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A DERIVATION OF OFFLINE CALIBRATION FORMULA

We aim to approximate the original weight matrix W by a low-rank decomposition LR, such that
the output difference with input X is minimized:

E = ∥LRX−WX∥2F . (1)

We first take the partial derivative of E with respect to L:
∂E
∂L

=
∂

∂L
Tr

(
(LRX−WX)

⊤
(LRX−WX)

)
= 2LRXX⊤R⊤ − 2WXX⊤R⊤. (2)

Setting the gradient to zero yields the optimal solution:
∂E
∂L

= 0 ⇒ L = WXX⊤R⊤ (
RXX⊤R⊤)−1

. (3)

Next, we take the partial derivative of E with respect to R:
∂E
∂R

=
∂

∂R
Tr

(
RXX⊤R⊤L⊤L− 2RXX⊤W⊤L

)
= 2RXX⊤L⊤L− 2WXX⊤L. (4)

Setting the gradient to zero gives:
∂E
∂R

= 0 ⇒ R =
(
L⊤L

)−1
L⊤W. (5)

B CENTERED KERNEL ALIGNMENT (CKA) SIMILARITY

Let the centered representations be denoted as

X̃ = UXΣXV⊤
X, Ỹ = UYΣYV⊤

Y, (6)

where UX and UY are the left singular vectors of X̃ and Ỹ, and ΣX, ΣY are their corresponding
singular value matrices.

The centered Gram matrices are given by:

G̃X = X̃X̃⊤ = UXΣ2
XU⊤

X, (7)

G̃Y = ỸỸ⊤ = UYΣ2
YU⊤

Y. (8)

Then, the Hilbert-Schmidt Independence Criterion (HSIC) becomes:

HSIC(X,Y) = Tr(G̃XG̃Y) =

rX∑
i=1

rY∑
j=1

σ2
X,iσ

2
Y,j

(
u
(i)⊤
X u

(j)
Y

)2

, (9)

where u
(i)
X and u

(j)
Y denote the i-th and j-th columns of UX and UY, respectively.

The normalization terms are:

HSIC(X,X) =

rX∑
i=1

σ4
X,i, (10)

HSIC(Y,Y) =

rY∑
j=1

σ4
Y,j . (11)

Hence, the final CKA similarity can be expressed as:

CKA(X,Y) =

∑rX
i=1

∑rY
j=1 σ

2
X,iσ

2
Y,j

(
u
(i)⊤
X u

(j)
Y

)2

√(∑rX
i=1 σ

4
X,i

)(∑rY
j=1 σ

4
Y,j

) . (12)
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Llama-2-13B Llama-3-8BLlama-2-7B

Llama-7BMistral-7BLongchat-7B

Figure 1: Comparison of Fisher information between Key and Value projection layers across different
models.

This expression reveals that CKA measures the alignment between the principal subspaces of X̃
and Ỹ. Larger CKA values indicate stronger overlap in dominant singular directions, as determined
by both the magnitude of singular values and the cosine similarity between the corresponding left
singular vectors.

C VISUALIZATION OF FISHER INFORMATION

We analyze the Fisher information of the Key and Value projection layers across different models. It
can be observed that the Fisher information—i.e., the importance—of the Value projection layers is
higher than that of the Key projection layers, as shown in Figure 1.

D THEORETICAL ANALYSIS OF COMPRESSION ERROR

To complement our empirical evaluations, we provide a rigorous theoretical analysis to justify
the effectiveness of our SVD-based KV cache compression strategy. Specifically, we analyze the
following three components: (i) general SVD approximation error bounds, (ii) error reduction via
offline calibration of the Value projection, and (iii) Head-wise Similarity–aware Reordering (HSR)
guided by Centered Kernel Alignment (CKA). These results offer interpretability and robustness
guarantees for our proposed method.

D.1 SVD APPROXIMATION ERROR BOUND

Let W ∈ Rm×n be a weight matrix with full SVD:
W = UΣV ⊤,

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices, and Σ = diag(σ1, . . . , σn) contains the
singular values in descending order:

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Let W̃ = UkΣkV
⊤
k be the rank-k approximation using the top k singular values and corresponding

vectors. Then for any input vector x ∈ Rn, the approximation error satisfies:

∥Wx− W̃x∥2 ≤ σk+1∥x∥2.

Proof Sketch: The error term can be rewritten as:
∥(W − W̃ )x∥2 = ∥U(Σ− Σk)V

⊤x∥2 = ∥(Σ− Σk)V
⊤x∥2.

Since (Σ− Σk) zeroes out the top k entries, we have:

∥(Σ− Σk)V
⊤x∥22 =

n∑
i=k+1

σ2
i (V

⊤x)2i ≤ σ2
k+1

n∑
i=k+1

(V ⊤x)2i ≤ σ2
k+1∥x∥22.

Taking square roots yields the bound. When singular values decay rapidly—as empirically observed
in transformer models—this guarantees low approximation error.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

D.2 OFFLINE CALIBRATION REDUCES VALUE COMPRESSION ERROR

Given a low-rank factorization of the Value matrix Wv ≈ LvRv, we show that calibrating (Lv, Rv)
on a dataset X guarantees lower or equal reconstruction error than vanilla SVD.

Theorem 1. Let X ∈ Rn×b be a calibration dataset. Then:

∥L∗
vR

∗
vX −WvX∥2F ≤ ∥L̃vR̃vX −WvX∥2F ,

where (L̃v, R̃v) are SVD factors, and (L∗
v, R

∗
v) are obtained via two-stage least-squares minimization.

Proof Sketch:

• Fix R̃v and solve for Lv:

L∗
v = WvX(R̃vX)⊤

[
(R̃vX)(R̃vX)⊤

]−1

This minimizes ∥LvR̃vX −WvX∥2F .
• Fix L∗

v and solve for Rv:

R∗
v = (L∗⊤

v L∗
v)

−1L∗⊤
v WvXX⊤(XX⊤)−1

This minimizes ∥L∗
vRvX −WvX∥2F .

• By composition of two optimizations:

∥L∗
vR

∗
vX −WvX∥2F ≤ ∥L̃vR̃vX −WvX∥2F .

This result shows that our offline calibration procedure is guaranteed to reduce (or at worst maintain)
the approximation error relative to uncalibrated SVD.

D.3 CKA SIMILARITY IMPLIES BETTER SVD APPROXIMATION (JUSTIFYING HSR)

We provide theoretical justification for our Head-wise Similarity–aware Reordering (HSR) by showing
that higher CKA similarity between adjacent heads leads to better low-rank approximation after
concatenation.

Theorem 2. Let A1 ∈ Rm×d1 , A2 ∈ Rm×d2 and Wk = [A1, A2] ∈ Rm×(d1+d2). If CKA(A1, A2)
increases, the truncated SVD error:

Er :=

∥∥∥∥∥Wk −
r∑

i=1

σiuiv
⊤
i

∥∥∥∥∥
2

F

=

rank(Wk)∑
i=r+1

σ2
i

decreases.

Proof Sketch:

• The Gram matrix is:

WkW
⊤
k = G1 +G2 = A1A

⊤
1 +A2A

⊤
2

The eigenvalues of G1 + G2 determine the singular values of Wk, hence the tail sum of
eigenvalues λr+1, . . . controls the SVD error.

• Define centered Gram matrices:

G̃1 = Ã1Ã
⊤
1 , G̃2 = Ã2Ã

⊤
2

with Ãi = HAi, H = Im − 1
m11⊤.

• CKA is:

CKA(A1, A2) =
tr(G̃1G̃2)

∥G̃1∥F · ∥G̃2∥F
• Higher CKA implies the dominant eigenspaces of G1 and G2 align. Therefore, their sum
G1 +G2 concentrates spectral energy in the top r components, reducing

∑rank
i=r+1 λi.

Thus, HSR—which reorders heads by maximizing local CKA similarity—effectively reduces the
approximation error under truncated SVD.
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D.4 SUMMARY

We have provided theoretical justification for key components of ReCalKV:

• Low-rank SVD has a provable bound on approximation error proportional to σk+1.

• Offline calibration yields lower reconstruction error than uncalibrated SVD.

• HSR reduces SVD error by aligning similar head structures with high CKA.

These results support the reliability and effectiveness of our proposed KV cache compression pipeline.

E CALIBRATION SENSITIVITY ANALYSIS

To assess the robustness of ReCalKV to the calibration process, we investigate how different calibra-
tion datasets and calibration set sizes affect post-compression model quality. Specifically, we evaluate
the perplexity of LLaMA-2-7B compressed with ReCalKV under varying calibration configurations.

Experimental Setup. We consider three types of calibration datasets: WikiText2, C4, and Penn
Treebank (PTB). For each dataset, we sample subsets of size {16, 32, 64, 128, 256} as calibration
data. The downstream evaluation is performed on all three datasets (WikiText2, C4, PTB) to
comprehensively assess generalization across domains.

Results and Observations. Table 1 presents the perplexity results across all calibration dataset types
and sizes. Several consistent trends emerge from the analysis:

• Calibration Dataset Type. When the calibration size is fixed (e.g., 256), the choice of
dataset (WikiText2, C4, or PTB) has minimal impact on the final performance. For instance,
with 256 calibration samples:

– WikiText2 calibration yields PPL = 5.83 (WikiText2), 8.14 (C4), 39.51 (PTB)
– C4 calibration yields PPL = 5.88 (WikiText2), 8.16 (C4), 40.41 (PTB)
– PTB calibration yields PPL = 5.88 (WikiText2), 8.20 (C4), 40.04 (PTB)

This suggests that the method is agnostic to the choice of calibration dataset, as long as it
reflects general language statistics.

• Calibration Set Size. When fewer than 32 calibration samples are used, performance
degradation becomes more significant. For example, with WikiText2 calibration:

– 256 samples: 5.83 (WikiText2), 8.14 (C4), 39.51 (PTB)
– 32 samples: 5.86, 8.21, 40.53
– 16 samples: 6.32, 8.92, 46.29

This trend holds across all calibration datasets, indicating that while ReCalKV remains
stable when the calibration size is greater than or equal to 32, extremely small sample sizes
(e.g., 16) may be insufficient to capture representative statistical patterns.

Conclusion.These findings confirm that ReCalKV is highly robust to the choice of calibration dataset
and maintains stable performance even with modest calibration sizes. For reliable compression
quality, using 32 or more calibration samples is sufficient in most practical scenarios.

F CALIBRATION SETUP AND RESOURCE OVERHEAD

The proposed method employs an offline calibration strategy rather than additional training or fine-
tuning. This calibration process is lightweight and fully feedforward, without any backpropagation or
parameter updates.

Calibration Procedure. Following common practice in post-training quantization and compression,
the calibration dataset is drawn from WikiText2. Only 256 samples are used to calibrate the Key
and Value projection matrices. This small-scale calibration is sufficient to capture representative
activation statistics while keeping overhead minimal.
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Table 1: Perplexity results of LLaMA-2-7B after compression with ReCalKV, under varying calibra-
tion datasets and sizes.

Calibration Data Data Size WikiText2 PPL ↓ C4 PPL ↓ PTB PPL ↓

WikiText2 256 5.83 8.14 39.51
WikiText2 128 5.86 8.20 40.37
WikiText2 64 5.86 8.20 40.42
WikiText2 32 5.86 8.21 40.53
WikiText2 16 6.32 8.92 46.29

C4 256 5.88 8.16 40.41
C4 128 5.89 8.17 40.38
C4 64 5.89 8.17 40.38
C4 32 5.90 8.17 40.47
C4 16 6.66 9.73 73.86

PTB 256 5.88 8.20 40.04
PTB 128 5.88 8.20 40.06
PTB 64 5.89 8.20 40.05
PTB 32 5.89 8.21 40.03
PTB 16 6.14 8.52 41.17

Resource Consumption. Table 2 reports the calibration time and GPU memory usage for two
representative models: LLaMA-2-7B and LLaMA-2-13B-chat. All measurements are taken on a
single NVIDIA A6000 GPU.

Table 2: Calibration time and GPU memory usage.

Model Calibration Time GPU Memory
LLaMA-2-7B 11 minutes 25 GB
LLaMA-2-13B-chat 25 minutes 34 GB

Practical Implications. As shown, the entire calibration process completes in under 30 minutes,
even for models with 13 billion parameters. The GPU memory footprint remains moderate, making
the method accessible on widely available hardware. These properties suggest that the proposed
compression strategy is efficient, scalable, and suitable for real-world deployment in both research
and production settings.

G ADDITIONAL EXPERIMENTS

To further validate the effectiveness and generalizability of ReCalKV, we conduct additional exper-
iments from two perspectives: (i) comparison with more baseline methods, and (ii) evaluation on
newer large language models (LLMs).

G.1 COMPARISON WITH ADDITIONAL BASELINES

We compare ReCalKV with two representative methods: Eigen Attention (Saxena et al., 2024)
and ASVD Yuan et al. (2023). These baselines represent different lines of compression strategies,
providing a comprehensive comparison.

(a) Comparison with Eigen Attention. Table 3 shows the perplexity of ReCalKV and Eigen
Attention on LLaMA-2-7B under various compression ratios. ReCalKV consistently achieves lower
perplexity on both WikiText2 and C4, demonstrating superior retention of contextual information
under compression.

(b) Comparison with ASVD. To further assess robustness across compression levels, we compare
ReCalKV with ASVD on LLaMA-2-13B. As shown in Table 4, ReCalKV outperforms ASVD at
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Table 3: Comparison with Eigen Attention on LLaMA-2-7B. Lower perplexity is better.

Method Compression Ratio WikiText2 ↓ C4 ↓

Eigen Attention 20% 5.96 7.82
ReCalKV 20% 5.53 7.39
Eigen Attention 30% 6.28 8.55
ReCalKV 30% 5.57 7.52
Eigen Attention 40% 7.48 10.07
ReCalKV 40% 5.67 7.74

all compression ratios except for the extreme 20%, where its perplexity is marginally higher. These
results confirm that ReCalKV provides stable and high-fidelity compression even under aggressive
constraints.

Table 4: Comparison with ASVD on LLaMA-2-13B under different compression ratios (CR). Metric:
WikiText2 PPL.

Method 90% 80% 70% 60% 50% 40% 30% 20%
ASVD 4.89 4.90 4.91 4.92 4.96 5.08 5.33 6.06
ReCalKV 4.89 4.89 4.90 4.91 4.95 5.02 5.19 6.19

G.2 EVALUATION ON NEWER MODELS

To demonstrate generalization to more recent LLMs, we evaluate ReCalKV on LLaMA-3.1-8B and
compare it with Palu Chang et al. (2024), a state-of-the-art low-rank compression method. Table 5
reports results under 50%–70% compression. ReCalKV consistently surpasses Palu in perplexity on
both WikiText2 and C4, confirming its adaptability to newer architectures.

Table 5: Evaluation of ReCalKV vs. Palu on LLaMA-3.1-8B under various compression ratios.

Model Method Compression WikiText2 ↓ C4 ↓

LLaMA-3.1-8B

FP16 0% 6.24 9.54
Palu 50% 8.71 19.02

ReCalKV 50% 8.59 18.04
Palu 60% 10.98 24.55

ReCalKV 60% 10.60 24.49
Palu 70% 16.99 41.86

ReCalKV 70% 15.81 39.34

These results verify that ReCalKV maintains strong compression performance on modern model
architectures without requiring retraining.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

REFERENCES

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, and Kai-Chiang Wu. Palu: Compressing kv-cache with low-rank
projection. arXiv preprint arXiv:2407.21118, 2024.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression. arXiv preprint arXiv:2408.05646, 2024.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint
arXiv:2312.05821, 2023.

8


	Derivation of Offline Calibration Formula
	Centered Kernel Alignment (CKA) Similarity
	Visualization of Fisher Information
	Theoretical Analysis of Compression Error
	SVD Approximation Error Bound
	Offline Calibration Reduces Value Compression Error
	CKA Similarity Implies Better SVD Approximation (Justifying HSR)
	Summary

	Calibration Sensitivity Analysis
	Calibration Setup and Resource Overhead
	Additional Experiments
	Comparison with Additional Baselines
	Evaluation on Newer Models


