We include additional task-specific baselines in the comparison experiments to demonstrate the
superiority of our method. These include the simple notch filter (NF) aligned with our flicker-
banding parameter estimator (FPE), as well as ESDNet (Yu et al. (2022)) and NeRD-Rain (Chen
et al. (2024)), both of which demonstrate strong performance in their respective tasks.

The NF does not produce substantial improvements and, in fact, degrades image quality. Suppress-
ing flicker in specific frequency bands also results in the loss of original image details at those same
frequency locations. The irregular shape of real-world FB can introduce biases in our FPE, making
it challenging for the filter to precisely capture the frequency bands where flicker is present.

ESDNet, an excellent demoiréing method, and NeRD-Rain, a state-of-the-art deraining method, are
both fine-tuned using our simulated dataset and have some ability to remove FB.

As shown in Tab. 2, RIFLE demonstrates significant improvements over these methods on all met-
rics. Figure 10 indicates that RIFLE produces the best visual effects, with almost no FB left.
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D DEMOIRÉ MODEL PERFORMANCE IN THE CASE OF FLICKER-BANDING

No FB No FB FB FB
before demoiré after demoiré before demoiré after demoiré
Figure 7: The demoiré performance comparison between no FB scene and FB scene.

In addition to the flikcer-banding (FB), moiré patterns are also bring great damage to the image
quality when shooting screen. We find that the performance of demoiré model largely decrease
when both of the FB and moiré patterns exist, as shown in Fig. 7. It indicates the difference between
FB and moiré patterns and removing them simultaneously is also a valuable issue to be solved.

E USER STUDY

Figure 8: The operating system of the User Study.
Table 3: The results of User Study.

Methods RIFLE PiSA-SR MAT InvSR Step1X ESDNet NeRD-Rain Notch Filter

Score/(%) 82.4 14.7 2.7 0.02 0 0.1 0.08 0

Because none of the evaluation metrics can reflect the degree of flicker-banding precisely, a user
study is essential to compare different models’ performance. Figure 8 shows our user study’s oper-
ating system, including the evaluation panel and the results panel. The results of the user study are
presented in table 3, and our method gains the highest score. The score represents the percentage of
rounds in which the model received preference out of the total number of evaluation rounds.
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F THE OUT-OF-DISTRIBUTION TEST RESULTS.

Input Reconstructed

Figure 9: The out-of-distribution test results.

We provide the test results on other severe flicker-banding (FB) scenes in Fig. 9, not only on the dark
straight FB scenes. The first row indicates that the black stripes are hard to recover and our model
only played a minor role in filling in the gaps. The second row indicates that our model makes no
difference to the stripes with severe color shifts. The third row implies that there is still a long way
to go for our model to reconstruct an image whose details are completely destroyed.
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G ADDITIONAL VISUAL COMPARISON

We provide additional visual comparison for different methods on our Real-Flicker dataset in Fig. 10.
More results demonstrate our RIFLE’s outstanding performance compared to recent image recon-
struction methods and truly show great application potential in real-world scenarios.

Real-Flicker GT LQ MAT InvSR PiSA-SR Step1X RIFLE

Figure 10: Visual comparison with flicker-banding images (LQ), banding-free images (GT), and
other debanding methods on Real-Flicker dataset. RIFLE gains great advantages over other methods.
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H ANALYSIS ON THE FLICKER-BANDING SIMULATION

GT

LQ

R G B
Figure 11: Per-channel visualization of banding-free images (GT) and flicker-banding images (LQ)
in RGB color space. Flicker-banding artifacts appear in all three channels of the LQ images.

GT

LQ

Y Cb Cr

Figure 12: Per-channel visualization of banding-free images (GT) and flicker-banding images (LQ)
in YCbCr color space. Flicker-banding artifacts only appear in the Y channel of the LQ images.

We analyze each channel of the banding-free image (GT) and the flicker-banding (LQ) and provide
the visual comparison in Figs. 11 (RGB) and 12 (YCbCr). RGB and YCbCr color spaces are two
common color spaces to express the image construction. We observe pronounced stripe-like flicker-
banding artifacts across all three RGB channels of the LQ images, with substantial discrepancies
relative to the GT counterparts. This suggests that a faithful simulation of flicker-banding requires
overlaying stripe masks simultaneously on all RGB channels.

However, in the YCbCr color space, we draw an opposite conclusion to that in the RGB color space.
The chrominance channels (Cb and Cr) of the LQ images closely match those of the GT images
and are visually nearly indistinguishable. More importantly, the LQ images show no flicker-banding
in these channels. By contrast, the luminance (Y) channel of the LQ images exhibits pronounced
flicker-banding artifacts and deviates substantially from GT.
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GT

LQ

Origin Swapped

Figure 13: Visualization comparison of Y-channel switching effects. Origin shows the original
image and Swapped shows the image after exchanging its Y channel with the counterpart.

Real-Flicker GT LQ RGB YCbCr

Figure 14: Visual comparison of RIFLE on synthetic datasets based on RGB/YCbCr color space.

To further validate this observation, we swapped the Y channels between GT and LQ while keeping
their respective Cb and Cr components unchanged. After recomposition (Fig. 13), the LQ image no
longer displays visible banding, whereas the GT image exhibits clear flicker-banding. These results
confirm that the flicker-banding phenomenon originates primarily in the luminance component (Y)
and exerts negligible influence on the chrominance components (Cb and Cr).

Building on this luminance-centric insight, we conducted the experiments in Fig. 14. When a syn-
thetic training set was constructed by superimposing the same mask independently on the R, G, and
B channels, the resulting models showed no measurable improvement on real-world data. This out-
come underscores that simply applying identical per-channel masks in RGB space is not a faithful
approximation of the real phenomenon and introduces a substantial domain gap relative to real-
world images. Consequently, a fundamental principle for simulating banding in RGB is that one
should avoid superimposing an identical mask across all three channels. Instead, channel-dependent
masks must be designed to preserve chrominance while modulating only the luminance (Y).
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I EXPERIMENTAL RESULTS ON THE SIMULATED DATASETS

We present our experimental results on the simulated datasets in Figs. 15 and 16. The results indicate
that MAT, PiSA-SR, and RIFLE achieve great performance of removing flicker-banding artifacts,
while other approaches encounter great problems. However, their visual outcomes are largely indis-
tinguishable, implying that the simulated dataset does not constitute the primary bottleneck of their
performance. Only the real-world dataset can reflect their performance gap.

Simulated GT LQ MAT InvSR PiSA-SR Step1X RIFLE

Figure 15: Visual comparison with flicker-banding (LQ), banding-free images (GT), and other de-
banding methods on our simulated dataset based on LSDIR (Li et al. (2023)).
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Simulated GT LQ MAT InvSR PiSA-SR Step1X RIFLE

Figure 16: Visual comparison with flicker-banding (LQ), banding-free images (GT), and other de-
banding methods on our simulated dataset based on UHDM (Yu et al. (2022)).
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J LIMITATIONS AND AREAS FOR IMPROVEMENT.

Although our proposed method achieves decent performance in flicker-banding removal, there are
still some limitations and areas for improvement:

Residual Colored Bands. Some input images may contain extra colored stripes caused by certain
display dimming methods. Our model is designed mainly for gray-scale flicker and can leave these
colored components visible, as shown in Fig. 17.

GT LQ RIFLE
Figure 17: A case where our method leaves residual magenta colored bands.

This limitation arises from the training simulator, which focuses on luminance modulation. Future
work will expand the synthetic dataset to cover a wider range of banding types.

Texture Detail Loss. Because our restoration relies on a diffusion process that iteratively refines
the image, it can slightly alter original textures or introduce fine details that were not present in the
source. As shown in Fig. 18, additional details are generated when removing FB.

GT LQ RIFLE
Figure 18: A case where our method alters fine texture details.

This is a common challenge in diffusion-based restoration methods. Future improvements could be
made by combining diffusion with other techniques to protect true scene details.

Handling Severe or Complex Patterns. While our method works well on typical flicker-banding
patterns, scenes with highly non-stationary, complex, or curved banding may still pose challenges.
Purely black banding regions that completely obscure underlying content can also be difficult to
recover. In such cases, the model may failed to restore the lost information.

LQ RIFLE
Figure 19: A case where our method struggles with extremely complex banding patterns.

Improvements could be made by considering multi-frame information, expanding the training data
by including more complex banding patterns, or physics-based modeling of display artifacts.
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K OUR SIMULATED AND REAL-WORLD DATASET VISUALIZATION.

GT LQ
Figure 20: Our real-world dataset partial visualization.
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GT LQ
Figure 21: Our real-world flicker-banding dataset partial visualization.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

GT LQ
Figure 22: Our simulated dataset based on LSDIR (Li et al. (2023)) partial visualization.
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GT LQ
Figure 23: Our simulated dataset based on UHDM (Yu et al. (2022)) partial visualization.
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