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1. Introduction
The mismatch between the a-priori and a-

posteriori error is ubiquitous in data-driven
subgrid-scale (SGS) modeling, which is an im-
portant ingredient in large eddy simulations. The
a-priori error refers to the error of the closure
modeling, usually as a regression problem, from
the dataset generated by the fine-grid simulation
while the a-posteriori error represents the error
arised when this data-driven SGS model is deployed
to another simulation. In this work, we investi-
gate the cause of this mismatch in depth and the
contribution of this work is two-fold:

1. We explain the mismatch of “a-priori and a-
posteriori dichotomy”, by studying the dataset
for SGS model training and identify two fea-
tures: data imbalance and multi-valuedness.

2. We propose a generative modeling of the SGS
stresses via a conditional Gaussian model to re-
solve themulti-valuedness and demonstrate im-
provement in the simulation of the KS equation.

2. A-priori error analysis for regression-based
data-driven SGSmodeling
In this paper, we use the Navier-Stokes (NS) and

the Kuramoto-Sivashinsky (KS) equations as exam-
ples for our illustrations. The NS equations are given
by:
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Consider a spatially-homogeneous filter G, e.g.
Gaussian filter G(x) = 1√

(2π)3
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2/2, convolved to

the field variable u componentwise, i.e. ũ = G ∗ u,
one can obtain the equation governing the filtered
field variable ũ:
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Most of the linear operations commute with
spatially-homogeneous convolution while the non-
linear convection term uj

∂ui

∂xj
does not, resulting in

an unclosed term τ , the so-called SGS stress given
explicitly by

τij = ũiuj − ũiũj . (3)

The goal of the SGS modeling is to build a closure
model to calculate the SGS stress from thefiltered ve-

locity field. For example, the well-known Smagorin-
sky model [1] provides τ = −2Cs∆

2|S̃|S̃, where S̃ =
1
2 (∇ũ + (∇ũ)T ) is the rate of strain tensor, ∆ is the
grid scale, and Cs is the Smagorinsky constant.
The data-driven SGS model is commonly formal-

ized as the optimization of the following regression
problem:

min
θ

∑
n

∥∥∥ϕθ(ũ
(n))− τ (n)

∥∥∥2 , (4)

given the parametrized model ϕθ and the dataset
{ũ(n), τ (n)} where n denotes the sample. One can
specify different choices of input features, and here
we fix this to ũ(n) for simplification.
Strong evidence in previouswork [2,3] and our ex-

periments show that it is difficult to optimize this re-
gression problem to a relative low error. In table 1.
we illustrate the a-priori analysis using channel flow
dataset for wall turbulence. The row denotes the in-
put featureswhere ũ,∇ũ, S̃, y+ are thefiltered veloc-
ity, shear stresses, rate of strain, and wall unit. The
outputs are the SGS stresses of dimension 9. We re-
port the relative MSE on test dataset with models of
different number of parameters.

Table 1: Summary of the a-priori error with different
input features.

# params ũ ∇ũ S̃
NN, [64] 877 0.896 0.616 0.772
NN, [64, 64] 5037 0.884 0.601 0.775
NN, [64, 64, 64] 9708 0.923 0.586 0.774
XGBoost, [100, 5] 55910 0.888 0.618 0.759
XGBoost, [1000, 5] 558610 0.887 0.539 0.726
XGBoost, [1000, 10] 11055275 0.888 0.472 0.712

2.1 The issue of dataset imbalance
The first feature we observed from the data pre-

processing is that the data pair of rate of strain and
SGS stress is imbalanced. Namely, most of the data
is concentrated in the region where both the rate
of strain and the stresses are very small. To illus-
trate this point, we plot the histogram of one of the
components of the shear stresses∇ũ and stress ten-
sor τ of NS equations and ∂xxu, τ of KS equation in
fig. 1. We observe that the data is highly concen-
trated around 0 for all cases, suggesting a possible
multiscale structure of the dataset itself.
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Fig. 1: We show both the scattering plot and the his-
togramof the SGS dataset for NS andKS equations.
The upper (lower) row is the dataset for NS (KS)
equations respectively. For NS equations, we only
show the histogram of the first components of the
shear ∇u and SGS stresses τ , e.g. ∂xu, τxx. Notice
that the y (density) axis is in log scale and there ex-
ists a peak around 0, indicating that a large potion
of data has negligible magnitude.

2.2 The issue of multi-valuedness
Besides the data imbalance, we observe that the

dataset is multivalue, which is more related to the
cause of the large training error. The scattering plot
of the data pair in both equations are shown in fig. 1,
e.g. two figures on the left.

3. Generative modeling for the SGSmodeling
To capture themulti-value nature of the SGSmod-

els, a direct solution is to model the SGS stresses as
a probability distribution conditioned on the input
features, instead of a single value in regression, i.e.

τ = ϕθ(u) → τ ∼ pθ(·|u). (5)

3.1 Conditional Gaussian model
We consider using the conditional Gaussian dis-

tribution for the SGS stresses, modeling the stresses
as a Gaussian distribution depends on the input fea-
tures. Instead of minimizing the mean squared er-
ror as in eq. (4), we use maximum likelihood princi-
ple to train themodel, i.e. given a conditional model
pθ(τ |u) we maximize the following function

max
θ

N∑
i=n

log pθ(τ
(n)|u(n)). (6)

Under the assumption that the parametrized family
is Gaussian with learnable mean and variance, the
loss function is simplified to:

min
θ

N∑
n=1

(τ (n) − µθ(u
(n)))2

2(σθ(u(n)))2
+ log σθ(u

(n)) (7)

The comparison of this generative SGS model with
the regression-based model is shown in table 2.

Table 2: Comparison of the a-priori and a-posteriori
error of the method for SGS modeling of the KS
equation. For a-priori error, we use the relative
MSE for regression-based method while for gen-
erative modeling we use the expectation value of
the log likelihood function.

baseline regression gaussian, fix gaussian
sample

a-priori error N/A 0.976 -2.173 -2.173∫
(u− u0)

2dxdt 1.524 2.036 1.720 1.597

u− u0 9.901E-02 1.011E-01 3.870E-02 3.214E-02

u2 − u2
0

-4.326E-01 -4.241E-01 -1.895E-01 -6.577E-02

a-priori error N/A 0.987 -2.583 -2.583∫
(u− u0)

2dxdt 1.524 1.817 1.898 1.889

u− u0 9.901E-02 8.012E-02 -1.242E-02 -1.543E-02

u2 − u2
0

-4.326E-01 -3.466E-01 -1.018E-01 -1.296E-01
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