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A fpmp FUNCTION IN GRUODE TO DEAL WITH ASYNCHRONOUS PROBLEM

There are two types of missing values in the multivariate time series. First, for one-dimensional time
series, irregularly sampled observations will lead to missing values in the time dimension. Second,
at a particular observed time point, values from some dimensions can be observed, but values from
other dimensions cannot be observed, resulting in missing values across variables. The ODE-based
model can theoretically handle the missing values from the time dimension, but it is difficult to tackle
the missing values across variables.

Some common methods to deal with missing values across variables are imputation (such as impute
the mean) or interpolation (such as linear or cubic interpolation), but these methods have been shown
to lead to suboptimal predictions (Che et al.|[2018)). GRUODE (Brouwer et al.,[2019) proposed to
impute the missing values with the predicted means, variances, and error (see equation , which is
handled by a preprocessing function f,.,. We are now going to describe the details of the fp,¢p in
this section. Indeed, we outline the outputs of f,,¢, step by step.

1. Given the hidden state h(¢), compute the parameters @ = f,,;(h(t)). Here, fo5s maps h
to the estimated parameters of the observations distribution ux (¢) and ox (¢). Note that
0 = [0,---,0P]. In the case of Gaussian, # contains the means and log-variances for
dimension d of X (t).

2. Create a vector q? that concatenates 8¢ with the observed value thd and the normalized
error term, which for the Gaussian case is (X — u?)/o?, where ¢ and o are the mean
and standard deviation derived from 6<.

3. Multiply the vectors q? by a dimension-specific weight matrix ¢ and apply a ReLU
non-linear function.

4. Zero all results that did not have an observation (by multiplying them with mask m).

As shown above, GRUODE use prediction values (mean, variance, and error) predicted by memories
from previous time point to impute missing values across variables. However, this methods can only
be applied on regression/forecast tasks, and is not applicable to classification tasks since the predicted
class and cross entropy loss only be computed at the last time point. Our approach gives an alternative
approach to dealing with the asynchronous problem, and our models can apply to both prediction and
classification tasks.

B DETAILS ABOUT HM AND HV IN THE MARGINAL BLOCK

We propose two approaches when we construct the marginal blocks, namely the HM approach and the
HV approach. The meanings of the notations are different. We are going to give the interpretations in
this section.

We also elucidate the meanings through an example - suppose that the number of variables (denoted
as D) is set to be 3 and the size of marginal memory of each variable (denoted as s) is set to be 10,
then we have X; = [X}, X2, X}']T and h™:1(¢), h™:2(¢), h™:3(t) € R10*1. The total dimensions
of memories for all the variables (denoted as H) equals s x D, which is 30.

B.1 INTERPRETATIONS OF THE NOTATIONS UNDER HM APPROACH

hM (t) = W1 (8), h™M:2(t), hM3(¢)]T. Here, r™d(t), zM4(t), and h™-4(t) € R3*10,
Given D matrices My, --- , Mp such that each matrix is of dimensions m X n, we can

concatenate them as a new tensor of dimensions D X m x n. The resulting tensor is de-

noted as [My,--- , Mp]. As a result, given that W(M’d € RI0XI gpnd yMd = ¢ RI0x10,

r,z,h) (r,z,h)
Wil = [W(]y_’zlh),W(J:ffh),W(Iy’jh)]T is a tensor of sizes 3 x 10 x 1 while UJ!
[U(]:[’zlh), U(]\T‘[fh),U(]f’;’h)]T is a tensor of sizes 3 x 10 x 10.
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Finally, we have WY, | @ X(t) = (W1}, X1 (1), W2, X2(0), W2, X3()]" and UM ) @

hM(t) = [U(]\T{;{h)thl(t), U(J\:’jh)hM’Q(t), U(I‘;I?’leh)hM’g’(t)]T. See Figure [7|for a graphical inter-
pretation for W(J‘T/IZ ) ® X (t) (in this figure, we assume the batch size equals 256).
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Figure 7: Visualization of HM approach Figure 8: Visualization of HV approach

B.2 INTERPRETATIONS OF THE NOTATIONS UNDER HV APPROACH

The marginal memory h (t) € R39%! (30 is the product of s = 10 and D = 3). W(]‘r/{zm € R10%3
and U (]y h
[Aij]3TX3 such that the block A;; is a matrix with all entries equal @ if i = j and 0if ¢ # j. Specifically,

) € R10%X10 We initialize U(J‘f .y s identity matrices, and W(J;,/IZ py as a block matrix

10 10 10

0--0 0---0]"
a .a DRI DRI
An A A"
Ay Ay Ayl = |00 a-ra 00 3
Azr Az Asg 0---0 0---0 a--a
30

See Figurefor a graphical interpretation for W(Jyz ny ® X(t) (in this figure, we assume the batch

size equals 256).
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C DETAILED ARCHITECTURE OF COGRUODE

Figure 9 shows the detailed architecture of our proposed model CoOGRUODE. X! (red line) and
X? (blue line) are two asynchronous time series. X! has observations at time points ¢, and ¢, and
X2 has observations at time points ¢; and t3. h' and h? are two memories that are induced by X!
and X 2. Each memory evolves by an ODE solver between two observed time points and updates
when there is one observation for the corresponding variable. The dependence block extracts the
information from the memories of each variable and forms the dependence memory.

Dependence
Block

Marginal
Block 1

X2
Xl

Figure 9: Detailed architecture of COGRUODE
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D ALGORITHMS OF GRUODE AND COGRUODE

Since our model is based on the GRUODE (Brouwer et al., 2019), we display the difference of
algorithm between GRUODE and our model as follows:

CoGRUODE GRU-ODE-Bayes
Input: Observations: X;; Observed time Input: Observations: X;; Observed time
points: t = [t1,--- ,tk]; Masks: my; time points: t = [t1,---,tx]; Masks: my; time
length: T length: T’
Initialize: time = 0, h, hg , and all trainable  Initialize: time = 0, hé”, hg and all trainable
parameters parameters
Set: hM = h)! h? =h{ Set: h = h

for £ =1to K do
hM hM = GRU-ODE-M(h"  time, t;,)
% marginal memory evolves to ¢y,
h” = GRU-ODE-P(h”, h"  time, t;,)
% dependence memory evolves to ¢y,
time = ¢,
h™ hM = GRU-Bayes-M(h"  X;, m,)
% marginal memory updates at ¢y,
h” = GRU-Bayes-P(h” h" time)
% dependence memory updates at ¢,
end for
hM hM = GRU-ODE-M(h™ ¢y, T)
% marginal memory evolves to end
h® = GRU-ODE-P(h" h™ {4, T)
% dependence memory evolves to end
X, = MLP(h™ hP)
% prediction/classification with marginal and
dependence memory
return h™ h” X,

for k =1to K do
h = GRU-ODE (h, time, t,)
% memory evolves to ty,

time = ty,
h = GRU-Bayes(h, f,,.,(X;, m;, h))
% memory updates at ¢,

end for
h = GRU-ODE (h, ¢k, T)
% memory evolves to end

X, = MLP(h)
% prediction/classification with memory

return h, X,
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E MGRUODE AND Co-MGRUODE

Our proposed model, CoOGRUODE, extends from GRUODE, which aims to capture the marginal
structure and the dependence structure separately. (Brouwer et al.,[2019)) also propose mGRUODE.
It is a continuous-time model which is built upon the minimal GRU (a variant of GRU (Zhou et al.,
2016)), which reduces one more gate based on the classic GRU. Similar to the extension of GRUODE
in the main paper, we can build a new model which has two parts: the marginal part, which captures
the temporal information, and the dependence part, which captures the dependence information. The
constructed model is therefore called ComGRUODE. The update formulae of minimal GRU are:

Zi =0 (WrXt + Urht—l + br) 3
h; = tanh (W, X, + Uy, (2 © hy_1) + by),
ht = (1 — Zt) @flt + 2z th—l-

The above formula can be rewritten as
Aht = (1 — Zt) ® (flt — htfl) .

The corresponding ODE is

dh(t)

= =)o (ﬁ(t) ~h(t - 1)) .

Therefore, like COGRUODE, we can also design ComGRUODE based on mGRUODE. The update
formulae for ComGRUODE are as follows.

In the marginal block:

ODE part:
2" () = (WM @ X(t) + UM @ b (1) +b21),
h (t) = tanh (WM @ X(t) + UM ® (2™ (t) © h™ () + b)),
dh™(t) M = M M
= (=2 () © (BM (1) ~ b (1),
Bayes part:

mGRU (hM4(t_), X4), ifm?=1
hM,d (t-‘r) = {hl\/f,d (tg ( ) t) ]f m% — O

In the dependence block:

ODE part:
z"(t) =0 (WfﬁM(t) +UPRP(t) + bf) ,
fi7(#) = tanh (W,{’ﬁM(t) L UPRP (1) + bﬁ) ,
dh"(t) _ P P P
== (-2 )@ (h (t)—h (t)).
Bayes part:

n? (t,) = mGRU (hP (t_),hM (t)) .
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F EXPERIMENT DETAILS

F.1 LSST DATASET

Dataset description The Photometric LSST Astronomical Time Series Classification Challenge
(PLASTICC) is a public dataset that aims to classify simulated astronomical multivariate time-series
data (Bagnall et al., |2018). The dataset is generated by measuring the photon flux using 6 different
astronomical filters. Based on the 6 physical processes, this task aims to classify celestial objects into
14 astronomical classes. This dataset is a regularly sampled dataset and the time length is 36. We
normalize each feature across all samples in the dataset to be in [0, 1] interval.

Goal This task is a classification task and our goal is to classify samples into 14 classes based on
the observations.

Loss function Let N be the number of samples. For the n-th sample, y,, is an observed one hot
vector of size 14. ¢, is an estimated one hot vector of y,,. The c-th entry of y,, and ¢,, are denoted as
Yn,c and G . Pp = [Pn1, - ,pn,14]T such that p,, . represents the predicted probability of class c.
Note that

1<ce<14

1, c=argmaxp,,
Yn,c = .
0, otherwise

CE is defined such that CE (y,,, p,) = — Ziil Yn,c 10g(pn ). Thus, the loss is
| X
loss = — S CE (4, pn) -
0ss = n§:1 (YnsPn)

Training We divide the total samples (4925) into 70% for training, 15% for validation, and 15% for
test. The maximum number of Epochs is 100, and the parameters for the best model during training
are saved. The batch size is 128. We use Adam as the optimizer and set the initial learning rate at
0.001. The adaptive learning rate approach is used during training, and if the validation accuracy
does not decrease for 5 epochs, the learning rate will decrease by half. To prevent overfitting, the
dropout is used, and the dropout rate is 0.5. For the ODE-based models, the “Euler” method is used
as the numerical solver, and the integral step is 0.02.

Model metric All experiments are conducted five times, and the mean and standard deviation of
accuracy are provided. In this experiment, we use the accuracy as the model metric as the 14 classes
are balanced. The formula of accuracy is

1 N
Acc = N Z l{yn=1)n}'

n=1

F.2 HUMAN ACTIVITY DATASET

Dataset description The human Activity dataset contains multivariate time series from five indi-
viduals performing various activities. The data is made up of 3d positions of tags attached to their
left ankle, right ankle, belt, and chest. At each time point, only one tag records the position data,
which is 3-dimensional. In this experiment, we follow all the data preprocessing steps from Rubanova
et al|(2019). For ease of understanding, we restate their preprocessing steps as follows: (1) The
timestamps of the measurement are rounded to 100 ms, and such discretization does not change
the overall number of points; (2) The datasets from four tags (belt, chest, right ankle, left ankle)
are combined into a single time series, and the combined dataset is split into partially overlapping
intervals of 50 time points (with the overlap of 25 points); (3) Sequences from all individuals are
combined into a single dataset; (4) The original dataset has 11 classes, but some classes correspond
to very similar activities, which are hard to be distinguished. We combine the classes within the
following groups: (“lying”, “lying down”), (“sitting”, “sitting down”), (“standing up from lying”,

CLINNTS

“standing up from sitting”, “standing up from sitting on the ground”). Therefore, the final dataset
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Table 5: Missing rate in Human Activity Dataset

Variables Missing Rate
Vary, Varg, Vars 0.7359
Vary, Vars, Varg 0.7418
Varr, Varg, Varg 0.7828

Varyo, Var;, Varia 0.7393
Total 0.7500

9 < CLINT3

includes 7 classes: “walking”, “falling”, “lying”, “sitting”,
on the ground”.

CEIT3

standing up”, “on all fours”, and “sitting

We get a dataset of 6,554 sequences such that each time series contains 12 variables and 211 time
points. In addition, we normalize the values of all time series in [0, 1] interval.

In Table[5] we summarize the missing rate of each variable after preprocessing steps. The missing
rate of a certain variable z is defined as

L. the number of observed time points that variable = can be observed
Missing Rate(z) = 1 — .

the total number of observed time points

Goal This task is a per-time classification task and our goal is to classify the activities into 7 classes
at each observed time point.

Loss function Let [V be the number of samples. Let K, be the number of observed time points for
sample n. For the n-th sample at time point k,,, Yk, is an observed one hot vector of size 7. ¥y, 1,
is an estimated one hot vector of ¥, j,.. The c-th entry of y,, 5, and 4, 1, are denoted as yj, x,,
and 9, &, c- Pnkn = [Prkn,1s " pmkng]T such that p,, 1, . represents the predicted probability of
class c. Note that

1<ce<7

1, c=argmax pnp,.c
Yn,ky, ,c :
0, otherwise

CE is defined such that CE (y,, k., , Pn.k,, ) ZZ:1 Ynkp,c 108(Pn, k). Thus, the loss is

Kn

CE (yn,kapn,k) .
=1

L
N 4

1

1 = —
0ss K

uMz

Training We divide the total samples (6,554) into 70% for training, 15% for validation, and 15%
for the test. The maximum number of Epochs is 50, and the parameters for the best model during
training are saved. The batch size is 64. We use Adam as the optimizer and set the initial learning
rate at 0.0035 and weight decay at 0.001. The adaptive learning rate approach is used for training,
and if the test accuracy does not decrease for 5 epochs, the learning rate will decrease by half. To
prevent overfitting, the dropout is used, and the dropout rate is 0.3. For the ODE-based models, the
“Euler” method is used as the numerical solver, and the integral step is 0.01.

Model metric All experiments are conducted five times, and the mean and standard deviation of

accuracy are provided. In this experiment, we use the accuracy as model metric as the 7 classes are
balanced. The formula of accuracy is

N K,
Acc = Z Ki Z {yn k=0nx}
n=1 k=1

F.3 PHYSIONET DATASET

Dataset description Physionet 2012 challenge consists of records from 12,000 ICU stays. All
patients are adults who are admitted for a wide variety of reasons to cardiac, medical, surgical, and
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Table 6: Missing rate in Physionet Dataset

Variables Missing Rate  Variables Missing Rate  Variables  Missing Rate  Variables  Missing Rate

Var; 0.5676 Vari 1 0.8935 Vara; 0.8980 Vars; 0.9740
Vars 0.9919 Vario 0.7920 Vargo 0.9543 Varszo 0.5117
Vars 0.9894 Varis 0.9562 Varas 0.6693 Varss 0.7160
Vary 0.9891 Vary4 0.9545 Vargy 0.6739 Varsy 0.9987
Vars 0.9891 Varis 0.9386 Varays 0.6689 Varss 0.9928
Varg 0.9890 Varig 0.2359 Vargg 0.9231 Varsg 0.5473
Vary 0.9536 Vari 7 0.9513 Vary7? 0.9233 Varsz 0.9565
Varg 0.9989 Varig 0.9722 Varag 0.9198

Varg 0.9533 Varjg 0.9543 Varag 0.9523

Varg 0.5119 Varag 0.5175 Varsg 0.8131

Total 0.8430

trauma ICUs (Silva et al.,[2012). There are 41 variables in the original dataset, and we have excluded
four time-invariant features: Age, Gender, Height, and ICUType. Thus, each patients has a set of
up to 37 features (‘Weight’, ‘Albumin’, ‘ALP’, ‘ALT’, ‘AST’, ‘Bilirubin’, ‘BUN’, ‘Cholesterol’,
‘Creatinine’, ‘DiasABP’, ‘Fi02’, ‘GCS’, ‘Glucose’, ‘HCO3’, ‘HCT’, ‘HR’, ‘K’, ‘Lactate’, ‘Mg’,
‘MAP’, ‘MechVent’, ‘Na’, ‘NIDiasABP’, ‘NIMAP’, ‘NISysABP’, ‘PaCO2’, ‘Pa02’, ‘pH’, ‘Platelets’,
‘RespRate’, ‘Sa02’, ‘SysABP’, ‘Temp’, ‘Troponinl’, ‘TroponinT’, ‘Urine’, “‘WBC”). Following
the data preprocessing from [Rubanova et al.| (2019)), we round up the timestamps to one minute.
Therefore, each time series can contain up to 2,880 points. We normalize each feature across all
patients in the dataset to be in [0, 1] interval.

In Table[6] we summarize the missing rate of each variable after preprocessing steps. The missing
rate of a certain variable x is defined as

the number of observed time points that variable x can be observed

Missing Rat =1-
issing Rate(z) the total number of observed time points

Goal This task is a binary classification task, and our goal is to classify each patient into 2 classes
based on the measurement of 48 hours of observations.

Loss function Let IV be the number of samples. For the n-th sample, y,, is an observed one hot
vector of size 2. ¢, is an estimated one hot vector of y,,. The c-th entry of y,, and ¢,, are denoted as
Yn,c and Gy, c. Pp = [pn,l,pn}g]T such that p,, . represents the predicted probability of class c. Note
that

1, c=argmaxp,.
gn,c = 1<c<2 .
0, otherwise
CE is defined such that CE (y,,, p,) = — 23:1 Yn,c10g(Pn,c)-

Thus, the loss is

N
1

1 = % E (Yn,Dn) -

0ss N;C (YnsPn)

Training We use data from set A and set B (8,000 in total) as the training data and validation data,
and data from set C (4,000 in total) as the test data. The maximum number of Epochs is 150, and
the parameters for the best model are saved during the training process. The batch size is 500. We
use Adam as the optimizer and set the initial learning rate at 0.0005 and weight decay at 0.001. The
adaptive learning rate approach is also used for training, and if the test AUC-ROC does not decrease
for 5 epochs, the learning rate will decrease by half. For the ODE-based models, the “Euler” method
is used as the numerical solver, and the integral step is 0.1.
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Table 7: The ratio of Frobenius norm on three dataset across five experiments

LSST (50% missingness) Human Acticity Physionet

W}\/I W]W W}{W W]\/[ WM W}{\/f WM W]W W]—]LW
exp-1 09969 0.9955 0.9970 0.6545 0.8567 0.9597 0.9994 0.9993 0.9902
exp-2 09972 09966 0.9973 0.7097 0.8660 0.9656 0.9995 0.9993 0.9925
exp-3 09956 0.9952 0.9961 0.7041 0.8762 0.9641 0.9996 0.9995 0.9942

exp-4 09956 0.9941 09959 0.7495 0.8842 0.9674 0.9992 0.9991 0.9900
exp-5 09966 0.9958 09971 0.7442 0.8794 0.9682 0.9994 0.9993 0.9938

Model metric All experiments are conducted five times, and the mean and standard deviation of
AUC-ROC and AUC-PR are provided. In this experiment, we use the AUC-ROC and AUC-PR
as the model metric as the labels in the dataset are highly imbalanced (with the positive class rate
around 14% ).

G FURTHER EXPERIMENTS ON MARGINAL BLOCK

In the HV method, we claim that entires in the off-diagonal blocks will move slowly from 0 during
the training process. In this study, we want to further explore the size of these values. We take out
W, ,y at the last epoch. We extract the diagonal blocks from W', and form a new matrix,

ie., W(drz";?h) = [Ay1, Az, , App]T (definition of A;;,i = [1,---, D] is defined in Appendix.
Then, we propose to use H W(i i‘;’fh) HF / HW(]‘T/{L h) HF to measure the relative ratio of the entry size in
the block-diagonal to whole matrices. || - || 7 is the Frobenius norm. The results in Table 7| show that
in the LSST and Physionet datasets, the off-diagonal entries are extremely small compared to the
entries on the main diagonal. But in the Human Activity dataset, the off-diagonal entries are relative
larger in W(JZ{Z) compared to the entries on the main diagonal. It is reasonable because data from the
ankle, belt, or chest for human activity (such as walking) are highly correlated. Predicting the activity
class accurately needs all data from the four sensors simultaneously.

H COMPUTING INFRASTRUCTURE

All models are run on a NVIDIA V100s GPU with 32GB RAM and AMD EPYC 7742 64-Core
processor. All models are implemented in Python 3.8. The versions of main packages of our code are:
Pytorch 1.8.1+cul102, torchdiffeq: 0.2.2, Sklearn: 0.23.2, Numpy: 1.19.2, Pandas: 1.1.3, Matplotlib:
3.3.2.

I CODES AND DATASETS

All experiment codes are inhttps://anonymous.4open.science/r/CoGRUODE-88C4.
All the datasets are public datasets which can be downloaded from:

e LSST: http://www.timeseriesclassification.com/Downloads/LSST.
zip

* Human Activity: https://archive.ics.uci.edu/ml/datasets/
Localization+Data+for+Person+Activity

 Physionet: https://physionet.org/files/challenge—-2012/1.0.0/
set—a.tar.gz, https://physionet.org/files/challenge—-2012/1.0.
0/set-b.tar.gz, https://physionet.org/files/challenge—-2012/1.
0.0/set-c.tar.gz

20


https://anonymous.4open.science/r/CoGRUODE-88C4
http://www.timeseriesclassification.com/Downloads/LSST.zip
http://www.timeseriesclassification.com/Downloads/LSST.zip
 https://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity
 https://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity
https://physionet.org/files/challenge-2012/1.0.0/set-a.tar.gz
https://physionet.org/files/challenge-2012/1.0.0/set-a.tar.gz
https://physionet.org/files/challenge-2012/1.0.0/set-b.tar.gz
https://physionet.org/files/challenge-2012/1.0.0/set-b.tar.gz
https://physionet.org/files/challenge-2012/1.0.0/set-c.tar.gz
https://physionet.org/files/challenge-2012/1.0.0/set-c.tar.gz

	Introduction
	Related Work
	Background
	Architecture of CoGRUODE
	Experiments
	LSST dataset
	Human Activity Dataset
	Physionet Dataset
	Ablation studies

	Conclusion
	fprep function in GRUODE to deal with asynchronous problem
	Details about HM and HV in the marginal block
	Interpretations of the notations under HM approach
	Interpretations of the notations under HV approach

	Detailed architecture of CoGRUODE
	Algorithms of GRUODE and CoGRUODE
	mGRUODE and Co-mGRUODE
	Experiment details
	LSST Dataset
	Human Activity Dataset
	Physionet Dataset

	Further Experiments on Marginal Block
	Computing Infrastructure
	Codes and datasets

