
Under review as a conference paper at ICLR 2023

A fprep FUNCTION IN GRUODE TO DEAL WITH ASYNCHRONOUS PROBLEM

There are two types of missing values in the multivariate time series. First, for one-dimensional time
series, irregularly sampled observations will lead to missing values in the time dimension. Second,
at a particular observed time point, values from some dimensions can be observed, but values from
other dimensions cannot be observed, resulting in missing values across variables. The ODE-based
model can theoretically handle the missing values from the time dimension, but it is difficult to tackle
the missing values across variables.

Some common methods to deal with missing values across variables are imputation (such as impute
the mean) or interpolation (such as linear or cubic interpolation), but these methods have been shown
to lead to suboptimal predictions (Che et al., 2018). GRUODE (Brouwer et al., 2019) proposed to
impute the missing values with the predicted means, variances, and error (see equation 3), which is
handled by a preprocessing function fprep. We are now going to describe the details of the fprep in
this section. Indeed, we outline the outputs of fprep step by step.

1. Given the hidden state h(t), compute the parameters θ = fobs(h(t)). Here, fobs maps h
to the estimated parameters of the observations distribution µX(t) and σX(t). Note that
θ = [θ1, · · · , θD]. In the case of Gaussian, θd contains the means and log-variances for
dimension d of X(t).

2. Create a vector qd that concatenates θd with the observed value Xd
t and the normalized

error term, which for the Gaussian case is (Xd
t − µd)/σd, where µd and σd are the mean

and standard deviation derived from θd.

3. Multiply the vectors qd by a dimension-specific weight matrix W d and apply a ReLU
non-linear function.

4. Zero all results that did not have an observation (by multiplying them with mask md).

As shown above, GRUODE use prediction values (mean, variance, and error) predicted by memories
from previous time point to impute missing values across variables. However, this methods can only
be applied on regression/forecast tasks, and is not applicable to classification tasks since the predicted
class and cross entropy loss only be computed at the last time point. Our approach gives an alternative
approach to dealing with the asynchronous problem, and our models can apply to both prediction and
classification tasks.

B DETAILS ABOUT HM AND HV IN THE MARGINAL BLOCK

We propose two approaches when we construct the marginal blocks, namely the HM approach and the
HV approach. The meanings of the notations are different. We are going to give the interpretations in
this section.

We also elucidate the meanings through an example - suppose that the number of variables (denoted
as D) is set to be 3 and the size of marginal memory of each variable (denoted as s) is set to be 10,
then we have Xt = [X1

t , X
2
t , X

3
t ]T and hM,1(t),hM,2(t),hM,3(t) ∈ R10×1. The total dimensions

of memories for all the variables (denoted as H) equals s×D, which is 30.

B.1 INTERPRETATIONS OF THE NOTATIONS UNDER HM APPROACH

hM (t) = [hM,1(t),hM,2(t),hM,3(t)]T . Here, rM,d(t), zM,d(t), and h̃M,d(t) ∈ R3×10.

Given D matrices M1, · · · ,MD such that each matrix is of dimensions m × n, we can
concatenate them as a new tensor of dimensions D × m × n. The resulting tensor is de-
noted as [M1, · · · ,MD]. As a result, given that WM,d

(r,z,h) ∈ R10×1 and UM,d
(r,z,h) ∈ R10×10,

WM
(r,z,h) = [WM,1

(r,z,h),W
M,2
(r,z,h),W

M,3
(r,z,h)]

T is a tensor of sizes 3 × 10 × 1 while UM
(r,z,h) =

[UM,1
(r,z,h), U

M,2
(r,z,h), U

M,3
(r,z,h)]

T is a tensor of sizes 3× 10× 10.

12



Under review as a conference paper at ICLR 2023

Finally, we have WM
(r,z,h) ~X(t) = [WM,1

(r,z,h)X
1(t),WM,2

(r,z,h)X
2(t),WM,3

(r,z,h)X
3(t)]T and UM

(r,z,h) ~

hM (t) = [UM,1
(r,z,h)h

M,1(t), UM,2
(r,z,h)h

M,2(t), UM,1
(r,z,h)h

M,3(t)]T . See Figure 7 for a graphical inter-
pretation for WM

(r,z,h) ~X(t) (in this figure, we assume the batch size equals 256).

Figure 7: Visualization of HM approach Figure 8: Visualization of HV approach

B.2 INTERPRETATIONS OF THE NOTATIONS UNDER HV APPROACH

The marginal memory hM (t) ∈ R30×1 (30 is the product of s = 10 and D = 3). WM
(r,z,h) ∈ R10×3

and UM
(r,z,h) ∈ R10×10. We initialize UM

(r,z,h) as identity matrices, and WM
(r,z,h) as a block matrix

[Aij ]
T
3×3 such that the blockAij is a matrix with all entries equal a if i = j and 0 if i 6= j. Specifically,

[
A11 A12 A13

A21 A22 A23

A31 A32 A33

]T
=


10︷ ︸︸ ︷

a · · · a
10︷ ︸︸ ︷

0 · · · 0

10︷ ︸︸ ︷
0 · · · 0

0 · · · 0 a · · · a 0 · · · 0

︸ ︷︷ ︸
30

0 · · · 0 0 · · · 0 a · · · a


T
 3 .

See Figure 8 for a graphical interpretation for WM
(r,z,h) ~X(t) (in this figure, we assume the batch

size equals 256).

13



Under review as a conference paper at ICLR 2023

C DETAILED ARCHITECTURE OF COGRUODE

Figure 9 shows the detailed architecture of our proposed model CoGRUODE. X1 (red line) and
X2 (blue line) are two asynchronous time series. X1 has observations at time points t1 and t2 and
X2 has observations at time points t1 and t3. h1 and h2 are two memories that are induced by X1

and X2. Each memory evolves by an ODE solver between two observed time points and updates
when there is one observation for the corresponding variable. The dependence block extracts the
information from the memories of each variable and forms the dependence memory.

Figure 9: Detailed architecture of CoGRUODE

14



Under review as a conference paper at ICLR 2023

D ALGORITHMS OF GRUODE AND COGRUODE

Since our model is based on the GRUODE (Brouwer et al., 2019), we display the difference of
algorithm between GRUODE and our model as follows:

CoGRUODE

Input: Observations: Xt; Observed time
points: t = [t1, · · · , tK ]; Masks: mt; time
length: T
Initialize: time = 0, hM

0 , hP
0 , and all trainable

parameters
Set: hM = hM

0 , hP = hP
0

for k = 1 to K do
hM , h̃M = GRU-ODE-M(hM , time, tk)
% marginal memory evolves to tk
hP = GRU-ODE-P(hP , h̃M , time, tk)
% dependence memory evolves to tk
time = tk
hM , h̃M = GRU-Bayes-M(hM ,Xt,mt)
% marginal memory updates at tk
hP = GRU-Bayes-P(hP , h̃M , time)
% dependence memory updates at tk

end for
hM, h̃M = GRU-ODE-M(hM , tK , T )
% marginal memory evolves to end
hP = GRU-ODE-P(hP , h̃M , tK , T )
% dependence memory evolves to end
X̂t = MLP(hM ,hP )
% prediction/classification with marginal and
dependence memory
return hM ,hP , X̂t

GRU-ODE-Bayes

Input: Observations: Xt; Observed time
points: t = [t1, · · · , tK ]; Masks: mt; time
length: T
Initialize: time = 0, hM

0 , hP
0 and all trainable

parameters
Set: h = h0

for k = 1 to K do
h = GRU-ODE(h, time, tk)
% memory evolves to tk

time = tk
h = GRU-Bayes(h, fprep(Xt,mt,h))
% memory updates at tk

end for
h = GRU-ODE(h, tK , T )
% memory evolves to end

X̂t = MLP(h)
% prediction/classification with memory

return h, X̂t

15



Under review as a conference paper at ICLR 2023

E MGRUODE AND CO-MGRUODE

Our proposed model, CoGRUODE, extends from GRUODE, which aims to capture the marginal
structure and the dependence structure separately. (Brouwer et al., 2019) also propose mGRUODE.
It is a continuous-time model which is built upon the minimal GRU (a variant of GRU (Zhou et al.,
2016)), which reduces one more gate based on the classic GRU. Similar to the extension of GRUODE
in the main paper, we can build a new model which has two parts: the marginal part, which captures
the temporal information, and the dependence part, which captures the dependence information. The
constructed model is therefore called ComGRUODE. The update formulae of minimal GRU are:

zt = σ (WrXt + Urht−1 + br) ,

h̃t = tanh (WhXt + Uh (zt � ht−1) + bh) ,

ht = (1− zt)� h̃t + zt � ht−1.

The above formula can be rewritten as

∆ht = (1− zt)�
(
h̃t − ht−1

)
.

The corresponding ODE is

dh(t)

dt
= (1− z(t))�

(
h̃(t)− h(t− 1)

)
.

Therefore, like CoGRUODE, we can also design ComGRUODE based on mGRUODE. The update
formulae for ComGRUODE are as follows.

In the marginal block:

ODE part:

zM (t) = σ
(
WM

z ~X(t) + UM
z ~ hM (t) + bMz

)
,

h̃M (t) = tanh
(
WM

h ~X(t) + UM
h ~ (zM (t)� hM (t)) + bMh

)
,

dhM (t)

dt
= (1− zM (t))� (h̃M (t)− hM (t)).

Bayes part:

hM,d (t+) =

{
mGRU

(
hM,d

(
t−
)
,Xd

t

)
, if md

t = 1
hM,d (t−) , if md

t = 0
.

In the dependence block:

ODE part:

zP (t) = σ
(
WP

z h̃M (t) + UP
z hP (t) + bPz

)
,

h̃P (t) = tanh
(
WP

h h̃M (t) + UP
h hP (t) + bPh

)
,

dhP (t)

dt
=
(
1− zP (t)

)
�
(
h̃P (t)− hP (t)

)
.

Bayes part:

hP (t+) = mGRU
(
hP (t−) , h̃M (t)

)
.

16



Under review as a conference paper at ICLR 2023

F EXPERIMENT DETAILS

F.1 LSST DATASET

Dataset description The Photometric LSST Astronomical Time Series Classification Challenge
(PLAsTiCC) is a public dataset that aims to classify simulated astronomical multivariate time-series
data (Bagnall et al., 2018). The dataset is generated by measuring the photon flux using 6 different
astronomical filters. Based on the 6 physical processes, this task aims to classify celestial objects into
14 astronomical classes. This dataset is a regularly sampled dataset and the time length is 36. We
normalize each feature across all samples in the dataset to be in [0, 1] interval.

Goal This task is a classification task and our goal is to classify samples into 14 classes based on
the observations.

Loss function Let N be the number of samples. For the n-th sample, yn is an observed one hot
vector of size 14. ŷn is an estimated one hot vector of yn. The c-th entry of yn and ŷn are denoted as
yn,c and ŷn,c. pn = [pn,1, · · · , pn,14]T such that pn,c represents the predicted probability of class c.
Note that

ŷn,c =

{
1, c = arg max

1≤c≤14
pn,c

0, otherwise
.

CE is defined such that CE (yn, pn) = −
∑14

c=1 yn,c log(pn,c). Thus, the loss is

loss =
1

N

N∑
n=1

CE (yn, pn) .

Training We divide the total samples (4925) into 70% for training, 15% for validation, and 15% for
test. The maximum number of Epochs is 100, and the parameters for the best model during training
are saved. The batch size is 128. We use Adam as the optimizer and set the initial learning rate at
0.001. The adaptive learning rate approach is used during training, and if the validation accuracy
does not decrease for 5 epochs, the learning rate will decrease by half. To prevent overfitting, the
dropout is used, and the dropout rate is 0.5. For the ODE-based models, the “Euler” method is used
as the numerical solver, and the integral step is 0.02.

Model metric All experiments are conducted five times, and the mean and standard deviation of
accuracy are provided. In this experiment, we use the accuracy as the model metric as the 14 classes
are balanced. The formula of accuracy is

Acc =
1

N

N∑
n=1

1{yn=ŷn}.

F.2 HUMAN ACTIVITY DATASET

Dataset description The human Activity dataset contains multivariate time series from five indi-
viduals performing various activities. The data is made up of 3d positions of tags attached to their
left ankle, right ankle, belt, and chest. At each time point, only one tag records the position data,
which is 3-dimensional. In this experiment, we follow all the data preprocessing steps from Rubanova
et al. (2019). For ease of understanding, we restate their preprocessing steps as follows: (1) The
timestamps of the measurement are rounded to 100 ms, and such discretization does not change
the overall number of points; (2) The datasets from four tags (belt, chest, right ankle, left ankle)
are combined into a single time series, and the combined dataset is split into partially overlapping
intervals of 50 time points (with the overlap of 25 points); (3) Sequences from all individuals are
combined into a single dataset; (4) The original dataset has 11 classes, but some classes correspond
to very similar activities, which are hard to be distinguished. We combine the classes within the
following groups: (“lying”, “lying down”), (“sitting”, “sitting down”), (“standing up from lying”,
“standing up from sitting”, “standing up from sitting on the ground”). Therefore, the final dataset

17



Under review as a conference paper at ICLR 2023

Table 5: Missing rate in Human Activity Dataset

Variables Missing Rate

Var1,Var2,Var3 0.7359
Var4,Var5,Var6 0.7418
Var7,Var8,Var9 0.7828

Var10,Var11,Var12 0.7393

Total 0.7500

includes 7 classes: “walking”, “falling”, “lying”, “sitting”, “standing up”, “on all fours”, and “sitting
on the ground”.

We get a dataset of 6,554 sequences such that each time series contains 12 variables and 211 time
points. In addition, we normalize the values of all time series in [0, 1] interval.

In Table 5, we summarize the missing rate of each variable after preprocessing steps. The missing
rate of a certain variable x is defined as

Missing Rate(x) = 1− the number of observed time points that variable x can be observed
the total number of observed time points

.

Goal This task is a per-time classification task and our goal is to classify the activities into 7 classes
at each observed time point.

Loss function Let N be the number of samples. Let Kn be the number of observed time points for
sample n. For the n-th sample at time point kn, yn,kn is an observed one hot vector of size 7. ŷn,kn

is an estimated one hot vector of yn,kn . The c-th entry of yn,kn and ŷn,kn are denoted as yn,kn,c

and ŷn,kn,c. pn,kn
= [pn,kn,1, · · · , pn,kn,7]T such that pn,kn,c represents the predicted probability of

class c. Note that

ŷn,kn,c =

{
1, c = arg max

1≤c≤7
pn,kn,c

0, otherwise
.

CE is defined such that CE (yn,kn
, pn,kn

) = −
∑7

c=1 yn,kn,c log(pn,,kn,c). Thus, the loss is

loss =
1

N

N∑
n=1

1

Kn

Kn∑
k=1

CE (yn,k, pn,k) .

Training We divide the total samples (6,554) into 70% for training, 15% for validation, and 15%
for the test. The maximum number of Epochs is 50, and the parameters for the best model during
training are saved. The batch size is 64. We use Adam as the optimizer and set the initial learning
rate at 0.0035 and weight decay at 0.001. The adaptive learning rate approach is used for training,
and if the test accuracy does not decrease for 5 epochs, the learning rate will decrease by half. To
prevent overfitting, the dropout is used, and the dropout rate is 0.3. For the ODE-based models, the
“Euler” method is used as the numerical solver, and the integral step is 0.01.

Model metric All experiments are conducted five times, and the mean and standard deviation of
accuracy are provided. In this experiment, we use the accuracy as model metric as the 7 classes are
balanced. The formula of accuracy is

Acc =
1

N

N∑
n=1

1

Kn

Kn∑
k=1

1{yn,k=ŷn,k}.

F.3 PHYSIONET DATASET

Dataset description Physionet 2012 challenge consists of records from 12,000 ICU stays. All
patients are adults who are admitted for a wide variety of reasons to cardiac, medical, surgical, and

18



Under review as a conference paper at ICLR 2023

Table 6: Missing rate in Physionet Dataset

Variables Missing Rate Variables Missing Rate Variables Missing Rate Variables Missing Rate

Var1 0.5676 Var11 0.8935 Var21 0.8980 Var31 0.9740
Var2 0.9919 Var12 0.7920 Var22 0.9543 Var32 0.5117
Var3 0.9894 Var13 0.9562 Var23 0.6693 Var33 0.7160
Var4 0.9891 Var14 0.9545 Var24 0.6739 Var34 0.9987
Var5 0.9891 Var15 0.9386 Var25 0.6689 Var35 0.9928
Var6 0.9890 Var16 0.2359 Var26 0.9231 Var36 0.5473
Var7 0.9536 Var17 0.9513 Var27 0.9233 Var37 0.9565
Var8 0.9989 Var18 0.9722 Var28 0.9198
Var9 0.9533 Var19 0.9543 Var29 0.9523
Var10 0.5119 Var20 0.5175 Var30 0.8131

Total 0.8430

trauma ICUs (Silva et al., 2012). There are 41 variables in the original dataset, and we have excluded
four time-invariant features: Age, Gender, Height, and ICUType. Thus, each patients has a set of
up to 37 features (‘Weight’, ‘Albumin’, ‘ALP’, ‘ALT’, ‘AST’, ‘Bilirubin’, ‘BUN’, ‘Cholesterol’,
‘Creatinine’, ‘DiasABP’, ‘FiO2’, ‘GCS’, ‘Glucose’, ‘HCO3’, ‘HCT’, ‘HR’, ‘K’, ‘Lactate’, ‘Mg’,
‘MAP’, ‘MechVent’, ‘Na’, ‘NIDiasABP’, ‘NIMAP’, ‘NISysABP’, ‘PaCO2’, ‘PaO2’, ‘pH’, ‘Platelets’,
‘RespRate’, ‘SaO2’, ‘SysABP’, ‘Temp’, ‘TroponinI’, ‘TroponinT’, ‘Urine’, ‘WBC’). Following
the data preprocessing from Rubanova et al. (2019), we round up the timestamps to one minute.
Therefore, each time series can contain up to 2,880 points. We normalize each feature across all
patients in the dataset to be in [0, 1] interval.

In Table 6, we summarize the missing rate of each variable after preprocessing steps. The missing
rate of a certain variable x is defined as

Missing Rate(x) = 1− the number of observed time points that variable x can be observed
the total number of observed time points

.

Goal This task is a binary classification task, and our goal is to classify each patient into 2 classes
based on the measurement of 48 hours of observations.

Loss function Let N be the number of samples. For the n-th sample, yn is an observed one hot
vector of size 2. ŷn is an estimated one hot vector of yn. The c-th entry of yn and ŷn are denoted as
yn,c and ŷn,c. pn = [pn,1, pn,2]T such that pn,c represents the predicted probability of class c. Note
that

ŷn,c =

{
1, c = arg max

1≤c≤2
pn,c

0, otherwise
.

CE is defined such that CE (yn, pn) = −
∑2

c=1 yn,c log(pn,c).

Thus, the loss is

loss =
1

N

N∑
n=1

CE (yn, pn) .

Training We use data from set A and set B (8,000 in total) as the training data and validation data,
and data from set C (4,000 in total) as the test data. The maximum number of Epochs is 150, and
the parameters for the best model are saved during the training process. The batch size is 500. We
use Adam as the optimizer and set the initial learning rate at 0.0005 and weight decay at 0.001. The
adaptive learning rate approach is also used for training, and if the test AUC-ROC does not decrease
for 5 epochs, the learning rate will decrease by half. For the ODE-based models, the “Euler” method
is used as the numerical solver, and the integral step is 0.1.

19



Under review as a conference paper at ICLR 2023

Table 7: The ratio of Frobenius norm on three dataset across five experiments

LSST (50% missingness) Human Acticity Physionet

WM
r WM

z WM
h WM

r WM
z WM

h WM
r WM

z WM
h

exp-1 0.9969 0.9955 0.9970 0.6545 0.8567 0.9597 0.9994 0.9993 0.9902
exp-2 0.9972 0.9966 0.9973 0.7097 0.8660 0.9656 0.9995 0.9993 0.9925
exp-3 0.9956 0.9952 0.9961 0.7041 0.8762 0.9641 0.9996 0.9995 0.9942
exp-4 0.9956 0.9941 0.9959 0.7495 0.8842 0.9674 0.9992 0.9991 0.9900
exp-5 0.9966 0.9958 0.9971 0.7442 0.8794 0.9682 0.9994 0.9993 0.9938

Model metric All experiments are conducted five times, and the mean and standard deviation of
AUC-ROC and AUC-PR are provided. In this experiment, we use the AUC-ROC and AUC-PR
as the model metric as the labels in the dataset are highly imbalanced (with the positive class rate
around 14% ).

G FURTHER EXPERIMENTS ON MARGINAL BLOCK

In the HV method, we claim that entires in the off-diagonal blocks will move slowly from 0 during
the training process. In this study, we want to further explore the size of these values. We take out
WM

(r,z,h) at the last epoch. We extract the diagonal blocks from WM
(r,z,h) and form a new matrix,

i.e., W diag
(r,z,h) = [A11, A22, · · · , ADD]T (definition of Aii, i = [1, · · · , D] is defined in Appendix B).

Then, we propose to use
∥∥∥W diag

(r,z,h)

∥∥∥
F
/
∥∥∥WM

(r,z,h)

∥∥∥
F

to measure the relative ratio of the entry size in

the block-diagonal to whole matrices. ‖ · ‖F is the Frobenius norm. The results in Table 7 show that
in the LSST and Physionet datasets, the off-diagonal entries are extremely small compared to the
entries on the main diagonal. But in the Human Activity dataset, the off-diagonal entries are relative
larger in WM

(r,z) compared to the entries on the main diagonal. It is reasonable because data from the
ankle, belt, or chest for human activity (such as walking) are highly correlated. Predicting the activity
class accurately needs all data from the four sensors simultaneously.

H COMPUTING INFRASTRUCTURE

All models are run on a NVIDIA V100s GPU with 32GB RAM and AMD EPYC 7742 64-Core
processor. All models are implemented in Python 3.8. The versions of main packages of our code are:
Pytorch 1.8.1+cu102, torchdiffeq: 0.2.2, Sklearn: 0.23.2, Numpy: 1.19.2, Pandas: 1.1.3, Matplotlib:
3.3.2.

I CODES AND DATASETS

All experiment codes are in https://anonymous.4open.science/r/CoGRUODE-88C4.
All the datasets are public datasets which can be downloaded from:

• LSST: http://www.timeseriesclassification.com/Downloads/LSST.
zip

• Human Activity: https://archive.ics.uci.edu/ml/datasets/
Localization+Data+for+Person+Activity

• Physionet: https://physionet.org/files/challenge-2012/1.0.0/
set-a.tar.gz, https://physionet.org/files/challenge-2012/1.0.
0/set-b.tar.gz, https://physionet.org/files/challenge-2012/1.
0.0/set-c.tar.gz

20

https://anonymous.4open.science/r/CoGRUODE-88C4
http://www.timeseriesclassification.com/Downloads/LSST.zip
http://www.timeseriesclassification.com/Downloads/LSST.zip
 https://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity
 https://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity
https://physionet.org/files/challenge-2012/1.0.0/set-a.tar.gz
https://physionet.org/files/challenge-2012/1.0.0/set-a.tar.gz
https://physionet.org/files/challenge-2012/1.0.0/set-b.tar.gz
https://physionet.org/files/challenge-2012/1.0.0/set-b.tar.gz
https://physionet.org/files/challenge-2012/1.0.0/set-c.tar.gz
https://physionet.org/files/challenge-2012/1.0.0/set-c.tar.gz

	Introduction
	Related Work
	Background
	Architecture of CoGRUODE
	Experiments
	LSST dataset
	Human Activity Dataset
	Physionet Dataset
	Ablation studies

	Conclusion
	fprep function in GRUODE to deal with asynchronous problem
	Details about HM and HV in the marginal block
	Interpretations of the notations under HM approach
	Interpretations of the notations under HV approach

	Detailed architecture of CoGRUODE
	Algorithms of GRUODE and CoGRUODE
	mGRUODE and Co-mGRUODE
	Experiment details
	LSST Dataset
	Human Activity Dataset
	Physionet Dataset

	Further Experiments on Marginal Block
	Computing Infrastructure
	Codes and datasets

