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ABSTRACT

Early stopping is a simple and widely used method to prevent over-training neu-
ral networks. We develop theoretical results to reveal the relationship between
optimal early stopping time and model dimension as well as sample size of the
dataset for certain linear regression models. Our results demonstrate two very dif-
ferent behaviors when the model dimension exceeds the number of features versus
the opposite scenario. While most previous works on linear models focus on the
latter setting, we observe that in common deep learning tasks, the dimension of
the model often exceeds the number of features arising from data. We demon-
strate experimentally that our theoretical results on optimal early stopping time
corresponds to the training process of deep neural network. Moreover, we study
the effect of early stopping on generalization and demonstrate that optimal early
stopping can help mitigate “double descent” in various settings.

1 INTRODUCTION

Generalization, accuracy, and computation are three of the major aspects in deploying large scale
machine learning models. They are often brought together into an optimization framework, where
the first two aspects concern stationary solution and the last aspect concerns convergence proper-
ties of the algorithm. As a result, most previous works have analyzed them separately, seeking to
strike a balance between generalization and accuracy first then understand computational complex-
ity (Zhang, 2002). These approaches often design a regularizer in the form of a penalty term added
to the objective function (c.f., Nakkiran et al., 2020b, and references therein). While this method
is effective in many settings, it can prove challenging to determine the regularization that guaran-
tees appealing behaviors. Adding to the complication is the fact that they are often designed to
avoid overfitting when the optimization algorithm converges. It is not obvious how the behavior will
change if the algorithm stops before the convergence of the optimization procedure.

Recent success of deep learning models combined with gradient based optimization has prompted
increasingly many works to focus on blending the computation aspect into the picture of
generalization–accuracy tradeoff (Du et al., 2018). Such approaches often leverage implicit proper-
ties of the optimization algorithms in conjunction of the model and the data structures and are thus
referred to as implicit regularization methods. In training of deep neural networks, techniques such
as stochastic gradient descent, batch normalization (Ioffe & Szegedy, 2015), and dropouts (Srivas-
tava et al., 2014) are widely used to grant generalization properties implicitly.

In this paper, we study regularization via early stopping (Morgan & Bourlard, 1989; Zhang & Yu,
2005; Yao et al., 2007). While in practice, early stopping is often forced by computational budget
constraints, we focus on its efficacy in avoiding overfitting towards the training dataset. In the
presence of label noise, in particular, we study the common strategy of concluding the training
process at the optimal early stopping time, which achieves the lowest test risk before it increases
again. One crucial question is how this optimal early stopping time relates to the model size and
sample size. Answering this question not only provides guidance for the model training process in
practice, but also contributes to the understanding of the generalization property of different models.

A Conundrum on Optimal Early Stopping (Ali et al., 2019) studied the regularization effect
of early stopping on least square regression, but did not provide explicit characterization of the
optimal early stopping time with respect to the model and data complexity. As a first step, we
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Figure 1: Left: Optimal early stopping time vs. model width d for
CIFAR-100 with 20% label noise trained using ResNet networks
with convolutional layers of widths [d, 2d, 4d, 8d]. Right: Testing
error vs. time for CIFAR-100 with 20% label noise trained using
ResNet networks using different model widths.

Figure 2: Optimal early stop-
ping time vs. hidden layer
width trained using two-layer
ReLU networks on randomly
generated points of p = 10 clus-
ters with 20% label noise.

compute the optimal early stopping time of the model studied in (Ali et al., 2019) and discover
that under the setting adopted therein, the optimal early stopping time increases along with the
model size. However, this trend is contrary to what we observed in traning neural networks. We
observed that when training popular datasets such as MNIST, CIFAR-10/100 using deep neural
networks, the optimal early stopping time decreases as the model size increases (see Figure 1).
These two contradicting trends indicate that previous theoretical models are not sufficient to explain
what happens in practice.

Overparametrization vs. Underparametrization We noticed that despite the huge models used
to train those datasets, their labels are actually generated by low dimensional representations or
features (See Section 4.2). Previous theoretical works have primarily focused on the case where
the model dimension is approximately the same or less than the number of features instead of the
opposite scenario (Ali et al., 2019; Belkin et al., 2020; Nakkiran et al., 2020b). To complete the
missing pieces in previous analyses, we propose a new model where the label is generated by a
low-dimensional transformation of the input data. We define the case where the model size is
larger than the number of features as being overparametrized. We verify experimentally that this
overparametrized case better reflects what happens in training neural networks. This new over-
parametrization setting demonstrates very different behavior from the previous theoretical model,
which resolves the contradiction we previously observed.

We illustrate both theoretically and experimentally that the optimal stopping time behaves very dif-
ferently when the number of features is smaller (overparametrization) or larger (underparametriza-
tion) than the model size. In the overparametrization setting, the optimal early stopping time de-
creases as the model dimension increases or as the sample size decreases, similar to what we observe
when training deep neural networks for image classification tasks. On the other hand, in the under-
parametrization setting, the optimal early stopping time increases as the model dimension increases
or as the number of samples increases.We corroborate experimentally that these trends persist when
training various linear models and neural networks (e.g., Figure 2).

Generalization of the early stopped-models Even for the same model, stopping at the optimal
early stopping time versus after the training converges can lead to solutions with very different
generalization properties. Another problem we study is how the test risk of models changes as a
function of other training parameters when stopped at the optimal early stopping time. In particular,
it has been shown that without regularization, the test risk can exhibit the so-called “double descent”
phenomenon (Belkin et al., 2018; Nakkiran et al., 2020a), where the risk as a function of model
size or sample size experience two distinct phases of descent. This phenomenon can make deciding
the best model parameters challenging. We demonstrate that early stopping helps mitigate double
descent in multiple settings.

1.1 RELATED WORKS

The test risk of simplified machine learning models has been studied in a long line of works. A par-
tial list of papers that studied linear models similar to ours includes (Bartlett et al., 2020; Chen et al.,
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2020a; Dobriban et al., 2018; Hastie et al., 2019; Montanari et al., 2019; Mitra, 2019; Muthukumar
et al., 2020)

Regularization is widely used in training machine learning models to prevent overfitting. (Dobriban
et al., 2018; Dobriban & Sheng, 2020; Hastie et al., 2019; Kobak et al., 2020; Mei & Montanari,
2019; Nakkiran et al., 2020b) studied the test risk of ridge regression. In addition, a lot of recent
works studied the theoretical guarantee of implicit regularization in model training (Dereziński et al.,
2019; Vaskevicius et al., 2019; HaoChen et al., 2020; Blanc et al., 2020; Razin & Cohen, 2020). In
our work, we focus on regularization using early stopping. (Li et al., 2020) proved that early stopping
is robust to label noise in certain settings. (Ali et al., 2019; 2020) related the risk of ridge regression
to that of early stopping. (Vaškevičius et al., 2020) studied early stopped mirror descent. Our work
characterizes the time that achieves the optimal stopping in various settings and demonstrates how
optimal early stopping affects generalization.

The double descent phenomenon has a long history of being studied in the literature. (Loog et al.,
2020) gave a brief history of the early works studying this topic. A partial list of works that tackled
related problem in the setting of least square regression includes (Belkin et al., 2018; 2020; Bartlett
et al., 2020; Deng et al., 2019; Hastie et al., 2019; Mei & Montanari, 2019; Muthukumar et al., 2020;
d’Ascoli et al., 2020; Chen et al., 2020a; Yang et al., 2020). (Nakkiran et al., 2020a) demonstrated
double descent can also occur as a function of number of samples. (Nakkiran et al., 2020b) shows
that optimal regularization can mitigate double descent. Our work differs from previous works by
studying the effect of early stopping on double descent.

Finally, our work studies the low rank structure of the feature representations. (Li et al., 2018;
Dusenberry et al., 2020) have also empirically explored and leveraged this property.

2 OVERPARAMETRIZATION

In this section, we introduce and analyze the overparametrization setting, where the model size
exceeds the number of features. This setting completes the missing piece of previous theoretical
analysis on large models with excessive parameters. For data (x, y), the input x ∈ Rd is from a high
dimensional space. The label y ∈ R is generated from a low-dimensional feature representation
z ∈ Rp, p ≤ d, which is mapped from x by a low-dimensional transformation. A lot of common
deep learning applications falls under this setting. Despite the huge model size used, the underlying
feature space dimension can be low. For example, we observe that the labels y in CIFAR10, a widely
used image classification problem with 10 classes, can be generated by a feature space of dimension
a little more than 10 (See Section 4.2).

Formally, we consider the following linear regression problem with d > p. Let the covariate/input
matrix X ∈ Rn×d be a random matrix such that each entry of it is generated from N (0, 1) indepen-
dently. Let x1, ..., xn be the row vectors of the matrix X . For a semi-orthogonal matrix P ∈ Rp×d

with p < d and some unknown parameter θ∗, the response is generated by

yi = ⟨Pxi, θ
∗⟩+ ϵi, (1)

where the label noise ϵi ∼ N (0, σ2) is independent of xi and is generated independently for each
(xi, yi). Let ϵ ∈ Rn be the vector with entries given by ϵi.

We let Sover denote the overparametrization setting studied in this section. This setting is inspired by
the overparametrization property of many real datasets and models. For example, to classify images
using deep neural network, the labels can usually be determined by features extracted from certain
important parts of the images. The other parts of the image, though do not contribute to the label
much, are still input to the model. When the neural network is wide, the network has the ability to
extract far more features than what contribute to the label. This character of the deep neural network
is what the setting Sover attempts to model.

Our data assumption has been studied in many related literature (Belkin et al., 2020; Nakkiran et al.,
2020b). Our analysis only relies on the concentration property of singular values of the data matrix
X , so it is possible relax the data assumptions on X to bounds on the minimum and maximum
singular values of the data matrix (Vaswani & Nayer, 2016). The linear model has been widely used
as the first step to study more complicated models as well due to its simple form (Bartlett et al.,
2020; Chen et al., 2020a; Dobriban et al., 2018; Hastie et al., 2019; Montanari et al., 2019; Mitra,
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2019; Muthukumar et al., 2020). It is possible to extend our results to non-linear settings such as the
random feature setting. In this paper, we stick to the simplest model so that we can get a simple and
explicit characterization of the optimal early stopping time.

For fixed semi-orthogonal matrix P and parameter θ∗, let DP,θ∗ be the joint distribution of a single
data point (x, y) given P and θ∗. For an estimator β, define the population risk

R(β) = E(x̃,ỹ)∼DP,θ∗

[
(⟨x̃, β⟩ − ỹ)

2
]
.

We consider the standard linear least squares problem

min
β∈Rd

1

2n
∥y −Xβ∥22 . (2)

Applying gradient flow starting from 0 on equation 2 gives a continuous differential equation over
time t,

d

dt
βX,y(t) =

X⊤

n
(y −XβX,y(t)). (3)

with an initial condition βX,y(0) = 0. We can solve the differential equation exactly and obtain

β(t) =
(
X⊤X

)+ (
I − exp

(
−tX⊤X/n

))
X⊤y, (4)

for all t ≥ 0 (Ali et al., 2019). Here, for any matrix A, exp(A) is defined as exp(A) :=
∑∞

n=0
An

n! .
In practice, one would discretize the gradient flow and perform gradient descent. We discuss the
error due to such discretization in Appendix E.

For any fixed dataset y ∈ Rn and X ∈ Rn×d given by fixed P and ϵ, let βX,y(t) be the gradient
flow solution of standard linear regression problem at time t. We further assume that P ∈ Rp×d is a
uniformaly random semi-orthogonal matrix.

Our goal is to study the expected risk of the estimator βX,y(t) over P and ϵ. We denote the expected
risk at time t for dataset size n as

RX,θ∗(t) = EP,ϵ [R(βX,y(t))] .

We study the optimal early stopping time, the time t that achieves the first local minimum of the
expected risk. We characterize the optimal early stopping time for different parameter choices. We
let topt denote the optimal stopping time, omitting (X, θ∗) when clear from context,

topt(X, θ∗) = min t s.t.
d

dt
RX,θ∗(t′) < 0 for 0 < t′ < t, and

d

dt
RX,θ∗(t) = 0. (5)

2.1 OPTIMAL EARLY STOPPING TIME

With the gradient flow solution βX,y , we can derive a high probability upper and lower bound on
topt.

Theorem 1 (Optimal early stopping time in overparametrization setting). In setting Sover, for a

fixed parameter θ∗ and noise variance σ2, when n ≤ d, let γ =
(√

n+
√
2 logn√
d

)2
. For γ ≤ 1, with

probability at least 1− 2
n over the randomness of X , the optimal early stopping time topt satisfies

n(
1 +

√
γ
)2

d
log

(
1 +

(
1−√

γ
)2 ∥θ∗∥22

σ2

)
≤ topt ≤

n(
1−√

γ
)2

d
log

(
1 +

(
1 +

√
γ
)2 ∥θ∗∥22

σ2

)
.

When n > d, let γ =
( √

n√
d+

√
2 log d

)2
. For γ ≥ 1, with probability at least 1− 2

d over the randomness
of X , the optimal early stopping time topt satisfies

1(
1 + 1√

γ

)2 log

(
1 +

(
1− 1

√
γ

)2
n ∥θ∗∥22
dσ2

)
≤ topt ≤

1(
1− 1√

γ

)2 log

(
1 +

(
1 +

1
√
γ

)2
n ∥θ∗∥22
dσ2

)
.
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Note that our definitions of γ differ slightly in the case n ≤ d and n > d, but they are both of
order Θ̃

(
n
d

)
. Theorem 1 gives an approximation of the optimal stopping time up to a constant

as long as γ is constantly bounded away from 1. When γ ≤ 1
4 (roughly n ≤ 4d),omitting the

logarithmic terms, 9n
4d ≤ topt ≤ 2n

d . When γ ≥ 4 (roughly n ≥ 4d), omitting the logarithmic terms,
n

3(d+n) log
(
1 + n∥θ∗∥

4dσ2

)
≤ topt ≤ 5n

d+n log
(
1 + 3n∥θ∗∥

dσ2

)
. Combining these two cases shows that

when γ is bounded away from 1, topt is about Θ
(

n
d+n log n

d

)
. When γ is very close to 1, the upper

bound on topt in Theorem 1 can be loose. We show in Appendix C, that in the asymptotic case where

n and d are large and ∥θ∗∥
σ2 is lower bounded, the approximation topt = Θ̃

(
n

d+n

)
still holds when

1
4 < γ < 4. In the asymptotic analysis we also achieve tighter constants in the bounds of the optimal
early stopping time. Furthermore, in Appendix F, using numerical experiments, we show that our
theoretical result can be a good approximation of the optimal stopping time for all γ.

Now, we discuss some implications of Theorem 1. The following lemma computes RX,θ∗(topt), the
expected risk at time topt, and holds for all input matrix X regardless of how it is generated.

Lemma 1. For all n, p, d ∈ N such that p ≤ d, let X ∈ Rn×d and θ∗ ∈ Rp be fixed. Let
λ1 ≥ ... ≥ λd be the eigenvalues of the matrix 1

nX
⊤X . Then,

RX,θ∗(t) = σ2 +

d∑
i=1

exp (−2tλi)
∥θ∗∥22
d

+
σ2

n

d∑
i=1

1 {λi ̸= 0} 1

λi
(1− exp(−tλi))

2
. (6)

In equation 6, the second term is the approximation error due to early stopping. The third term is
due to overfitting to the label noise, which increases as the training time increases. In presence of
label noise, the optimal early stopping finds the balance point of these two terms.

Theorem 1 shows that the optimal early stopping time is roughly Θ̃
(

n
n+d

)
, when n and d are around

the same order. When n ≫ d, the optimal early stopping time is roughly Θ(log n
d ). It implies that

when the number of features is smaller than the model dimension, optimal early stopping time
increases as n increases or d decreases. Section F.1 corroborates this trend using experiments. In
addition, we show in Section 4.2 and Section 4.3 that training deep neural networks on large real
datasets can also follow these two trends. An intuitive explanation of such phenomenon is when the
sample size is large, the label noise has less effect on model training, so the model can be trained
longer before overfitting starts. On the contrary, when d increases, the number of parameters is large
so that even small updates of each parameter can result in overfitting.

2.2 RISK MONOTONICITY

It has been observed empirically that without early stopping or other types of regularization, when
the number of samples n increases, the test error can experience double descent in presence of
label noise. However, optimal early stopping can possibly mitigate the double descent phenomenon
(Nakkiran et al., 2020a). In Proposition 1, we bound the expected risk at the optimal stopping time
for varying data size n and attempt to explain this phenomenon.
Proposition 1. In setting Sover, for a fixed parameter θ∗ and noise variance σ2. Let topt = αn/(n+

d) for some constant α. Let λ1 ≥ ... ≥ λd be the eigenvalues of the matrix 1
nX

⊤X . Then,

R1 ≤ EX [RX,θ∗(topt)] ≤ R2. (7)

where

R1 = σ2 + EX

[
d∑

i=1

exp (−2αnλi/d)

]
∥θ∗∥2

d
, and R2 = R1 +

1

2
ασ2.

R1 and R2 decrease monotonically as n increases.

Theorem 1 shows that the optimal early stopping time is roughly topt ≈ αn
n+d for a small constant

α up the logarithmic factors. When ∥θ∥∗

σ2 is not too small, equation 7 gives a small region that
bounds the expected risk at topt. We are able to show that both the upper and the lower bounds of the

5



Under review as a conference paper at ICLR 2022

region decrease as n increases. This implies that optimal early stopping can mitigate sample-wise
double descent. We use experiments to corroborate our computation and give more details on this
observation in Section 4 and Appendix F.

A related question is whether stopping at optimal early stopping time can mitigate the double descent
due to increasing model size d. (Nakkiran et al., 2020a) observed that double descent can still exist at
optimal early stopping. An theoretical analysis of this question can be an interesting future direction.

3 UNDERPARAMETRIZATION

In this section, we study the underparametrization setting, where the number of features exceeds the
model size. This setting shows very different behavior from the overparametrization setting. In this
setting, the label y is generated by some covariate z, which is in a high-dimensional space, but the
model only has access to a low-dimension projection of z.

Formally, we consider the following linear regression problem with d ≤ p. Let the covariate matrix
Z ∈ Rn×p be a random matrix such that each entry of it is generated from N (0, 1) independently.
Let z1, ..., zn be the row vectors of the matrix Z. For some unknown paratmeter θ∗, the reponse is
generated by

yi = ⟨zi, θ∗⟩+ ϵi. (8)
where the label noise ϵi ∼ N (0, σ2) is independent of zi and yi. For a semi-orhotgonal matrix
P ∈ Rp×d with d ≤ p, let X = ZP . we apply gradient flow on (X, y). For fixed semi-orthogonal
matrix P and parameter θ∗, let DP,θ∗ be the joint distribution of a single data point (x, y). For an
estimator β, define the population risk

R(β) = E(x̃,ỹ)∼DP,θ∗

[
(⟨x̃, β⟩ − ỹ)

2
]
.

Similar as in the overparametrizations setting, we consider the gradient flow solution (equation 4) of
the standard linear least square problem (equation 2). For any fixed dataset y ∈ Rn and X ∈ Rn×d

given by fixed Z, P and ϵ, let βX,y(t) be the solution of the gradient flow given in equation 4. We
further assume that P ∈ Rp×d is a uniformly random semi-orthogonal matrix.

We let Sunder denote the above setting. Sunder studies the case where we only have partial access to
the features that determine the label y and train the model on what is available.

Our goal is to study the expected risk of the estimator βX,y(t) over Z, P and ϵ. We denote the
expected risk over Z, P and ϵ at time t as

Rθ∗(t) = EZ,P,ϵ [R(βX,y(t))] .

Note that here in Sunder, we take expectation on Z when computing the expected risk. In Sover, we
do not take expectation on X and instead get a high probability bound on X . This slight difference
is due to the different methods we use in analyzing these two settings. We study the optimal early
stopping time, the time t that achieves the first local minimum of the expected risk. We charaterize
the optimal early stopping time for different choices of p, n and d. We let topt denote the optimal
stopping time, omitting θ∗ when clear from context,

topt(θ
∗) = min t s.t.

d

dt
Rθ∗(t′) < 0 for 0 < t′ < t, and

d

dt
Rθ∗(t) = 0. (9)

We are able to give a linear approximation of the optimal stopping time, topt.
Theorem 2 (Optimal early stopping time in underparametrization setting). In setting Sunder, for a
fixed parameter θ∗ and noise variance σ2, if (8n + 9d + 16) ∥θ∗∥22 ≤ pσ2 + p ∥θ∗∥22, the optimal
early stopping time topt satisfies

n ∥θ∗∥22
2
(
pσ2 + (p− d) ∥θ∗∥22

) ≤ topt ≤
2n∥θ∗∥22

pσ2 + (p− d) ∥θ∗∥22
.

Theorem 2 approximates the early optimal stopping topt up to a constant when p is larger that n and
d by a constant factor. For d that is close to p, numerical experiments show that the approximation
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Θ̃
(

n∥θ∗∥2
2

pσ2+(p−d)∥θ∗∥2
2

)
still holds. Theorem 2 implies that when the number of features is larger

than the model dimension, optimal early stopping time increases as n or d increases. An intu-
itive explanation is when the model is when the model size and the sample size are small, the model
does not have enough information to train so that the model tends to fit the noise easier.
Proposition 2. In setting Sunder, for a fixed parameter θ∗ and noise variance σ2, let topt =

n∥θ∗∥2
2

pσ2+(p−d)∥θ∗∥2
2

. Then, when (8n+ 9d+ 16) ∥θ∗∥22 ≤ pσ2 + p ∥θ∗∥22, we have

R1 ≤ Rθ∗(topt) ≤ R2,

where R1 = σ2 + ∥θ∗∥22 −
2nd∥θ∗∥4

2

p2σ2+p(p−d)∥θ∗∥2
2

and R2 = σ2 + ∥θ∗∥22 −
3nd∥θ∗∥4

2

4(p2σ2+p(p−d)∥θ∗∥2
2)
.

Here, R1 ≥ 0.8R2 and both R1 and R2 decrease when d and n increase.

Proposition 2 gives an upper bound and a lower bound on the risk at the approximated optimal early
stopping time. Under the assumption d and n are small, R1 and R2 give a tight region (R1 ≥ 0.8R2).
Proposition 2 supports the observation that risk at optimal early stopping time monotonically
decreases as n and d increases. Numerical experiments are presented in Section F.1.

4 EXPERIMENT

In this section, we run simulations for settings Sover and Sunder and demonstrate that training deep
neural networks also follows the trends our theoretical analysis identifies. We provide additional
experimental results in Appendix F.

4.1 LINEAR REGRESSION

(We moved the experiments results on linear regression to the appendix so we can have more space
to address the comments from the reviewers.)

4.2 DEEP LEARNING WITH NEURAL NETWORKS

We study the optimal early stopping time in neural network training. We demonstrate that datasets
MNIST, CIFAR-10 and CIFAR-100 have low-rank representations. Such representations show that
training common deep neural networks on these datasets falls under the overparametrization setting.
Then, we demonstrate experimentally that the optimal early stopping time follows the pattern we
identify for the overparametrization setting.

Figure 3: Scaled singular values of representations obtained from MNIST, CIFAR-10 and CIFAR-
100.

Existence of low-rank structure in image classification. Many previous works observe that
low-rank structures exist and can be leveraged in deep image classification tasks (Van der Maaten
& Hinton, 2008; Dusenberry et al., 2020). This structure facilitates the self-supervised learning and
transfer learning paradigm where image features are learned and fixed close to the input layer, re-
ducing the complexity of image-to-label mapping. Then only the last layer is trained to adapt to and
classify out-of-domain images (Chen et al., 2020b). We follow this approach and demonstrate the
existence of the low-rank structures in Figure 3, where we plot the singular values of the representa-
tions of MNIST, CIFAR-10, and CIFAR-100. First, we train CNN/ResNet-60 (He et al., 2016a;b) to
convergence with zero training loss (no label noise). Then, we obtain the representations produced
by the trained neural networks on MNIST, CIFAR-10, and CIFAR-100. Even when trained with a
very wide neural network, only the first 10/100 singular values of the representations are significant
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compared to the others. This suggests that low-rank feature representations of the datasets exist. We
believe this phenomenon may be of independent interest to understanding neural networks.
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Figure 4: In (A1) (B1) (C1), optimal early stopping time decreases with increasing model sizes for
MNIST, CIFAR-10, and CIFAR-100. In (A2) (B2) (C2), optimal early stopping time increases with
increasing sample sizes for MNIST, CIFAR-10, and CIFAR-100.

Overparameterization behavior in image classification using neural networks In this section,
we study the optimal early stopping time of MNIST, CIFAR-10, and CIFAR-100. We train MNIST
using a fully connected network, and CIFAR-10/100 using ResNet. Part of our code in this part
builds on open source code from (Nakkiran et al., 2020a). We add 20% of label noise to all datasets
For MNIST, a simple ReLU network with one hidden layer is used. We vary the hidden layer
width over d = [10, 20, ..., 60]. For CIFAR-10/100, we use a family of ResNet networks with
convolutional layers of widths [d, 2d, 4d, 8d] for different layer depths. The sample size ranges
from n = [1e5, 2e5, ..., 6e5] for MNIST, and n = [1e5, 2e5, ..., 5e5] for CIFAR-10/100. Inputs are
normalized to [−1, 1] with standard data-augmentation. We use stochastic gradient descent with
cross-entropy loss, learning rate η = 0.1 for MNIST, CIFAR-10, and η = 0.05 for CIFAR-100, and
minibatch size B = 512. The optimal stopping time is computed as topt = ηT n

B , where T is the
epoch with the optimal early stopping performance. To select the optimal stopping time, we first
apply a moving averaging window with length 5 to mitigate the effect of mini-batch noise. After
smoothing, we select the point with the optimal stopping time with the first minimal testing error
(the lowest point of the first ‘valley’, ignoring small local minima).

We show in Figure 4 the optimal early stopping time for all three datasets with varying n and d. In
(A1) (A2) (A3), we observe that the optimal early stopping time decreases with increasing model
width. In (B1) (B2) (B3), we observe that the optimal early stopping time increases with larger sam-
ple sizes. Due to the existence of low-rank representations, Figure 4 falls under the overparametriza-
tion setting even for small d. The observations are consistent with our theoretical analysis and the
experimental results on linear models in the overparametrization setting. When trained with ultra
small d < 10, the models show great instability. We provide additional experimental results sup-
porting the underparametrization setting in Section 4.3.

4.3 CLASSIFICATION USING TWO-LAYER NEURAL NETWORKS

Training datasets like CIFAR-10/100 using ultra small models is unstable, so in this section, we use
simpler datasets to verify our theoretical results for the underparametrization setting. In this experi-
ment, we use make classification function in sklearn (Pedregosa et al., 2011) to generate clusters of
points normally distributed around vertices of a high-dimensional hypercube and assigns an equal
number of clusters to each class. We generate 2000 samples (50-50 train-test split) of 20 dimen-
sions/features, but only p = 10 dimensions/features of each sample are informative features. We
add 20% label noise to the dataset. The optimal stopping time is selected similarly as in Section 4.2.

8



Under review as a conference paper at ICLR 2022

We train the data using two-layer ReLU networks with varying hidden layer width d. The blue area
in Figure 5 gives 0.5 standard deviation of 6 runs and the blue line gives the mean. In Figure 5a,
when d ≤ p = 10, we observe the underparamatrization behavior where the optimal early stopping
time increases as the model size d increases. When d ≥ 10 = p, the optimal stopping time decreases
with d. We can further observe that the test loss decreases with increasing model sizes at the optimal
early stopping time.

(a) (b)
Figure 5: (a) Optimal stopping time as a function of model size. (b) Test loss as a function of model
size.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a new model of overparametrization to study the optimal early stopping
time. This model captures the phenomenon that the model size usually exceeds the number of
features in practice. We believe this model of overparametrization can be of independent interest.
One future direction is the performance of other optimizers or techniques, e.g., stochastic gradient
descent or data augmentation, on this model. Moreover, we give an explicit characterization of the
early stopping time and the resulting model. Future works can explore other regularization properties
of this early stopped model, e.g., whether this early stopping helps when there is a domain shift in
the testing dataset.

Another direction worth exploring is to extend our results to nonlinear settings. Extending our result
to the lazy training regime of neural networks (e.g., random feature regime and neural tangent kernel
regime) can be relatively straightforward. One approach is to first locate the features extracted at
initizalition and then show how gradient flow progresses on the features extracted. Theoretical
analysis of the non-lazy training is still a largely open question, so extending this result to non-lazy
setting can be more challenging. To extend this result to the non-lazy setting for a fully nonlinear
neural network model, one needs to study how the features extracted change and how the weights
on the features change at the same time.

9
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A APPENDIX

B PROOF OF MAIN RESULTS

B.1 PROOF OF THEOREM 1

We first compute the expected risk in this setting.

Lemma 1. For all n, p, d ∈ N such that p ≤ d, let X ∈ Rn×d and θ∗ ∈ Rp be fixed. Let
λ1 ≥ ... ≥ λd be the eigenvalues of the matrix 1

nX
⊤X . Then,

RX,θ∗(t) = σ2 +

d∑
i=1

exp (−2tλi)
∥θ∗∥22
d

+
σ2

n

d∑
i=1

1 {λi ̸= 0} 1

λi
(1− exp(−tλi))

2
. (6)

Proof. We first compute R(β) for any β ∈ Rd and a fixed θ∗. Let β∗ = P⊤θ∗.

R(β) = E(x̃,ỹ)∼DP,θ∗

[
(⟨x̃, β⟩ − ỹ)

2
]

= E(x̃,ỹ)∼DP,θ∗

[
(⟨x̃, β⟩ − ⟨Px̃, θ∗⟩ − ϵ̃)

2
]

= E(x̃,ỹ)∼DP,θ∗

[
(⟨x̃, β − β∗⟩ − ϵ̃)

2
]

= σ2 + ∥β − β∗∥22 .

(10)

The first step follows from the definition of R. The second step follows from equation 1. The third
step follows from ⟨Px̃, θ∗⟩ =

〈
x̃, P⊤θ∗

〉
. The last step follows from ϵ̃ ∼ N (0, σ2), x̃ ∼ N (0, Id)

and ϵ̃ is independent of x̃.

Next, we compute the expected risk RX,θ∗(t).

RX,θ∗(t) = σ2 + EP,ϵ[∥βX,y(t)− β∗∥22]

= σ2 + EP,ϵ

[∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤ (Xβ∗ + ϵ)− β∗

∥∥∥2]
= σ2 + EP

[∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤Xβ∗ − β∗

∥∥∥2
2

]
+ σ2

[∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤

∥∥∥2
F

]
(11)

Here, we use ∥·∥F to denote the Frobenius norm. The first step follows from equation 10. The
second step follows from equation 4. The third step follows from ϵ ∼ N (0, In) is independent of X
and β∗. Now let 1

nX
⊤X = UΛU⊤ be the eigenvalue decomposition of 1

nX
⊤X . Let λ1 ≥ ... ≥ λd

be the eigenvalues of 1
nX

⊤X . Then,

EP

[∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤Xβ∗ − β∗

∥∥∥2
2

]
= EP

[∥∥∥(X⊤X
)+ (

X⊤X
) (

I − exp
(
−tX⊤X/n

))
β∗ − β∗

∥∥∥2
2

]
= EP

[∥∥(I − exp
(
−tX⊤X/n

))
β∗ − β∗∥∥2

2

]
= EP

[∥∥U exp (−tΛ)U⊤P⊤θ∗
∥∥2
2

]
=

d∑
i=1

exp (−2tλi)
∥θ∗∥22
d

.

(12)

The first step follows from X⊤X ,
(
X⊤X

)+
and I − exp

(
−tX⊤X/n

)
are simultaneously diago-

nalizable. The second step follows from I − exp
(
−tX⊤X/n

)
is already in row space of X⊤X .

The third step follows from writing 1
nX

⊤X as UΛU⊤. The last step follows from P is a random
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semi-orthogonal matrix. Similarly, we have∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤
∥∥∥2
F

= tr
((

X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤X

(
I − exp

(
−tX⊤X/n

)) (
X⊤X

)+)
= tr

((
I − exp

(
−tX⊤X/n

))2 (
X⊤X

)+)
=

1

n

d∑
i=1

1 {λi ̸= 0} 1

λi
(1− exp(−tλi))

2
.

(13)

Combining equation 11, equation 12 and equation 13 completes the proof.

We state a useful concentration result.
Lemma 2. Let X ∈ Rn×d, d ≥ n be a matrix whose entries are independent Guassian random
variables following N (0, 1). Let λ1 ≥ ... ≥ λd be the d eigenvalues of the matrix 1

nX
⊤X . Let

γ =
(√

n+
√
2 logn√
d

)2
. For γ ≤ 1, λn+1 = ... = λd = 0, and with probability at least 1− 2

n ,

d

n
(1−√

γ)
2 ≤ λn ≤ λ1 ≤ d

n
(1 +

√
γ)

2
.

Proof. λn+1 = ... = λd = 0 follows from the matrix 1
nX

⊤X is at most rank n. By Lemma 6, with
probability at least 1− 2

n ,

1

n

(√
d−

√
n−

√
2 log n

)2
≤ λn ≤ λ1 ≤ 1

n

(√
d+

√
n+

√
2 log n

)2
.

For γ =
(√

n+
√
2 logn√
d

)2
, 1

n

(√
d−

√
n−

√
2 log n

)2
= d

n

(
1−√

γ
)2

and

1
n

(√
d+

√
n+

√
2 log n

)2
= d

n

(
1 +

√
γ
)2

, which completes the proof.

Lemma 3. Let X ∈ Rn×d, d ≤ n be a matrix whose entries are independent Guassian random
variables following N (0, 1). Let λ1 ≥ ... ≥ λd be the d eigenvalues of the matrix 1

nX
⊤X . Let

γ =
( √

n√
d+

√
2 log d

)2
. For γ ≥ 1, and with probability at least 1− 2

d ,(
1− 1

√
γ

)2

≤ λd ≤ λ1 ≤
(
1 +

1
√
γ

)2

.

Proof. By Lemma 6, with probability at least 1− 2
d ,

1

n

(√
n−

√
d−

√
2 log d

)2
≤ λd ≤ λ1 ≤ 1

n

(√
n+

√
d+

√
2 log d

)2
.

For γ =
( √

n√
d+

√
2 log d

)2
, 1

n

(√
n−

√
d−

√
2 log d

)2
=

(
1− 1√

γ

)2
and

1
n

(√
n+

√
d+

√
2 log d

)2
=
(
1 + 1√

γ

)2
.

With Lemma 2, we are able to bound the optimal stopping time.
Theorem 1 (Optimal early stopping time in overparametrization setting). In setting Sover, for a

fixed parameter θ∗ and noise variance σ2, when n ≤ d, let γ =
(√

n+
√
2 logn√
d

)2
. For γ ≤ 1, with

probability at least 1− 2
n over the randomness of X , the optimal early stopping time topt satisfies

n(
1 +

√
γ
)2

d
log

(
1 +

(
1−√

γ
)2 ∥θ∗∥22

σ2

)
≤ topt ≤

n(
1−√

γ
)2

d
log

(
1 +

(
1 +

√
γ
)2 ∥θ∗∥22

σ2

)
.
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When n > d, let γ =
( √

n√
d+

√
2 log d

)2
. For γ ≥ 1, with probability at least 1− 2

d over the randomness
of X , the optimal early stopping time topt satisfies

1(
1 + 1√

γ

)2 log

(
1 +

(
1− 1

√
γ

)2
n ∥θ∗∥22
dσ2

)
≤ topt ≤

1(
1− 1√

γ

)2 log

(
1 +

(
1 +

1
√
γ

)2
n ∥θ∗∥22
dσ2

)
.

Proof of Theorem 1. We first compute the derivative of the expected risk. By Lemma 1,

d

dt
RX,θ∗(t) =

d

dt

[
σ2 +

d∑
i=1

exp (−2tλi)
∥θ∗∥22
d

+
σ2

n

d∑
i=1

1 {λi ̸= 0} 1

λi
(1− exp(−tλi))

2

]

= −
d∑

i=1

2λi exp (−2tλi)
∥θ∗∥22
d

+
2σ2

n

d∑
i=1

(exp(−tλi)− exp(−2tλi)) .

Let

dR
(i)

X,θ∗(t) = −2λi exp (−2tλi)
∥θ∗∥22
d

+
2σ2

n
(exp(−tλi)− exp(−2tλi)) .

We first consider the case d > n. For i such that λi = 0, dR
(i)

X,θ∗(t) = 0 for all t. For i such

that λi ̸= 0, we can show that if t < n

(1+
√
γ)

2
d
log

(
1 +

(1−
√
γ)

2∥θ∥2
2

σ2

)
, dR

(i)

X,θ∗(t) < 0. Let

α = exp(−tλi), then

dR
(i)

X,θ∗(t) = −

(
2 ∥θ∗∥22

d
λi +

2σ2

n

)
α2 +

2σ2

n
α.

When α > σ2d
σ2d+∥θ∗∥2nλi

, dR
(i)

X,θ∗(t) < 0. When t < log
(

σ2d+∥θ∗∥2nλi

σ2d

)
/λi, α > σ2d

σ2d+∥θ∗∥2nλi
.

By Lemma 2, with probability at least 1− 2
n ,

d

n
(1−√

γ)
2 ≤ λn ≤ d

n
(1 +

√
γ)

2
,

where γ =
(√

n+
√
2 logn√
d

)2
. Then, when t < n

(1+
√
γ)

2
d
log

(
1 +

(1−
√
γ)

2∥θ∥2
2

σ2

)
, dR

(i)

X,θ∗(t) < 0

for all i such that λi ̸= 0, which shows topt ≥ n

(1+
√
γ)

2
d
log

(
1 +

(1−
√
γ)

2∥θ∥2
2

σ2

)
. Similarly, we can

upper bound topt. For i such that λi ̸= 0, when 0 < α < σ2d
σ2d+∥θ∗∥2nλi

, dR
(i)

X,θ∗(t) > 0. When t >

log
(

σ2d+∥θ∗∥2nλi

σ2d

)
/λi, α < σ2d

σ2d+∥θ∗∥2nλi
. Then, when t > n

(1−
√
γ)

2
d
log

(
1 +

(1+
√
γ)

2∥θ∥2
2

σ2

)
,

dR
(i)

X,θ∗(t) > 0 for all i such that λi ̸= 1, which shows topt ≤ n

(1−
√
γ)

2
d
log

(
1 +

(1+
√
γ)

2∥θ∥2
2

σ2

)
.

Next, we consider the case when n > d. For i such that λi = 0, dR
(i)

X,θ∗(t) = 0 for all t. For i such

that λi ̸= 0, we can show that if t < 1(
1+ 1√

γ

)2 log

(
1 +

(
1− 1√

γ

)2
n∥θ∥2

2

dσ2

)
, dR

(i)

X,θ∗(t) < 0. Let

α = exp(−tλi), then

dR
(i)

X,θ∗(t) = −

(
2 ∥θ∗∥22

d
λi +

2σ2

n

)
α2 +

2σ2

n
α.

When α > σ2d
σ2d+∥θ∗∥2nλi

, dR
(i)

X,θ∗(t) < 0. When t < log
(

σ2d+∥θ∗∥2nλi

σ2d

)
/λi, α > σ2d

σ2d+∥θ∗∥2nλi
.

By Lemma 3, with probability at least 1− 2
d ,(

1− 1
√
γ

)2

≤ λd ≤ λ1 ≤
(
1 +

1
√
γ

)2

,
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where γ =
( √

n√
d+

√
2 log d

)2
. Then, when t < 1(

1+ 1√
γ

)2 log

(
1 +

(
1− 1√

γ

)2
n∥θ∥2

2

dσ2

)
, dR

(i)

X,θ∗(t) <

0 for all i such that λi ̸= 0, which shows topt ≥ 1(
1+ 1√

γ

)2 log

(
1 +

(
1− 1√

γ

)2
n∥θ∥2

2

dσ2

)
. Sim-

ilarly, we can upper bound topt. For i such that λi ̸= 0, when 0 < α < σ2d
σ2d+∥θ∗∥2nλi

,

dR
(i)

X,θ∗(t) > 0. When t > log
(

σ2d+∥θ∗∥2nλi

σ2d

)
/λi, α < σ2d

σ2d+∥θ∗∥2nλi
. Then, when t >

1(
1− 1√

γ

)2 log

(
1 +

(
1 + 1√

γ

)2
n∥θ∥2

2

dσ2

)
, dR

(i)

X,θ∗(t) > 0 for all i such that λi ̸= 0, which shows

topt ≤ 1(
1− 1√

γ

)2 log

(
1 +

(
1 + 1√

γ

)2
n∥θ∥2

2

dσ2

)
.

B.2 PROOF OF PROPOSITION 1

Proposition 1. In setting Sover, for a fixed parameter θ∗ and noise variance σ2. Let topt = αn/(n+

d) for some constant α. Let λ1 ≥ ... ≥ λd be the eigenvalues of the matrix 1
nX

⊤X . Then,

R1 ≤ EX [RX,θ∗(topt)] ≤ R2. (7)

where

R1 = σ2 + EX

[
d∑

i=1

exp (−2αnλi/d)

]
∥θ∗∥2

d
, and R2 = R1 +

1

2
ασ2.

R1 and R2 decrease monotonically as n increases.

Proof. By Lemma 1,

EX

[
RX,θ∗(topt)

]
= σ2 + EX

[
d∑

i=1

exp(−2toptλi)
∥θ∗∥2

d
+

σ2

n

d∑
i=1

1 {λi ̸= 0} 1

λi

(
1− exp(−toptλi)

)2]
.

where λi’s are the eigenvalues of the matrix 1
nX

⊤X . Next, we can bound

EX

[
σ2

n

d∑
i=1

1 {λi ̸= 0} 1

λi

(
1− exp(−toptλi)

)2] ≤ EX

[
σ2

n

d∑
i=1

1 {λi ̸= 0} 1

λ i

(
1− exp(−toptλi)

)]

≤ EX

[
σ2

n

d∑
i=1

1 {λi ̸= 0} 1

λ i
· toptλi

]

=
ασ2 min {n, d}

n+ d
≤ 1

2
ασ2.

We used 0 ≤ 1 − exp(−x) ≤ 1 and exp(−x) ≥ 1 − x for x ≥ 0. It is trivial to show
EX

[
σ2

n

∑d
i=1

1
λi

(
1− exp(−toptλi)

)2] ≥ 0.

Finally, we show that R decreases as n increases. Let X ′ ∈ R(n+1)×d be a random matrix with
the first n rows the same as X and the last row follow N (0, I). Let λ1 ≥ λ2 ≥ ... ≥ λd be
the eigenvalues of the matrix 1

nX
⊤X and λ′

1 ≥ λ′
2 ≥ ... ≥ λ′

d be the eigenvalues of the matrix
1
nX

′⊤X ′. Then, by Lemma 8, we have λ′
i ≥ λi for all i = 1, ..., d. The derivative

d

dλi

(
d∑

i=1

exp(−2toptλi)

)
= −2topt exp

(
−2toptλi

)
≤ 0.

By coupling X and X ′, we have

EX

[
d∑

i=1

exp

(
−2

αn

n+ d
λi

)]
≥ EX′

[
d∑

i=1

exp

(
−2

αn

n+ d
λ′
i

)]
≥ EX′

[
d∑

i=1

exp

(
−2

α(n+ 1)

n+ 1 + d
λ′
i

)]
,

which shows R decreases as n increases.
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B.3 PROOF OF THEOREM 2

We first compute the expected risk Rθ∗(t).

Lemma 4. For all n, p, d ∈ N such that p ≥ d, let θ∗ ∈ Rp be fixed. Let DΛ be the distribution
of eigenvalues of the matrix 1

nX̃
⊤X̃ , where each entry of the matrix X̃ ∈ Rn×d are i.i.d standard

normal random variable.Then,

Rθ∗(t) = σ2 +

(
1− d

p

)
∥θ∗∥22 + EΛ∼DΛ

[
d∑

i=1

exp (−2tλi)
∥θ∗∥22
p

]
+

EΛ∼DΛ

[
1

n

d∑
i=1

1 {λi ̸= 0} 1

λi
(1− exp(−tλi))

2

(
σ2 +

p− d

p
∥θ∗∥22

)]
.

Proof. We first compute R(β) for any β ∈ Rd and a fixed θ. Let β∗ = P⊤θ∗, which minimizes the
population risk R(β).

R(β) = E(x̃,ỹ)∼DP,θ∗

[
(⟨x̃, β⟩ − ỹ)

2
]

= E(x̃,ỹ)∼DP,θ∗

[
(⟨z̃, Pβ⟩ − ⟨z̃, θ∗⟩ − ϵ̃)

2
]

= σ2 + ∥Pβ − θ∗∥22
= σ2 + ∥θ∗ − Pβ∗∥22 + ∥Pβ − Pβ∗∥22 + 2 ⟨P (β − β∗), θ∗ − Pβ∗⟩
= σ2 + ∥θ∗ − Pβ∗∥22 + ∥β − β∗∥22

(14)

The first step follows from the definition of R(t). The second step follows from equation 8. The
third step follows from ϵ ∼ N (0, σ2), z̃ ∼ N (0, Id) and ϵ̃ is independent of x̃. The last two steps
follows from expanding and P⊤θ∗ = β∗ = P⊤Pβ∗.

Next, we compute the expected risk Rθ∗(t). Since P is a random semi-orthogonal matrix,

EP

[
∥θ∗ − Pβ∗∥22

]
= EP

[∥∥θ∗ − PP⊤θ∗
∥∥2
2

]
=

(
1− d

p

)
∥θ∗∥22 .

For the term ∥β − β∗∥22,

EZ,P,ϵ

[
∥β − β∗∥22

]
= EZ,P,ϵ

[∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤ (Xβ∗ + Z(I − PP⊤)θ∗ + ϵ

)
− β∗

∥∥∥2]
= EZ,P

[∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤Xβ∗ − β∗

∥∥∥2
2

]
+ EZ,P,ϵ

[∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤Z(I − PP⊤)θ∗

∥∥∥2]
+ σ2

∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤
∥∥∥2
F

(15)
The first step follows from equation 4. The second step follows from ϵ ∼ N (0, In) is independent
of X and β∗ and I − PP⊤ projects to orthogonal complement of the column space of P .
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Now let 1
nX

⊤X = UΛU⊤ be the eigenvalue decomposition of 1
nX

⊤X . We have

EZ,P

[∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤Xβ∗ − β∗

∥∥∥2
2

]
= EZ,P

[∥∥∥(X⊤X
)+ (

X⊤X
) (

I − exp
(
−tX⊤X/n

))
β∗ − β∗

∥∥∥2
2

]
= EZ,P

[∥∥(I − exp
(
−tX⊤X/n

))
β∗ − β∗∥∥2

2

]
= EZ,P

[∥∥U exp (−tΛ)U⊤P⊤θ∗
∥∥2
2

]
= EΛ,P

[
d∑

i=1

1 {λi ̸= 0} exp (−2tλi)

∥∥P⊤θ∗
∥∥2
2

d

]

= EΛ

[
d∑

i=1

1 {λi ̸= 0} exp (−2tλi)
∥θ∗∥22
p

]

(16)

The first step follows from X⊤X ,
(
X⊤X

)+
and I − exp

(
−tX⊤X/n

)
are simultaneously diago-

nalizable. The second step follows from I − exp
(
−tX⊤X/n

)
is already in row space of X⊤X .

The third step follows from writing 1
nX

⊤X as UΛU⊤. The last two step follows from X and P is
independent by rotational invariance of X . Similarly, we have∥∥∥(X⊤X

)+ (
I − exp

(
−tX⊤X/n

))
X⊤
∥∥∥2
F

= tr
((

X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤X

(
I − exp

(
−tX⊤X/n

)) (
X⊤X

)+)
= tr

((
I − exp

(
−tX⊤X/n

))2 (
X⊤X

)+)
=

1

n

d∑
i=1

1 {λi ̸= 0} 1

λi
(1− exp(−tλi))

2
.

(17)

For the second term,

EZ,P

[∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤Z(I − PP⊤)θ∗

∥∥∥2
2

]
= EZ,P

[∥∥∥(X⊤X
)+ (

I − exp
(
−tX⊤X/n

))
X⊤
∥∥∥2
F

∥∥Z(I − PP⊤)θ∗
∥∥2
2

]
= EΛ

[
1

n

d∑
i=1

1 {λi ̸= 0} 1

λi
(1− exp(−tλi))

2 · p− d

p
∥θ∗∥22

] (18)

The first step follows from X and Z(I − PP⊤) are independent. Finally, we note that since P
is a semi-orthogonal matrix, the eigenvalues of 1

nX
⊤X follows the distribution DΛ. Combining

equation 15, equation 16, equation 17 and equation 18 completes the proof.

Now, we are ready to give an approximation of the optimal stopping time topt.
Theorem 2 (Optimal early stopping time in underparametrization setting). In setting Sunder, for a
fixed parameter θ∗ and noise variance σ2, if (8n + 9d + 16) ∥θ∗∥22 ≤ pσ2 + p ∥θ∗∥22, the optimal
early stopping time topt satisfies

n ∥θ∗∥22
2
(
pσ2 + (p− d) ∥θ∗∥22

) ≤ topt ≤
2n∥θ∗∥22

pσ2 + (p− d) ∥θ∗∥22
.

Proof of Theorem 2. In this proof, all expectations are taken over the distribution DΛ, so we omit
them. We first compute the derivative of Rθ∗ with respect to time t. By Lemma 4,

d

dt
Rθ∗(t) = E

[
−
2 ∥θ∗∥22

p

d∑
i=1

λi exp (−2tλi) +
2

n

(
σ2 +

p− d

p
∥θ∗∥22

) d∑
i=1

(exp(−tλi)− exp(−2tλi))

]
.

18
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We first derive an upper bound on d
dtRθ∗(t),

d

dt
Rθ∗(t) ≤ E

[
−
2 ∥θ∗∥22

p

d∑
i=1

(
λi − 2tλ2

i

)
+

2

n

(
σ2 +

p− d

p
∥θ∗∥22

) d∑
i=1

tλi

]

= E

[
−
2 ∥θ∗∥22

p

d∑
i=1

λi +

(
4 ∥θ∗∥22

p

d∑
i=1

λ2
i +

2

n

(
σ2 +

p− d

p
∥θ∗∥22

) d∑
i=1

λi

)
t

]
.

We used exp(−x) ≥ 1−x and exp(−x)−exp(−2x) ≤ x for all x ≥ 0. Then, we have d
dtRθ∗(t) <

0 at time t < t1, where

t1 =

2∥θ∗∥2
2

p E
[∑d

i=1 λi

]
4∥θ∗∥2

2

p E
[∑d

i=1 λ
2
i

]
+ 2

n

(
σ2 + p−d

p ∥θ∗∥22
)
E
[∑d

i=1 λi

]
=

n ∥θ∗∥22
2(n+ d+ 2) ∥θ∗∥22 + pσ2 + (p− d) ∥θ∗∥22

≥
n ∥θ∗∥22

pσ2 + 2 (p− d) ∥θ∗∥22
.

The second equation follows from Lemma 7. The last step follows from the assumption (8n+9d+

16) ∥θ∗∥22 ≤ pσ2 + p ∥θ∗∥22. Next, we derive a lower bound on d
dtRθ∗(t) for t < T = n

4(n+d+2) ,

d

dt
Rθ∗(t) ≥ E

[
−
2 ∥θ∗∥22

p

d∑
i=1

λi +
2

n

(
σ2 +

p− d

p
∥θ∗∥22

) d∑
i=1

(
tλi − 2tTλ2

i

)]
.

We used exp(−2x) ≤ 1− 2x+ 2x2 for all x ≥ 0. Then, we have d
dtRθ∗(t) ≥ 0 at time

t2 =

2∥θ∗∥2
2

p E
[∑d

i=1 λi

]
2
n

(
σ2 + p−d

p ∥θ∗∥22
)
E
[∑d

i=1 λi − 2Tλ2
i

] ≤
2n ∥θ∗∥22

pσ2 + (p− d) ∥θ∗∥22

which follows from Lemma 7. Under assumption (8n+ 9d+ 16) ∥θ∗∥22 ≤ pσ2 + p ∥θ∗∥22, t2 < T .
Thus, we have

n ∥θ∗∥22
2
(
pσ2 + (p− d) ∥θ∗∥22

) ≤ topt ≤
2n∥θ∗∥22

pσ2 + (p− d) ∥θ∗∥22

Proposition 2. In setting Sunder, for a fixed parameter θ∗ and noise variance σ2, let topt =
n∥θ∗∥2

2

pσ2+(p−d)∥θ∗∥2
2

. Then, when (8n+ 9d+ 16) ∥θ∗∥22 ≤ pσ2 + p ∥θ∗∥22, we have

R1 ≤ Rθ∗(topt) ≤ R2,

where R1 = σ2 + ∥θ∗∥22 −
2nd∥θ∗∥4

2

p2σ2+p(p−d)∥θ∗∥2
2

and R2 = σ2 + ∥θ∗∥22 −
3nd∥θ∗∥4

2

4(p2σ2+p(p−d)∥θ∗∥2
2)
.

Here, R1 ≥ 0.8R2 and both R1 and R2 decrease when d and n increase.

Proof of Proposition 2 . By Lemma 4,

Rθ∗(topt) = σ2 +

(
1− d

p

)
∥θ∗∥22 + EΛ∼DΛ

[
d∑

i=1

exp
(
−2toptλi

) ∥θ∗∥22
p

]
+

EΛ∼DΛ

[
1

n

d∑
i=1

1

λi

(
1− exp(−toptλi)

)2(
σ2 +

p− d

p
∥θ∗∥22

)]
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DΛ is the distribution of eigenvalues of a matrix 1
nX̃

⊤X̃ where each entry of X̃ is i.i.d standard

normal random variable. We first derive an upper bound on Rθ∗(topt). For topt =
n∥θ∗∥2

2

pσ2+(p−d)∥θ∗∥2
2

,

Rθ∗(topt)

≤ σ2 + ∥θ∗∥22 +
∥θ∗∥22
p

E

[
d∑

i=1

−2toptλi + 2t
2
optλ

2
i

]
+

1

n

(
σ2 +

p− d

p
∥θ∗∥22

)
E

[
d∑

i=1

t
2
optλi

]

= σ2 + ∥θ∗∥22 −
2topt ∥θ∗∥22 d

p
+

2t
2
opt ∥θ∗∥

2
2 d(d+ n+ 2)

pn
+

d

n

(
σ2 +

p− d

p
∥θ∗∥22

)
t
2
opt

= σ2 + ∥θ∗∥22 −
nd ∥θ∗∥42

p2σ2 + p (p− d) ∥θ∗∥22
+

2 ∥θ∗∥62 nd(d+ n+ 2)

p
(
pσ2 + (p− d) ∥θ∗∥22

)2 .
The inequality follows from exp(−x) ≤ 1 − x + x2 for x ≥ 0. The second step follows from
Lemma 7. When 8(n+ d+ 2) ∥θ∗∥22 ≤ pσ2 + (p− d) ∥θ∗∥22, we have

Rθ∗(topt) ≤ σ2 + ∥θ∗∥22 −
3nd ∥θ∗∥42

4p2σ2 + p (p− d) ∥θ∗∥22
= R2.

Next, we derive a lower bound on Rθ∗(αtopt).

Rθ∗(topt) ≥ σ2 + ∥θ∗∥22 +
∥θ∗∥22
p

E

[
d∑

i=1

−2toptλi

]
= σ2 + ∥θ∗∥22 −

2nd ∥θ∗∥42
p2σ2 + p (p− d) ∥θ∗∥22

= R1.

The inequality follow from exp(−x) ≥ 1−x. The second step follows from Lemma 7. Since d ≤ p

and (8n+ 9d+ 16) ∥θ∗∥22 ≤ pσ2 + p ∥θ∗∥22, nd∥θ∗∥4
2

p2σ2+p(p−d)∥θ∗∥2
2

≤ 1
8 ∥θ

∗∥22, which shows

R1

R2

≥
1− 1

8 · 2
1− 1

8 · 3
4

≥ 0.8.

Both R1 and R2 decreases when d and n increases.

C ASYMPTOTIC REGIME

In this section, we examine the behavior of the optimal stopping time in the asymptotic regime where
n, d → ∞. We consider the setting Sover. We define γ = n/d.

By Lemma 1, the derivative of the expected risk is given by

d

dt
RX,θ∗(t) = −

d∑
i=1

2λi exp (−2tλi)
∥θ∗∥22
d

+
2σ2

n

d∑
i=1

(exp(−tλi)− exp(−2tλi))

λn+1 = ... = λd = 0 if d > n.

Using the Marchenko–Pastur distribution, we can take the limit of d, n → ∞ and get

d

dt
RX∞,θ∗(t) =

∫ (
√

1/γ+1)2

(
√

1/γ−1)2

(
−2 ∥θ∗∥22λ exp (−2tλ) +

2

γ
σ2 (exp(−tλ)− exp(−2tλ))

)
dµ(λ)

=

∫ (
√

1/γ+1)2

(
√

1/γ−1)2

(
−2 ∥θ∗∥22λ exp (−2tλ) +

2

γ
σ2 (exp(−tλ)− exp(−2tλ))

)
dF (λ),

where

dµ(λ) = 1
{
λ ∈ [(

√
1/γ − 1)2, (

√
1/γ + 1)2]

}
dF (λ) + max {0, 1− γ}1 {λ = 0} dλ,
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and

dF (λ) =
γ

2π

√
((
√
1/γ + 1)2 − λ)(λ− (

√
1/γ − 1)2)

λ
dλ.

The second line of equation equation 19 holds because −2 ∥θ∗∥22 γλ exp (−2tλ) +
2σ2 (exp(−tλ)− exp(−2tλ)) = 0 when λ = 0.

We first consider the case where 1/γ ≥ 4 (d ≥ 4n). Then on the support of µ(λ), λ ∈ [ 1
4γ ,

9
4γ ].

Therefore, when t < 4
9γ log

(
1 +

∥θ∥2
2

4σ2

)
, d

dtRX∞,θ∗(t) > 0; when t > 4γ log
(
1 +

9∥θ∥2
2

4σ2

)
,

d
dtRX∞,θ∗(t) < 0.

We then consider the case where γ ≥ 4 (d < n
4 ). Then on the support of µ(λ), λ ∈ [ 14 ,

9
4 ]. Therefore,

when t < 4
9 log

(
1 +

∥θ∥2
2γ

4σ2

)
, d
dtRX∞,θ∗(t) > 0; when t > 4 log

(
1 +

9∥θ∥2
2γ

4σ2

)
, d
dtRX∞,θ∗(t) < 0.

We now study the intermediate regime where 1
4 < γ < 4. We need the following lemma.

Lemma 5. For any tλ ≥ 0, let

G1(t, λ) = −2 ∥θ∗∥22 γ(1− tλ) + 2σ2

(
t− 3

2
t2λ

)
,

G2(t, λ) = −2 ∥θ∗∥22 γ + 2σ2

(
t− 1

2
t2λ

)
,

G3(t, λ) = −2 ∥θ∗∥22 γ (1− tλ) + 2σ2t;

Γ1(t) = 1− t(1−
√
1/γ)2,

Γ2(t) = 1− t(1 +
√
1/γ)2.

Then,

− 2 ∥θ∗∥22 γ exp (−2tλ) + 2σ2 exp(−tλ)− exp(−2tλ)

λ
≥ min {G1(t, λ), G2(t, λ),Γ1(t)G3(t, λ),Γ2(t)G3(t, λ)} , (19)

and

− 2 ∥θ∗∥22 γ exp (−2tλ) + 2σ2 exp(−tλ)− exp(−2tλ)

λ
≤ max {G3(t, λ),Γ1(t)G2(t, λ),Γ2(t)G2(t, λ),Γ1(t)G3(t, λ),Γ2(t)G3(t, λ)} . (20)

Theorem 3. When 1
4 < γ < 4 and when ρ = (γ + 1)

∥θ∗∥2
2

σ2 < 2 −
√
3, the risk RX∞,θ∗(t) is

decreasing in the interval

t <
γ

γ + 1
· ρ

ρ+ 1
, (21)

and is increasing in the interval

2γ

γ + 1
· ρ

1 + ρ+
√
(1 + ρ)2 − 6ρ

< t <
1(

1 +
√

1/γ
)2 . (22)

Therefore, the optimal early stopping time t∗ satisfy:

γ

γ + 1

ρ

ρ+ 1
≤ t∗ ≤ 2γ

γ + 1

ρ

1 + ρ+
√

(1 + ρ)2 − 6ρ
.

Theorem 3 shows that when 1
4 < γ < 4, t = Θ

(
γ

γ+1

)
= Θ n

n+d still holds, which completes the
missing piece of Theorem 1.
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Proof. By equation 19, it suffices to find the positive and negative parts of∫ (
√

1/γ+1)2

(
√

1/γ−1)2

(
−2 ∥θ∗∥22 γλ exp (−2tλ) + 2σ2 (exp(−tλ)− exp(−2tλ))

)
dF (λ)

=

∫ (
√

1/γ+1)2

(
√

1/γ−1)2

(
−2 ∥θ∗∥22 γ exp (−2tλ) + 2σ2 exp(−tλ)− exp(−2tλ)

λ

)
λdF (λ),

where λdF (λ) = γ
2π

√
((
√
γ + 1)2 − λ)(λ− (

√
γ − 1)2)dλ.

We note that ∫ (
√

1/γ+1)2

(
√

1/γ−1)2
λdF (λ) = lim

d,n→∞

1

d
Tr

(
E
[
1

n
X⊤

n Xn

])
= 1,

and that ∫ (
√

1/γ+1)2

(
√

1/γ−1)2
λ2dF (λ) = lim

d,n→∞

1

d
E
∥∥∥∥ 1n (X⊤

n Xn

)∥∥∥∥2
F

= 1 +
1

γ
.

Applying these results on G1(t, λ), G2(t, λ), and G3(t, λ) (defined in Lemma 5), we obtain that

E1(t) =

∫ (
√

1/γ+1)2

(
√

1/γ−1)2
G1(t, λ)λdF (λ) = −2 ∥θ∗∥22 γ(1− t(1 + 1/γ)) + 2σ2

(
t− 3

2
t2(1 + 1/γ)

)
,

E2(t) =

∫ (
√

1/γ+1)2

(
√

1/γ−1)2
G2(t, λ)λdF (λ) = −2 ∥θ∗∥22 γ + 2σ2

(
t− 1

2
t2(1 + 1/γ)

)
,

E3(t) =

∫ (
√

1/γ+1)2

(
√

1/γ−1)2
G3(t, λ)λdF (λ) = −2 ∥θ∗∥22 γ(1− t(1 + 1/γ)) + 2σ2t.

From inequalities equation 19 and equation 20 in Lemma 5, we know that d
dtRX∞,θ∗(t) > 0 if

min {E1(t), E2(t),Γ1(t)E3(t),Γ2(t)E3(t)} > 0,

and d
dtRX∞,θ∗(t) < 0 if

max {E3(t),Γ1(t)E2(t),Γ2(t)E2(t),Γ1(t)E3(t),Γ2(t)E3(t)} < 0.

Increasing interval: We can develop this condition further to be: d
dtRX∞,θ∗(t) > 0 if the follow-

ing event happens:

{E1(t) > 0}
⋂

{E2(t) > 0}
⋂((

{Γ1(t) > 0}
⋂

{Γ2(t) > 0}
⋂

{E3(t) > 0}
)

⋃(
{Γ1(t) < 0}

⋂
{Γ2(t) < 0}

⋂
{E3(t) < 0}

))
.

E1(t) > 0 is equivalent to the condition that 1 + γ > (2 +
√
3) σ2

∥θ∗∥2
2

or 1 + γ < (2 −
√
3) σ2

∥θ∗∥2
2

,
and that

1 +
∥θ∗∥2

2

σ2 (γ + 1)−
√(

1 +
∥θ∗∥2

2

σ2 (γ + 1)
)2

− 6
∥θ∗∥2

2

σ2 (γ + 1)

3(1/γ + 1)

< t <
1 +

∥θ∗∥2
2

σ2 (γ + 1) +

√(
1 +

∥θ∗∥2
2

σ2 (γ + 1)
)2

− 6
∥θ∗∥2

2

σ2 (γ + 1)

3(1/γ + 1)
.
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E2(t) > 0 is equivalent to the condition that 1 + 1
γ < 1

2
σ2

∥θ∗∥2
2

and that

γ − γ

√
1− 2 (γ + 1)

∥θ∗∥2
2

σ2

γ + 1
< t <

γ + γ

√
1− 2 (γ + 1)

∥θ∗∥2
2

σ2

γ + 1
.

Then the event {E1(t) > 0}
⋂
{E2(t) > 0} leads to ρ < 2 −

√
3 and that t needs to satisfy the

following condition for both events to happen:

2γ

γ + 1
· ρ

1 + ρ+
√
(1 + ρ)2 − 6ρ

< t <
γ

3(γ + 1)

(
1 + ρ+

√
(1 + ρ)2 − 6ρ

)
.

Since

t >
2γ

γ + 1
· ρ

1 + ρ+
√
(1 + ρ)2 − 6ρ

>
γ

γ + 1
· ρ

ρ+ 1
=

γ

ρ+ 1

∥θ∗∥22
σ2

,

E3(t) > 0. Then {Γ1(t) > 0}
⋂
{Γ2(t) > 0} leads to t < 1(

1+
√

1/γ
)2 .

Joining the intervals, we obtain the sufficient condition for d
dtRX∞,θ∗(t) > 0 to be ρ = γ+1

γ

∥θ∗∥2
2

σ2 <

2−
√
3 and

2γ

γ + 1
· ρ

1 + ρ+
√
(1 + ρ)2 − 6ρ

< t <
1(

1 +
√

1/γ
)2 . (23)

Decreasing interval: We assume that ρ < 2−
√
3.

E3(t) < 0 leads to
t <

γ

γ + 1
· ρ

ρ+ 1
.

Under this condition, Γ1(t) > Γ2(t) > 0. We therefore need E2(t) < 0 and E3(t) < 0.

E2(t) < 0 is equivalent to

t <
γ

γ + 1
· 2ρ

1 +
√
1− 2ρ

or t >
γ

γ + 1

(
1 +

√
1− 2ρ

)
.

E1(t) < 0 is equivalent to

t <
2γ

γ + 1
· ρ

1 + ρ+
√
(1 + ρ)2 − 6ρ

or t >
γ

3(γ + 1)

(
1 + ρ+

√
(1 + ρ)2 − 6ρ

)
.

Joining the intervals under the condition that ρ < 2−
√
3, we obtain that the sufficient condition for

d
dtRX∞,θ∗(t) < 0 is

t <
γ

γ + 1
· ρ

ρ+ 1
. (24)

Now, we prove Lemma 5.

Proof of Lemma 5. We first state an expansion result about the exponential function:

exp (−tλ) = 1− tλ exp (−tλ)

= 1− tλ+
1

2
t2λ2 exp (−tλ)

= 1− tλ+
1

2
t2λ2 − 1

6
t3λ3 exp (−tλ) . (25)
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We then decompose our argument into two terms:

− 2 ∥θ∗∥22 γ exp (−2tλ) + 2σ2 exp(−tλ)− exp(−2tλ)

λ

= exp(−tλ) ·
(
−2 ∥θ∗∥22 γ exp (−tλ) + 2σ2 1− exp(−tλ)

λ

)
.

We use equation equation 25 to bound the following two terms that appear in the above multiplica-
tion:

1− tλ ≤ exp(−tλ) ≤ 1, (26)

and

−2 ∥θ∗∥22 γ + 2σ2

(
t− 1

2
t2λ

)
≤ −2 ∥θ∗∥22 γ exp (−tλ) + 2σ2 1− exp(−tλ)

λ

≤ −2 ∥θ∗∥22 γ (1− tλ) + 2σ2t.

Combining equations equation 26 and equation C, we obtain that

−2 ∥θ∗∥22 γ exp (−2tλ) + 2σ2 exp(−tλ)− exp(−2tλ)

λ

≥ min

{
(1− tλ)

(
−2 ∥θ∗∥22 γ + 2σ2

(
t− 1

2
t2λ

))
,− 2 ∥θ∗∥22 γ + 2σ2

(
t− 1

2
t2λ

)
,

(1− tλ)
(
−2 ∥θ∗∥22 γ (1− tλ) + 2σ2t

)}

≥ min

{
− 2 ∥θ∗∥22 γ(1− tλ) + 2σ2

(
t− 3

2
t2λ

)
,− 2 ∥θ∗∥22 γ + 2σ2

(
t− 1

2
t2λ

)
,

(
1− t(1 +

√
γ)2
) (

−2 ∥θ∗∥22 γ (1− tλ) + 2σ2t
)
,
(
1− t(1−√

γ)2
) (

−2 ∥θ∗∥22 γ (1− tλ) + 2σ2t
)}

,

where we have used the fact that λ ∈ [(1−
√
1/γ)2, (1 +

√
1/γ)2]. On the flip side, we obtain that

−2 ∥θ∗∥22 γ exp (−2tλ) + 2σ2 exp(−tλ)− exp(−2tλ)

λ

≤ max

{
− 2 ∥θ∗∥22 γ (1− tλ) + 2σ2t, (1− tλ)

(
−2 ∥θ∗∥22 γ + 2σ2

(
t− 1

2
t2λ

))
,

(1− tλ)
(
−2 ∥θ∗∥22 γ (1− tλ) + 2σ2t

)}

≤ max

{
− 2 ∥θ∗∥22 γ (1− tλ) + 2σ2t,

(
1− t(1 +

√
1/γ)2

)(
−2 ∥θ∗∥22 γ + 2σ2

(
t− 1

2
t2λ

))
,

(
1− t(1−

√
1/γ)2

)(
−2 ∥θ∗∥22 γ + 2σ2

(
t− 1

2
t2λ

))
,
(
1− t(1 +

√
1/γ)2

)(
−2 ∥θ∗∥22 γ (1− tλ) + 2σ2t

)
,

(
1− t(1−

√
1/γ)2

)(
−2 ∥θ∗∥22 γ (1− tλ) + 2σ2t

)
.

}
For

G1(t, λ) = −2 ∥θ∗∥22 γ(1− tλ) + 2σ2

(
t− 3

2
t2λ

)
,

G2(t, λ) = −2 ∥θ∗∥22 γ + 2σ2

(
t− 1

2
t2λ

)
,

G3(t, λ) = −2 ∥θ∗∥22 γ (1− tλ) + 2σ2t;
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Γ1(t) = 1− t(1−
√
1/γ)2,

Γ2(t) = 1− t(1 +
√
1/γ)2,

we have

− 2 ∥θ∗∥22 γ exp (−2tλ) + 2σ2 exp(−tλ)− exp(−2tλ)

λ
≥ min {G1(t, λ), G2(t, λ),Γ1(t)G3(t, λ),Γ2(t)G3(t, λ)} ,

and

− 2 ∥θ∗∥22 γ exp (−2tλ) + 2σ2 exp(−tλ)− exp(−2tλ)

λ
≤ max {G3(t, λ),Γ1(t)G2(t, λ),Γ2(t)G2(t, λ),Γ1(t)G3(t, λ),Γ2(t)G3(t, λ)} .

D TECHNICAL LEMMAS

Lemma 6 (Davidson & Szarek (2001)). Let A be a m × N matrix with N ≥ m whose entries
are real, independent Gaussian random variables following N (0, 1). Let σ1(A) ≥ σ2(A) ≥ ... ≥
σm(A) be the singular values of A. Then,

Pr
[√

N −
√
m− t ≤ σ1 (A) ≤ σm(A) ≤

√
N +

√
m+ t

]
≤ 1− 2 exp(−t2/2).

Lemma 7. Let A be a m×N matrix whose entries are real, independent Gaussian random variables
following N (0, 1). Let λ1(A) ≥ λ2(A) ≥ ... ≥ λN (A) be the eigenvalues of 1

mA⊤A. Then,

E

[
N∑
i=1

λi

]
= N

and

E

[
N∑
i=1

λ2
i

]
=

N

m
(m+N + 2).

Proof. We first note that

mE

[
d∑

i=1

λi

]
= E

[
Tr
(
Ã⊤Ã

)]
= E

[∥∥∥Ã∥∥∥2
F

]
= mN.

We then note that

m2E

[
d∑

i=1

λ2
i

]
= E

[
Tr

((
Ã⊤Ã

)2)]
= E

[∥∥∥Ã⊤Ã
∥∥∥2
F

]
,

where (
Ã⊤Ã

)
i,j

=

n∑
k=1

ãk,iãk,j .

Therefore,

E
[∥∥∥Ã⊤Ã

∥∥∥2
F

]
=

d∑
i=1

d∑
i=1

E

( n∑
k=1

ãk,iãk,j

)2
 =

d∑
i=1

d∑
i=1

n∑
k=1

n∑
l=1

E [ãk,iãk,j ãl,iãl,j ] .

Since all the odd moments of x are zero, the nonzero elements in the above equation appear when
k = l or when i = j. Hence the number of nonzero elements is mN(m +N). When either k = l
or i = j happens, the second order moment of ã is 1. When both k = l and i = j happen, the fourth
order moment of ã is 3. Therefore,

E

[
d∑

i=1

λ2
i

]
=

1

m2

d∑
i=1

d∑
i=1

n∑
k=1

n∑
l=1

E [ãk,iãk,j ãl,iãl,j ] =
N

m
(m+N + 2).
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Lemma 8 (Cauchy Interlacing Theorem (Corollary 4.3.9, Horn & Johnson (2012))). Let A ∈
Rm×m be a symetric matrix. Let λ1 ≥ λ2 ≥ ... ≥ λn be the eigenvalues of the matrix A and
let z ∈ Rm be a nonzero vector. Then,

λi(A) ≤ λi(A+ zz⊤) ≤ λi+1(A), i = 1, ..., n− 1

λn(A) ≤ λn(A+ zz⊤).

E DISCRETIZATION ERRORS

In practice, one would discretize the algorithm and perform gradient descent, instead of using the
gradient flow, to optimize over empirical loss. This can be formulated in the following expression:

βk+1 = βk − h

n
X⊤Xβk +

h

n
X⊤y,

where h is the step size of the algorithm. A solution to the above iterative equation, starting at β0 is:

βk =

(
I− h

n
X⊤X

)k

β0 +
h

n

(
k−1∑
i=0

(
I− h

n
X⊤X

)i
)
X⊤y (27)

=

(
I− h

n
X⊤X

)k

β0 +
(
X⊤X

)†(
I−

(
I− h

n
X⊤X

)k
)
X⊤y. (28)

Taking β0 = 0, we obtain that for any h < 1/smax, where smax is the largest eigenvalue of X⊤X/n,

sup
k

∥∥∥βk − β̂(kh)
∥∥∥ =

(
X⊤X

)†(
exp

(
−kh

n
X⊤X

)
−
(
I− h

n
X⊤X

)k
)
X⊤y (29)

≤ h

2n

∥∥X⊤y
∥∥ (exp(hsmax)− 1) , (30)

since supτ>0 |e−lτ − (1− l)τ | ≤ l
2

(
el − 1

)
, ∀l < 1.

F ADDITIONAL DETAILS OF EXPERIMENTS

F.1 LINEAR REGRESSION

(This was previously in the main paper.)

(a) (b) (c)

Figure 6: (a) Optimal early stopping time decreases with increasing model sizes. (b) Optimal early
stopping time increases with increasing sample sizes. (c) Optimal early stopping time increases with
increasing γ. Shaded areas give the empirical bounds generated by 10 runs of the experiments.

Overparameterized optimal early stopping time. In this experiment (Figure 6), we follow the
setting Sover. We use p = 10 for all n and d. The optimal early stopping time is selected as the time
with the first local minimal loss. We observe from these three plots that the optimal early stopping
time decreases with larger model size d, and increases with more samples n. Define γ = n/d to be
the sample-model size ratio with various choices of d, n. topt increases as γ increases and decreases
with a larger level of noise.
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(a) (b)

Figure 7: (a) Underparameterization optimal early stopping time increases with increasing model
sizes. (b) Underparameterization optimal early stopping time increases with increasing sample sizes.
Shaded areas give the empirical bounds generated by 10 runs of the experiments.

Underparameterized optimal early stopping time. In this experiment (Figure 7), we follow the
setting Sunder. We use p = 400 for all n and d. The optimal early stopping time increases with
increasing model sizes d, and increasing sample sizes n.

Risk monotonicity of underparameterized and overparameterized optimal early stopping.
In Figure 8, for overparameterized models, we observe that the optimal early stopping risk decreases
with increasing sample sizes n. For underparameterized models, the optimal early stopping risk
decreases with both increasing d and n. This is consistent with the risk monotonicity analysis.

(a) (b) (c)

Figure 8: (a) Overparameterization testing risk at optimal early stopping time decreases with sample
sizes. (b) (c) Underparameterization testing risk at optimal early stopping time decreases with model
sizes and sample sizes.

Testing loss vs time Figrue 9 and Figure 10 plot the testing loss as a function of time in the over-
parametrized and the underparametrized setting respectively. The solid dots on the curves represent
the points with lowest testing loss. We use θ∗ ∼ N (0, Id) and a randomly sample semi-orthogonal
matrix P ∈ Rp×d. We choose p = 10, σ = 6 and p = 500, σ = 2 in Figrue 9 and Figure 10.
We can observe from Figrue 9 the optimal early stopping time decreases with increasing d and in-
creases with increasing n. Moreover, testing loss decreases with increasing n. We can observe from
Figure 10 the optimal early stopping time increases with both d and n.

Theoretical bounds on early optimal stopping time We compare our theoretical bounds with
the empirical bounds on the linear regression problem. In the overparametrization setting, we show
in Theorem 1 that the optimal early stopping time scales as Θ̃( n

n+d ). In Figure 11, the yellow area

shows the region
(

an
n+d ,

bn
n+d

)
for some constant a and b. The blue area is the standard deviation of

20 runs of the experiments. We set p = 10, σ = 2, n = 400, d = [200, 300, ..., 1000], a = 1.2, b =
2.7 in Figure 11a, p = 10, σ = 2, n = [200, 300, ..., 1000], d = 400, a = 2.5, b = 7 in Figure 11b,
p = 10, σ = 2 γ ∈ [0.1, 10], a = 0.5, b = 4.5 in log-scale in Figure 11c.

In Figure 12, we plot the theory bounds of underparametrization setting. We have shown in The-
orem 2 that the optimal early stopping time scales with Θ̃

(
n∥θ∗∥2

2

pσ2+(p−d)∥θ∗∥2
2

)
. The yellow area

shows the theory bounds
(

an∥θ∗∥2
2

pσ2+(p−d)∥θ∗∥2
2

,
bn∥θ∗∥2

2

pσ2+(p−d)∥θ∗∥2
2

)
for some constant a and b. The blue

area is the the standard deviation of 20 runs of the experiments. We set p = 500, σ = 5, n =
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(a) (b)

Figure 9: (a) Testing loss behaviour for increasing training time with various model sizes. (b) Testing
loss behaviour for increasing training time with various number of samples.

(a) (b)

Figure 10: (a) Testing loss behaviour for increasing training time with various model sizes. (b)
Testing loss behaviour for increasing training time with various sample sizes.

1000, d = [50, 100, 150, ..., 400], a = 0.25, b = 0.85 for Figure 12a, and p = 500, σ = 5, n =
[50, 100, 150, ..., 1000], d = 250, a = 0.3, b = 1.1 for Figure 12b.

(a) (b) (c)

Figure 11: (a) Optimal early stopping time decreases with increasing model sizes. (b) Optimal early
stopping time increases with increasing sample sizes. (c) Optimal early stopping time increases with
n
d .
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(a) (b)

Figure 12: (a) Optimal early stopping time increases with increasing model sizes with bounds. (b)
Optimal early stopping time increases with increasing sample sizes with bounds.

F.2 ADDITIONAL PLOTS IMAGE CLASSIFICATION USING DEEP NEURAL NETWORKS

In Figure 13, we show the testing error as a function of epoch for training MNIST, CIFAR-10 and
CIFAR-100 using models of different width. We can observe the double descent phenomenon and
the varying optimal early stopping time for different models. In Figure 14, we show the testing error
as a function of sample size for training MNIST, CIFAR-10 and CIFAR-100. We observe that the
test error decreases for increasing sample size.

(a) (b) (c)

Figure 13: Epoch-wise double descent and optimal early stopping time for (a) MNIST (b) CIFAR-
10 (c) CIFAR-100.

Sample size

Te
st

 e
rro

r

Figure 14: Test error decreases with increasing sample size.
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(We added some additional experimental results below. Due to time constraints, we only run exper-
iments for once. We will add more experimental results in the final version.)

Figure 15: Optimal Early Stopping time decreases with increasing depth.

ResNet Depths In Figure 15, we show that the optimal stopping time decreases with increasing
ResNet depth. We train CIFAR-10 using ResNet. We add 20% of label noise to all datasets. We
use a family of ResNet networks with ResNet blocks of widths d. Suppose we have a ResNet with
depth k, we will have k sequential ResNet blocks with width [20d, 21d, ..., 2kd] for different depth
layers. The number of parameters grow from 100K (k = 1) to 300M (k = 6). Inputs are normalized
to [−1, 1] with standard data-augmentation. We use stochastic gradient descent with cross-entropy
loss, learning rate η = 0.1, and minibatch size B = 512. We choose the optimal stopping time
similarly as in Section 4.2. Increasing the depth of ResNet would similarly enlarge the network
parameter size, resulting an observable decrease of optimal early stopping time.

Figure 16: Optimal stopping time vs. model
width with 10% label noise.

Figure 17: Optimal stopping time vs. model
width with 30% label noise.

Label Noise Levels In Figure 16 and Figure 17, we show that the optimal stopping time decreases
with increasing model width holds with 10% and 30 % label noise when training on CIFAR-10 using
ResNet. The variance of each independent experimental trail slightly breaks the monotonicity, yet
the overall trend is clear. We use a family of ResNet networks with convolutional layers of widths
[d, 2d, 4d, 8d] for different layer, and we set ResNet width from 10 to 60. Inputs are normalized
to [−1, 1] with standard data-augmentation. We use stochastic gradient descent with cross-entropy
loss, learning rate η = 0.1. and minibatch size B = 512. We choose the optimal stopping time
similarly as in Section 4.2.

30



Under review as a conference paper at ICLR 2022

G CODE FOR REPRODUCIBILITY

All code and experiments in our paper are available: https://anonymous.4open.
science/r/On-Optimal-Early-Stopping-0E84. Part of our code builds on open source
code from (Nakkiran et al., 2020a).
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