
Active Learning with Neural Networks: Insights from
Nonparametric Statistics

Yinglun Zhu
Department of Computer Sciences
University of Wisconsin-Madison

Madison, WI 53706
yinglun@cs.wisc.edu

Robert Nowak
Department of Electrical and Computer Engineering

University of Wisconsin-Madison
Madison, WI 53706
rdnowak@wisc.edu

Abstract

Deep neural networks have great representation power, but typically require large
numbers of training examples. This motivates deep active learning methods that
can significantly reduce the amount of labeled training data. Empirical successes of
deep active learning have been recently reported in the literature, however, rigorous
label complexity guarantees of deep active learning have remained elusive. This
constitutes a significant gap between theory and practice. This paper tackles this
gap by providing the first near-optimal label complexity guarantees for deep active
learning. The key insight is to study deep active learning from the nonparametric
classification perspective. Under standard low noise conditions, we show that active
learning with neural networks can provably achieve the minimax label complexity,
up to disagreement coefficient and other logarithmic terms. When equipped with an
abstention option, we further develop an efficient deep active learning algorithm that
achieves polylog(1

ε) label complexity, without any low noise assumptions. We also
provide extensions of our results beyond the commonly studied Sobolev/Hölder
spaces and develop label complexity guarantees for learning in Radon BV2 spaces,
which have recently been proposed as natural function spaces associated with
neural networks.

1 Introduction

We study active learning with neural network hypothesis classes, sometimes known as deep active
learning. Active learning agent proceeds by selecting the most informative data points to label: The
goal of active learning is to achieve the same accuracy achievable by passive learning, but with much
fewer label queries (Settles, 2009; Hanneke, 2014). When the hypothesis class is a set of neural
networks, the learner further benefits from the representation power of deep neural networks, which
has driven the successes of passive learning in the past decade (Krizhevsky et al., 2012; LeCun
et al., 2015). With these added benefits, deep active learning has become a popular research area,
with empirical successes observed in many recent papers (Sener and Savarese, 2018; Ash et al.,
2019; Citovsky et al., 2021; Ash et al., 2021; Kothawade et al., 2021; Emam et al., 2021; Ren et al.,
2021). However, due to the difficulty of analyzing a set of neural networks, rigorous label complexity
guarantees for deep active learning have remained largely elusive.

To the best of our knowledge, there are only two papers (Karzand and Nowak, 2020; Wang et al.,
2021) that have made the attempts at theoretically quantifying active learning gains with neural
networks. While insightful views are provided, these two works have their own limitations. The
guarantees provided in Karzand and Nowak (2020) only work in the 1d case where data points are
uniformly sampled from [0, 1] and labeled by a well-seperated piece-wise constant function in a
noise-free way (i.e., without any labeling noise). Wang et al. (2021) study deep active learning by

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

linearizing the neural network at its random initialization and then analyzing it as a linear function;
moreover, as the authors agree, their error bounds and label complexity guarantees can in fact be
vacuous in certain cases. Thus, it’s fair to say that up to now researchers have not identified cases
where deep active learning are provably near minimax optimal (or even with provably non-vacuous
guarantees), which constitutes a significant gap between theory and practice.

In this paper, we bridge this gap by providing the first near-optimal label complexity guarantees
for deep active learning. We obtain insights from the nonparametric setting where the conditional
probability (of taking a positive label) is assumed to be a smooth function (Tsybakov, 2004; Audibert
and Tsybakov, 2007). Previous nonparametric active learning algorithms proceed by partitioning
the action space into exponentially many sub-regions (e.g., partitioning the unit cube [0, 1]d into ε−d

sub-cubes each with volume εd), and then conducting local mean (or some higher-order statistics)
estimation within each sub-region (Castro and Nowak, 2008; Minsker, 2012; Locatelli et al., 2017,
2018; Shekhar et al., 2021; Kpotufe et al., 2021). We show that, with an appropriately chosen set of
neural networks that globally approximates the smooth regression function, one can in fact recover
the minimax label complexity for active learning, up to disagreement coefficient (Hanneke, 2007,
2014) and other logarithmic factors. Our results are established by (i) identifying the “right tools” to
study neural networks (ranging from approximation results (Yarotsky, 2017, 2018) to complexity
measure of neural networks (Bartlett et al., 2019)), and (ii) developing novel extensions of agnostic
active learning algorithms (Balcan et al., 2006; Hanneke, 2007, 2014) to work with a set of neural
networks.

While matching the minimax label complexity in nonparametric active learning is existing, such
minimax results scale as Θ(poly(1

ε)) (Castro and Nowak, 2008; Locatelli et al., 2017) and do not
resemble what is practically observed in deep active learning: A fairly accurate neural network
classifier can be obtained by training with only a few labeled data points. Inspired by recent results
in parametric active learning with abstention (Puchkin and Zhivotovskiy, 2021; Zhu and Nowak,
2022), we develop an oracle-efficient algorithm showing that deep active learning provably achieves
polylog(1

ε) label complexity when equipped with an abstention option (Chow, 1970). Our algorithm
not only achieves an exponential saving in label complexity (without any low noise assumptions), but
is also highly practical: In real-world scenarios such as medical imaging, it makes more sense for
the classifier to abstain from making prediction on hard examples (e.g., those that are close to the
boundary), and ask medical experts to make the judgments.

1.1 Problem setting

Let X denote the instance space and Y denote the label space. We focus on the binary classification
problem where Y := {+1,−1}. The joint distribution over X × Y is denoted as DXY . We use
DX to denote the marginal distribution over the instance space X , and use DY|x to denote the
conditional distribution of Y with respect to any x ∈ X . We consider the standard active learning
setup where x ∼ DX but its label y ∼ DY|x is only observed after issuing a label query. We
define η(x) := Py∼DY|x(y = +1) as the conditional probability of taking a positive label. The
Bayes optimal classifier h? can thus be expressed as h?(x) := sign(2η(x)− 1). For any classifier
h : X → Y , its (standard) error is calculated as err(h) := P(x,y)∼DXY (h(x) 6= y); and its (standard)
excess error is defined as excess(h) := err(h)− err(h?). Our goal is to learn an accurate classifier
with a small number of label querying.

The nonparametric setting. We consider the nonparametric setting where the conditional prob-
ability η is characterized by a smooth function. Fix any α ∈ N+, the Sobolev norm of a function
f : X → R is defined as ‖f‖Wα,∞ := maxα,|α|≤α ess supx∈X |Dαf(x)|, where α = (α1, . . . , αd),
|α| =

∑d
i=1 αi and Dαf denotes the standard α-th weak derivative of f . The unit ball in the Sobolev

space is defined asWα,∞
1 (X) := {f : ‖f‖Wα,∞ ≤ 1}. Following the convention of nonparametric

active learning (Castro and Nowak, 2008; Minsker, 2012; Locatelli et al., 2017, 2018; Shekhar et al.,
2021; Kpotufe et al., 2021), we assume X = [0, 1]d and η ∈ Wα,∞

1 (X) (except in Section 4).

Neural Networks. We consider feedforward neural networks with Rectified Linear Unit (ReLU)
activation function, which is defined as ReLU(x) := max{x, 0}. Each neural network fdnn : X → R
consists of several input units (which corresponds to the covariates of x ∈ X), one output unit
(which corresponds to the prediction in R), and multiple hidden computational units. Each hidden

2

computational unit takes inputs {xi}Ni=1 (which are outputs from previous layers) and perform the
computation ReLU(

∑N
i=1 wixi + b) with adjustable parameters {wi}Ni=1 and b; the output unit

performs the same operation, but without the ReLU nonlinearity. We use W to denote the total
number of parameters of a neural network, and L to denote the depth of the neural network.

1.2 Contributions and paper organization

Neural networks are known to be universal approximators (Cybenko, 1989; Hornik, 1991). In this
paper, we argue that, in both passive and active regimes, the universal approximatability makes neural
networks “universal classifiers” for classification problems: With an appropriately chosen set of
neural networks, one can recover known minimax rates (up to disagreement coefficients in the active
setting) in the rich nonparametric regimes.1 We provide informal statements of our main results in
the sequel, with detailed statements and associated definitions/algorithms deferred to later sections.

In Section 2, we analyze the label complexity of deep active learning under the standard Tsybakov
noise condition with smoothness parameter β ≥ 0 (Tsybakov, 2004). LetHdnn be an appropriately
chosen set of neural network classifiers and denote θHdnn

(ε) as the disagreement coefficient (Hanneke,
2007, 2014) at level ε. We develop the following label complexity guarantees for deep active learning.

Theorem 1 (Informal). There exists an algorithm that returns a neural network classifier ĥ ∈ Hdnn

with excess error Õ(ε) after querying Õ(θHdnn
(ε

β
1+β) · ε−

d+2α
α+αβ) labels.

The label complexity presented in Theorem 1 matches the active learning lower bound Ω(ε−
d+2α
α+αβ)

(Locatelli et al., 2017) up to the dependence on the disagreement coefficient (and other logarithmic
factors). Since θHdnn

(ε) ≤ ε−1 by definition, the label complexity presented in Theorem 1 is never
worse than the passive learning rates Θ̃(ε−

d+2α+αβ
α+αβ) (Audibert and Tsybakov, 2007). We also discover

conditions under which the disagreement coefficient with respect to a set of neural network classifiers
can be properly bounded, i.e., θHdnn

(ε) = o(ε−1) (implying strict improvement over passive learning)
and θHdnn

(ε) = o(1) (implying matching active learning lower bound).

In Section 3, we develop label complexity guarantees for deep active learning when an additional
abstention option is allowed (Chow, 1970; Puchkin and Zhivotovskiy, 2021; Zhu and Nowak, 2022).
Suppose a cost (e.g. 0.49) that is marginally smaller than random guessing (which has expected cost
0.5) is incurred whenever the classifier abstains from making a predication, we develop the following
label complexity guarantees for deep active learning.

Theorem 2 (Informal). There exists an efficient algorithm that constructs a neural network classifier
ĥdnn with Chow’s excess error Õ(ε) after querying polylog(1

ε) labels.

The above polylog(1
ε) label complexity bound is achieved without any low noise assumptions.

Such exponential label savings theoretically justify the great empirical performances of deep active
learning observed in practice (e.g., in Sener and Savarese (2018)): It suffices to label a few data
points to achieve a high accuracy level. Moreover, apart from an initialization step, our algorithm
(Algorithm 4) developed for Theorem 2 can be efficiently implemented in Õ(ε−1) time, given a
convex loss regression oracle over an appropriately chosen set of neural networks; in practice, the
regression oracle can be approximated by running stochastic gradient descent.

Technical contributions. Besides identifying the “right tools” (ranging from approximation results
(Yarotsky, 2017, 2018) to complexity analyses (Bartlett et al., 2019)) to analyze deep active learning,
our theoretical guarantees are empowered by novel extensions of active learning algorithms under
neural network approximations. In particular, we deal with approximation error in active learning
under Tsybakov noise, and identify conditions that greatly relax the approximation requirement in
the learning with abstention setup; we also analyze the disagreement coefficient, both classifier-based
and value function-based, with a set of neural networks.These analyses together lead to our main
results for deep active learning (e.g., Theorem 1 and Theorem 2). More generally, we establish a

1As a byproduct, our results also provide a new perspective on nonparametric active learning through the
lens of neural network approximations. Nonparametric active learning was previously tackled through space
partitioning and local estimations over exponentially many sub-regions (Castro and Nowak, 2008; Minsker,
2012; Locatelli et al., 2017, 2018; Shekhar et al., 2021; Kpotufe et al., 2021).

3

bridge between approximation theory and active learning; we provide these general guarantees in
Appendix B (under Tsybakov noise) and Appendix D (with the abstention option), which can be
of independent interests. Benefited from these generic algorithms and guarantees, in Section 4, we
extend our results into learning smooth functions in the Radon BV2 space (Ongie et al., 2020; Parhi
and Nowak, 2021, 2022a,b; Unser, 2022), which is recently proposed as a natural space to analyze
neural networks.

1.3 Related work

Active learning concerns about learning accurate classifiers without extensive human labeling. One of
the earliest work of active learning dates back to the CAL algorithm proposed by Cohn et al. (1994),
which set the cornerstone for disagreement-based active learning. Since then, a long line of work
have been developed, either directly working with a set classifier (Balcan et al., 2006; Hanneke, 2007;
Dasgupta et al., 2007; Beygelzimer et al., 2009, 2010; Huang et al., 2015; Cortes et al., 2019) or work
with a set of regression functions (Krishnamurthy et al., 2017, 2019). These work mainly focus on the
parametric regime (e.g., learning with a set of linear classifiers), and their label complexities rely on
the boundedness of the so-called disagreement coefficient (Hanneke, 2007, 2014; Friedman, 2009).
Active learning in the nonparametric regime has been analyzed in Castro and Nowak (2008); Minsker
(2012); Locatelli et al. (2017, 2018); Kpotufe et al. (2021). These algorithms rely on partitioning of
the input space X ⊆ [0, 1]d into exponentially (in dimension) many small cubes, and then conduct
local mean (or some higher-order statistics) estimation within each small cube.

It is well known that, in the worst case, active learning exhibits no label complexity gains over the
passive counterpart (Kääriäinen, 2006). To bypass these worst-case scenarios, active learning has been
popularly analyzed under the so-called Tsybakov low noise conditions (Tsybakov, 2004). Under Tsy-
bakov noise conditions, active learning has been shown to be strictly superior than passive learning in
terms of label complexity (Castro and Nowak, 2008; Locatelli et al., 2017). Besides analyzing active
learning under favorable low noise assumptions, more recently, researchers consider active learning
with an abstention option and analyze its label complexity under Chow’s error (Chow, 1970). In par-
ticular, Puchkin and Zhivotovskiy (2021); Zhu and Nowak (2022) develop active learning algorithms
with polylog(1

ε) label complexity when analyzed under Chow’s excess error. Shekhar et al. (2021)
study nonparametric active learning under a different notion of the Chow’s excess error, and propose al-
gorithms with poly(1

ε) label complexity; their algorithms follow similar procedures of those partition-
based nonparametric active learning algorithms (e.g., Minsker (2012); Locatelli et al. (2017)).

Inspired by the success of deep learning in the passive regime, active learning with neural networks
has been extensively explored in recent years (Sener and Savarese, 2018; Ash et al., 2019; Citovsky
et al., 2021; Ash et al., 2021; Kothawade et al., 2021; Emam et al., 2021; Ren et al., 2021). Great
empirical performances are observed in these papers, however, rigorous label complexity guarantees
have largely remains elusive (except in Karzand and Nowak (2020); Wang et al. (2021), with
limitations discussed before). We bridge the gap between practice and theory by providing the
first near-optimal label complexity guarantees for deep active learning. Our results are built upon
approximation results of deep neural networks (Yarotsky, 2017, 2018; Parhi and Nowak, 2022b)
and VC/pseudo dimension analyses of neural networks with given structures (Bartlett et al., 2019).

2 Label complexity of deep active learning

We analyze the label complexity of deep active learning in this section. We first introduce the
Tsybakov noise condition in Section 2.1, and then identify the “right tools” to analyze classification
problems with neural network classifiers in Section 2.2 (where we also provide passive learning
guarantees). We establish our main active learning guarantees in Section 2.3.

2.1 Tsybakov noise condition

It is well known that active learning exhibits no label complexity gains over the passive counterpart
without additional low noise assumptions (Kääriäinen, 2006). We next introduce the Tsybokov low
noise condition (Tsybakov, 2004), which has been extensively analyzed in active learning literature.

4

Definition 1 (Tsybakov noise). A distribution DXY satisfies the Tsybakov noise condition with
parameter β ≥ 0 and a universal constant c ≥ 1 if, ∀τ > 0,

Px∼DX (|η(x)− 1/2| ≤ τ) ≤ c τβ .

The case with β = 0 corresponds to the general case without any low noise conditions, where no
active learning algorithm can outperform the passive counterpart (Audibert and Tsybakov, 2007;
Locatelli et al., 2017). We use P(α, β) to denote the set of distributions satisfying: (i) the smoothness
conditions introduced in Section 1.1 with parameter α > 0; and (ii) the Tsybakov low noise condition
(i.e., Definition 1) with parameter β ≥ 0. We assume DXY ∈ P(α, β) in the rest of Section 2.
As in Castro and Nowak (2008); Hanneke (2014), we assume the knowledge of noise/smoothness
parameters.

2.2 Approximation and expressiveness of neural networks

Neural networks are known to be universal approximators (Cybenko, 1989; Hornik, 1991): For any
continuous function g : X → R and any error tolerance κ > 0, there exists a large enough neural
network fdnn such that ‖fdnn − g‖∞ := supx∈X |fdnn(x)− g(x)| ≤ κ. Recently, non-asympototic
approximation rates by ReLU neural networks have been developed for smooth functions in the
Sobolev space, which we restate in the following.2

Theorem 3 (Yarotsky (2017)). Fix any κ > 0. For any f? = η ∈ Wα,∞
1 ([0, 1]d), there exists a

neural network fdnn withW = O(κ−
d
α log 1

κ) total number of parameters arranged in L = O(log 1
κ)

layers such that ‖fdnn − f?‖∞ ≤ κ.

The architecture of the neural network fdnn appearing in the above theorem only depends on the
smooth function spaceWα,∞

1 ([0, 1]d), but otherwise is independent of the true regression function f?;
also see Yarotsky (2017) for details. Let Fdnn denote the set of neural network regression functions
with the same architecture. We construct a set of neural network classifiers by thresholding the
regression function at 1

2 , i.e.,Hdnn := {hf := sign(2f(x)−1) : f ∈ Fdnn}. The next result concerns
about the expressiveness of the neural network classifiers, in terms of a well-known complexity
measure: the VC dimension (Vapnik and Chervonenkis, 1971).
Theorem 4 (Bartlett et al. (2019)). Let Hdnn be a set of neural network classifiers of the same
architecture and with W parameters arranged in L layers. We then have

Ω(WL log(W/L)) ≤ VCdim(Hdnn) ≤ O(WL log(W)).

With these tools, we can construct a set of neural network classifiers Hdnn such that (i) the best
in-class classifier ȟ ∈ Hdnn has small excess error, and (ii)Hdnn has a well-controlled VC dimension
that is proportional to smooth/noise parameters. More specifically, we have the following proposition.

Proposition 1. Suppose DXY ∈ P(α, β). One can construct a set of neural network classifierHdnn

such that the following two properties hold simultaneously:

inf
h∈Hdnn

err(h)− err(h?) = O(ε) and VCdim(Hdnn) = Õ(ε−
d

α(1+β)).

With the approximation results obtained above, to learn a classifier with O(ε) excess error, one only
needs to focus on a set of neural networksHdnn with a well-controlled VC dimension. As a warm-up,
we first analyze the label complexity of such procedure in the passive regime (with fast rates).
Theorem 5. Suppose DXY ∈ P(α, β). Fix any ε, δ > 0. Let Hdnn be the set of neural network

classifiers constructed in Proposition 1. With n = Õ(ε−
d+2α+αβ
α(1+β)) i.i.d. sampled points, with

probability at least 1− δ, the empirical risk minimizer ĥ ∈ Hdnn achieves excess error O(ε).

The label complexity results obtained in Theorem 5 matches, up to logarithmic factors, the passive
learning lower bound Ω(ε−

d+2α+αβ
α(1+β)) established in Audibert and Tsybakov (2007), indicating that

our proposed learning procedure with a set of neural networks is near minimax optimal.3

2As in Yarotsky (2017), we hide constants that are potentially α-dependent and d-dependent into the Big-Oh
notation.

3Similar passive learning guarantees have been developed with different tools and analyses, e.g., see results
in Kim et al. (2021).

5

2.3 Deep active learning and guarantees

The passive learning procedure presented in the previous section treats every data point equally, i.e., it
requests the label of every data point. Active learning reduces the label complexity by only querying
labels of data points that are “more important”. We present deep active learning results in this section.
Our algorithm (Algorithm 1) is inspired by RobustCAL (Balcan et al., 2006; Hanneke, 2007, 2014)
and the seminal CAL algorithm (Cohn et al., 1994); we call our algorithm NeuralCAL to emphasize
that it works with a set of neural networks.

For any accuracy level ε > 0, NeuralCAL first initialize a set of neural network classifiers H0 :=
Hdnn such that (i) the best in-class classifier ȟ := arg minh∈Hdnn

err(h) has excess error at mostO(ε),

and (ii) the VC dimension ofHdnn is upper bounded by Õ(ε−
d

α(1+β)) (see Section 2.2 for more details).
NeuralCAL then runs in epochs of geometrically increasing lengths. At the beginning of epoch m,
based on previously labeled data points, NeuralCAL updates a set of active classifierHm such that,
with high probability, the best classifier ȟ remains uneliminated. Within each epoch m, NeuralCAL
only queries the label y of a data point x if it lies in the region of disagreement with respect to the
current active set of classifierHm, i.e., DIS(Hm) := {x ∈ X : ∃h1, h2 ∈ Hm s.t. h1(x) 6= h2(x)}.
NeuralCAL returns any classifier ĥ ∈ Hm that remains uneliminated after M − 1 epoch.

Algorithm 1 NeuralCAL
Input: Accuracy level ε ∈ (0, 1), confidence level δ ∈ (0, 1).

1: LetHdnn be a set of neural networks classifiers constructed in Proposition 1.
2: Define T := ε−

2+β
1+β ·VCdim(Hdnn), M := dlog2 T e, τm := 2m for m ≥ 1 and τ0 := 0.

3: Define ρm := O

((
VCdim(Hdnn)·log(τm−1)·log(M/δ)

τm−1

) 1+β
2+β

)
for m ≥ 2 and ρ1 := 1.

4: Define R̂m(h) :=
∑τm−1

t=1 Qt1(h(xt) 6= yt) with the convention that
∑0
t=1 . . . = 0.

5: InitializeH0 := Hdnn.
6: for epoch m = 1, 2, . . . ,M do
7: Update active setHm :=

{
h ∈ Hm−1 : R̂m(h) ≤ infh∈Hm−1 R̂m(h) + τm−1 · ρm

}
8: if epoch m = M then
9: Return any classifier ĥ ∈ HM .

10: for time t = τm−1 + 1, . . . , τm do
11: Observe xt ∼ DX . Set Qt := 1(xt ∈ DIS(Hm)).
12: if Qt = 1 then
13: Query the label yt of xt.

Since NeuralCAL only queries labels of data points lying in the region of disagreement, its label
complexity should intuitively be related to how fast the region of disagreement shrinks. More
formally, the rate of collapse of the (probability measure of) region of disagreement is captured by
the (classifier-based) disagreement coefficient (Hanneke, 2007, 2014), which we introduce next.
Definition 2 (Classifier-based disagreement coefficient). For any ε0 and classifier h ∈ H, the
classifier-based disagreement coefficient of h is defined as

θH,h(ε0) := sup
ε>ε0

Px∼DX (DIS(BH(h, ε)))

ε
∨ 1,

where BH(h, ε) := {g ∈ H : P(x ∈ X : g(x) 6= h(x)) ≤ ε}. We also define θH(ε0) :=
suph∈H θH,h(ε0).

The guarantees of NeuralCAL follows from a more general analysis of RobustCAL under approxi-
mation. In particular, to achieve fast rates (under Tsybakov noise), previous analysis of RobustCAL
requires that the Bayes classifier is in the class (or a Bernstein condition for every h ∈ H) (Hanneke,
2014). These requirements are stronger compared to what we have in the case with neural network
approximations. Our analysis extends the understanding of RobustCAL under approximation. We
defer such general analysis to Appendix B, and present the following guarantees.
Theorem 6. Suppose DXY ∈ P(α, β). Fix any ε, δ > 0. With probability at least 1− δ, Algorithm 1
returns a classifier ĥ ∈ Hdnn with excess error Õ(ε) after querying Õ(θHdnn

(ε
β

1+β) · ε−
d+2α
α+αβ) labels.

6

We next discuss in detail the label complexity of deep active learning proved in Theorem 6.

• Ignoring the dependence on disagreement coefficient, the label complexity appearing in Theorem 6
matches, up to logarithmic factors, the lower bound Ω(ε−

d+2α
α+αβ) for active learning (Locatelli

et al., 2017). At the same time, the label complexity appearing in Theorem 6 is never worse than
the passive counterpart (i.e., Θ̃(ε−

d+2α+αβ
α(1+β)) since θHdnn

(ε
β

1+β) ≤ ε−
β

1+β .

• We also identify cases when θHdnn
(ε

β
1+β) = o(ε−

β
1+β), indicating strict improvement over passive

learning (e.g., when DX is supported on countably many data points), and when θHdnn
(ε

β
1+β) =

O(1), indicating matching the minimax active lower bound (e.g., when DXY satisfies conditions
such as decomposibility defined in Definition 4. See Appendix C.2 for detailed discussion).4

Our algorithm and theorems lead to the following results, which could benefit both deep active
learning and nonparametric learning communities.

• Near minimax optimal label complexity for deep active learning. While empirical successes
of deep active learning have been observed, rigorous label complexity analysis remains elusive
except for two attempts made in Karzand and Nowak (2020); Wang et al. (2021). The guarantees
provided in Karzand and Nowak (2020) only work in very special cases (i.e., data uniformly
sampled from [0, 1] and labeled by well-separated piece-constant functions in a noise-free way).
Wang et al. (2021) study deep active learning in the NTK regime by linearizing the neural network
at its random initialization and analyzing it as a linear function; moreover, as the authors agree,
their error bounds and label complexity guarantees are vacuous in certain cases. On the other
hand, our guarantees are minimax optimal, up to disagreement coefficient and other logarithmic
factors, which bridge the gap between theory and practice in deep active learning.

• New perspective on nonparametric learning. Nonparametric learning of smooth functions have
been mainly approached by partitioning-based methods (Tsybakov, 2004; Audibert and Tsybakov,
2007; Castro and Nowak, 2008; Minsker, 2012; Locatelli et al., 2017, 2018; Kpotufe et al., 2021) :
Partition the unit cube [0, 1]d into exponentially (in dimension) many sub-cubes and conduct local
mean estimation within each sub-cube (which additionally requires a strictly stronger membership
querying oracle). Our results show that, in both passive and active settings, one can learn globally
with a set of neural networks and achieve near minimax optimal label complexities.

3 Deep active learning with abstention: Exponential speedups

While the theoretical guarantees provided in Section 2 are near minimax optimal, the label complexity
scales as poly(1

ε), which doesn’t match the great empirical performance observed in deep active learn-
ing. In this section, we fill in this gap by leveraging the idea of abstention and provide a deep active
learning algorithm that achieves exponential label savings. We introduce the concepts of abstention
and Chow’s excess error in Section 3.1, and provide our label complexity guarantees in Section 3.2.

3.1 Active learning without low noise conditions

The previous section analyzes active learning under Tsybakov noise, which has been extensively
studied in the literature since Castro and Nowak (2008). More recently, promising results are observed
in active learning under Chow’s excess error, but otherwise without any low noise assumption (Puchkin
and Zhivotovskiy, 2021; Zhu and Nowak, 2022). We introduce this setting in the following.

Abstention and Chow’s error (Chow, 1970). We consider classifier of the form ĥ : X → Y∪{⊥}
where ⊥ denotes the action of abstention. For any fixed 0 < γ < 1

2 , the Chow’s error is defined as

errγ(ĥ) := P(x,y)∼DXY (ĥ(x) 6= y, ĥ(x) 6= ⊥) + (1/2− γ) · P(x,y)∼DXY (ĥ(x) = ⊥).

4We remark that disagreement coefficient is usually bounded/analyzed under additional assumptions onDXY ,
even for simple cases with a set of linear classifiers (Friedman, 2009; Hanneke, 2014). The label complexity
guarantees of partition-based nonparametric active algorithms (e.g., Castro and Nowak (2008)) do not depend on
the disagreement coefficient, but they are analyzed under stronger assumptions, e.g., they require the strictly
stronger membership querying oracle. See Wang (2011) for a discussion. We left a comprehensive analysis of
the disagreement coefficient with a set of neural network classifiers for future work.

7

The parameter γ can be chosen as a small constant, e.g., γ = 0.01, to avoid excessive abstention: The
price of abstention is only marginally smaller than random guess (which incurs cost 0.5). The Chow’s
excess error is then defined as excessγ(ĥ) := errγ(ĥ)− err(h?) (Puchkin and Zhivotovskiy, 2021).

At a high level, analyzing with Chow’s excess error allows slackness in predications of hard examples
(e.g., data points whose η(x) is close to 1

2) by leveraging the power of abstention. Puchkin and
Zhivotovskiy (2021); Zhu and Nowak (2022) show that polylog(1

ε) is always achievable in the
parametric settings. We generalize their results to the nonparametric setting and analyze active
learning with a set of neural networks.

3.2 Exponential speedups with abstention

In this section, we work with a set of neural network regression functions Fdnn : X → [0, 1] (that
approximates η) and then construct classifiers h : X → Y ∪ {⊥} with an additional abstention
action. To work with a set of regression functions Fdnn, we analyze its “complexity” from the
lenses of pseudo dimension Pdim(Fdnn) (Pollard, 1984; Haussler, 1989, 1995) and value function
disagreement coefficient θval

Fdnn
(ι) (for some ι > 0) (Foster et al., 2020). We defer detailed definitions

of these complexity measures to Appendix D.1.

Algorithm 2 NeuralCAL++
Input: Accuracy level ε ∈ (0, 1), confidence level δ ∈ (0, 1), abstention parameter γ ∈ (0, 1/2).

1: Let Fdnn be a set of neural network regression functions obtained by (i) applying Theorem 3
with an appropriate approximation level κ (which satisfies 1

κ = poly(1
γ) polylog(1

ε γ)), and
(ii) applying a preprocessing step on the set of neural networks obtained from step (i). See
Appendix E for details.

2: Define T :=
θval
Fdnn

(γ/4)·Pdim(Fdnn)

ε γ , M := dlog2 T e, and Cδ := O(Pdim(Fdnn) · log(T/δ)).
3: Define τm := 2m for m ≥ 1, τ0 := 0, and βm := 3(M −m+ 1)Cδ .
4: Define R̂m(f) :=

∑τm−1

t=1 Qt(f̂(xt)− yt)2 with the convention that
∑0
t=1 . . . = 0.

5: for epoch m = 1, 2, . . . ,M do
6: Get f̂m := arg minf∈Fdnn

∑τm−1

t=1 Qt(f(xt)− yt)2.

7: (Implicitely) Construct active set Fm :=
{
f ∈ Fdnn : R̂m(f) ≤ R̂m(f̂m) + βm

}
.

8: Construct classifier ĥm : X → {+1,−1,⊥} as

ĥm(x) :=

{
⊥, if [lcb(x;Fm)− γ

4 , ucb(x;Fm) + γ
4] ⊆

[
1
2 − γ,

1
2 + γ

]
;

sign(2f̂m(x)− 1), o.w.

and query function gm(x) := 1
(

1
2 ∈

(
lcb(x;Fm)− γ

4 , ucb(x;Fm) + γ
4

))
· 1(ĥm(x) 6= ⊥).

9: if epoch m = M then
10: Return classifier ĥM .
11: for time t = τm−1 + 1, . . . , τm do
12: Observe xt ∼ DX . Set Qt := gm(xt).
13: if Qt = 1 then
14: Query the label yt of xt.

We now present NeuralCAL++ (Algorithm 2), a deep active learning algorithm that leverages
the power of abstention. NeuralCAL++ first initialize a set of set of neural network regression
functions Fdnn by applying a preprocessing step on top of the set of regression functions obtained
from Theorem 3 with a carefully chosen approximation level κ. The preprocessing step mainly
contains two actions: (1) clipping fdnn : X → R into f̌dnn : X → [0, 1] (since we obviously have
η(x) ∈ [0, 1]); and (2) filtering out fdnn ∈ Fdnn that are clearly not a good approximation of η. After
initialization, NeuralCAL++ runs in epochs of geometrically increasing lengths. At the beginning
of epoch m ∈ [M], NeuralCAL++ (implicitly) constructs an active set of regression functions Fm
that are “close” to the true conditional probability η. For any x ∼ DX , NeuralCAL++ constructs
a lower bound lcb(x;Fm) := inff∈Fm f(x) and an upper bound ucb(x;Fm) := supf∈Fm f(x)
as a confidence range of η(x) (based on Fm). An empirical classifier with an abstention option

8

ĥm : X → {+1,−1,⊥} and a query function gm : X → {0, 1} are then constructed based on the
confidence range (and the abstention parameter γ). For any time step twithin epochm, NeuralCAL++
queries the label of the observed data point xt if and only if Qt := gm(xt) = 1. NeuralCAL++
returns ĥM as the learned classifier.

NeuralCAL++ is adapted from the algorithm developed in Zhu and Nowak (2022), but with novel
extensions. In particular, the algorithm presented in Zhu and Nowak (2022) requires the existence
of a f ∈ F such that ‖f − η‖∞ ≤ ε (to achieve ε Chow’s excess error), Such an approximation
requirement directly leads to poly(1

ε) label complexity in the nonparametric setting, which is
unacceptable. The initialization step of NeuralCAL++ (line 1) is carefully chosen to ensure that
Pdim(Fdnn), θ

val
Fdnn

(γ4) = poly(1
γ) · polylog(1

ε); together with a sharper analysis of concentration
results, these conditions help us derive the following deep active learning guarantees (also see
Appendix D for a more general guarantee).
Theorem 7. Fix any ε, δ, γ > 0. With probability at least 1− δ, Algorithm 2 (with an appropriate
initialization at line 1) returns a classifier ĥ with Chow’s excess error Õ(ε) after querying poly(1

γ) ·
polylog(1

ε δ) labels.

We discuss two important aspects of Algorithm 2/Theorem 7 in the following, i.e., exponential
savings and computational efficiency. We defer more detailed discussions to Appendix F.1.

• Exponential speedups. Theorem 7 shows that, equipped with an abstention option, deep active
learning enjoys polylog(1

ε) label complexity. This provides theoretical justifications for great
empirical results of deep active learning observed in practice. Moreover, Algorithm 2 outputs
a classifier that abstains properly, i.e., it abstains only if abstention is the optimal choice; such
a property further implies polylog(1

ε) label complexity under standard excess error and Massart
noise (Massart and Nédélec, 2006).

• Computational efficiency. Suppose one can efficiently implement a (weighted) square
loss regression oracle over the initialized set of neural networks Fdnn: Given any set S
of weighted examples (w, x, y) ∈ R+ × X × Y as input, the regression oracle outputs
f̂dnn := arg minf∈Fdnn

∑
(w,x,y)∈S w(f(x)− y)

2 .5 Algorithm 2 can then be efficiently
implemented with poly(1

γ) · 1
ε oracle calls.

While the label complexity obtained in Theorem 7 has desired dependence on polylog(1
ε), its

dependence on γ can be of order γ− poly(d). Our next result shows that, however, such dependence is
unavoidable even in the case of learning a single ReLU function.
Theorem 8. Fix any γ ∈ (0, 1/8). For any accuracy level ε sufficiently small, there exists a problem
instance such that (1) η ∈ W1,∞

1 (X) and is of the form η(x) := ReLU(〈w, x〉+ a) + b; and (2) for
any active learning algorithm, it takes at least γ−Ω(d) labels to identify an ε-optimal classifier, for
either standard excess error or Chow’s excess error (with parameter γ).

4 Extensions

Previous results are developed in the commonly studied Sobolev/Hölder spaces. Our techniques,
however, are generic and can be adapted to other function spaces, given neural network approximation
results. In this section, we provide extensions of our results to the Radon BV2 space, which was
recently proposed as the natural function space associated with ReLU neural networks (Ongie et al.,
2020; Parhi and Nowak, 2021, 2022a,b; Unser, 2022).6

The Radon BV2 space. The Radon BV2 unit ball over domain X is defined as R BV2
1(X) :=

{f : ‖f‖R BV2(X) ≤ 1}, where ‖f‖R BV2(X) denotes the Radon BV2 norm of f over domain X .7

Following Parhi and Nowak (2022b), we assume X = {x ∈ Rd : ‖x‖2 ≤ 1} and η ∈ R BV2
1(X).

5In practice, one can approximate this oracle by running stochastic gradient descent.
6Other extensions are also possible given neural network approximation results, e.g., recent results established

in Lu et al. (2021).
7We provide more mathematical backgrounds and associated definitions in Appendix G.

9

The Radon BV2 space naturally contains neural networks of the form fdnn(x) =
∑K
k=1 vi ·

ReLU(w>i x + bi). On the contrary, such fdnn doesn’t lie in any Sobolev space of order α ≥ 2
(since fdnn doesn’t have second order weak derivative). Thus, if η takes the form of the afore-
mentioned neural network (e.g., η = fdnn), approximating η up to κ from a Sobolev perspective
requires Õ(κ−d) total parameters, which suffers from the curse of dimensionality. On the other side,
however, such bad dependence on dimensionality goes away when approximating from a Radon BV2

perspective, as shown in the following theorem.

Theorem 9 (Parhi and Nowak (2022b)). Fix any κ > 0. For any f? ∈ R BV2
1(X), there exists a

one-hidden layer neural network fdnn of width K = O(κ−
2d
d+3) such that ‖f? − fdnn‖∞ ≤ κ.

Equipped with this approximation result, we provide the active learning guarantees for learning a
smooth function within the Radon BV2 unit ball as follows.
Theorem 10. Suppose η ∈ R BV2

1(X) and the Tsybakov noise condition is satisfied with parameter
β ≥ 0. Fix any ε, δ > 0. There exists an algorithm such that, with probability at least 1− δ, it learns
a classifier ĥ ∈ Hdnn with excess error Õ(ε) after querying Õ(θHdnn

(ε
β

1+β) · ε−
4d+6

(1+β)(d+3)) labels.

Compared to the label complexity obtained in Theorem 6, the label complexity obtained in the
above theorem doesn’t suffer from the curse of dimensionality: For d large enough, the above label
complexity scales as ε−O(1) yet label complexity in Theorem 6 scales as ε−O(d). Active learning
guarantees under Chow’s excess error in the Radon BV2 space are similar to results presented in
Theorem 7, and are thus deferred to Appendix G.

5 Discussion

We provide the first near-optimal deep active learning guarantees, under both standard excess error
and Chow’s excess error. Our results are powered by generic algorithms and analyses developed for
active learning that bridge approximation guarantees into label complexity guarantees. We outline
some natural directions for future research below.

• Disagreement coefficients for neural networks. While we have provided some results regarding
the disagreement coefficients for neural networks, we believe a comprehensive investigation on
this topic is needed. For instance, can we discover more general settings where the classifier-based
disagreement coefficient can be upper bounded by O(1)? It is also interesting to explore sharper
analyses on the value function disagreement coefficient.

• Adaptivity in deep active learning. Our current results are established with the knowledge of
some problem-dependent parameters, e.g., the smoothness parameters regarding the function
spaces and the noise levels. It will be interesting to see if one can develop algorithms that can
automatically adapt to unknown parameters, e.g., by leveraging techniques developed in Locatelli
et al. (2017, 2018).

Acknowledgments and Disclosure of Funding

The authors would like to thank Rahul Parhi for many helpful discussions regarding his papers. We
also would like to thank anonymous reviewers for their constructive comments. This work is partially
supported by NSF grant 1934612 and AFOSR grant FA9550-18-1-0166.

References
Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming

the monster: A fast and simple algorithm for contextual bandits. In International Conference on
Machine Learning, pages 1638–1646. PMLR, 2014.

Martin Anthony. Uniform glivenko-cantelli theorems and concentration of measure in the mathemati-
cal modelling of learning. Research Report LSE-CDAM-2002–07, 2002.

Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Gone fishing: Neural active
learning with fisher embeddings. Advances in Neural Information Processing Systems, 34, 2021.

10

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671,
2019.

Jean-Yves Audibert and Alexandre B Tsybakov. Fast learning rates for plug-in classifiers. The Annals
of statistics, 35(2):608–633, 2007.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In Proceed-
ings of the 23rd international conference on Machine learning, pages 65–72, 2006.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine
Learning Research, 20(1):2285–2301, 2019.

Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. Importance weighted active learning. In
Proceedings of the 26th annual international conference on machine learning, pages 49–56, 2009.

Alina Beygelzimer, Daniel J Hsu, John Langford, and Tong Zhang. Agnostic active learning without
constraints. Advances in neural information processing systems, 23, 2010.

Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A survey of
some recent advances. ESAIM: probability and statistics, 9:323–375, 2005.

Rui M Castro and Robert D Nowak. Minimax bounds for active learning. IEEE Transactions on
Information Theory, 54(5):2339–2353, 2008.

CK Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on information
theory, 16(1):41–46, 1970.

Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Afshin
Rostamizadeh, and Sanjiv Kumar. Batch active learning at scale. Advances in Neural Information
Processing Systems, 34, 2021.

David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning. Machine
learning, 15(2):201–221, 1994.

Corinna Cortes, Giulia DeSalvo, Mehryar Mohri, Ningshan Zhang, and Claudio Gentile. Active
learning with disagreement graphs. In International Conference on Machine Learning, pages
1379–1387. PMLR, 2019.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni. A general agnostic active learning algorithm.
Advances in neural information processing systems, 20, 2007.

Zeyad Ali Sami Emam, Hong-Min Chu, Ping-Yeh Chiang, Wojciech Czaja, Richard Leapman,
Micah Goldblum, and Tom Goldstein. Active learning at the imagenet scale. arXiv preprint
arXiv:2111.12880, 2021.

Dylan Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, and Robert Schapire. Practical
contextual bandits with regression oracles. In International Conference on Machine Learning,
pages 1539–1548. PMLR, 2018.

Dylan J Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-dependent
complexity of contextual bandits and reinforcement learning: A disagreement-based perspective.
arXiv preprint arXiv:2010.03104, 2020.

David A Freedman. On tail probabilities for martingales. the Annals of Probability, pages 100–118,
1975.

Eric Friedman. Active learning for smooth problems. In COLT. Citeseer, 2009.
Steve Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings of the

24th international conference on Machine learning, pages 353–360, 2007.
Steve Hanneke. Theory of active learning. Foundations and Trends in Machine Learning, 7(2-3),

2014.
David Haussler. Decision theoretic generalizations of the pac model for neural net and other learning

applications. 1989.
David Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded vapnik-

chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69(2):217–232, 1995.

11

Juha Heinonen. Lectures on Lipschitz analysis. Number 100. University of Jyväskylä, 2005.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):
251–257, 1991.

Tzu-Kuo Huang, Alekh Agarwal, Daniel J Hsu, John Langford, and Robert E Schapire. Efficient and
parsimonious agnostic active learning. Advances in Neural Information Processing Systems, 28,
2015.

Matti Kääriäinen. Active learning in the non-realizable case. In International Conference on
Algorithmic Learning Theory, pages 63–77. Springer, 2006.

Mina Karzand and Robert D Nowak. Maximin active learning in overparameterized model classes.
IEEE Journal on Selected Areas in Information Theory, 1(1):167–177, 2020.

Yongdai Kim, Ilsang Ohn, and Dongha Kim. Fast convergence rates of deep neural networks for
classification. Neural Networks, 138:179–197, 2021.

Suraj Kothawade, Nathan Beck, Krishnateja Killamsetty, and Rishabh Iyer. Similar: Submodular
information measures based active learning in realistic scenarios. Advances in Neural Information
Processing Systems, 34, 2021.

Samory Kpotufe, Gan Yuan, and Yunfan Zhao. Nuances in margin conditions determine gains in
active learning. arXiv preprint arXiv:2110.08418, 2021.

Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John Langford. Active
learning for cost-sensitive classification. In International Conference on Machine Learning, pages
1915–1924. PMLR, 2017.

Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John Langford. Active
learning for cost-sensitive classification. Journal of Machine Learning Research, 20:1–50, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Gene Li, Pritish Kamath, Dylan J Foster, and Nathan Srebro. Eluder dimension and generalized rank.
arXiv preprint arXiv:2104.06970, 2021.

Andrea Locatelli, Alexandra Carpentier, and Samory Kpotufe. Adaptivity to noise parameters in
nonparametric active learning. In Proceedings of the 2017 Conference on Learning Theory, PMLR,
2017.

Andrea Locatelli, Alexandra Carpentier, and Samory Kpotufe. An adaptive strategy for active learning
with smooth decision boundary. In Algorithmic Learning Theory, pages 547–571. PMLR, 2018.

Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for
smooth functions. SIAM Journal on Mathematical Analysis, 53(5):5465–5506, 2021.

Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of Statistics, 34
(5):2326–2366, 2006.

Stanislav Minsker. Plug-in approach to active learning. Journal of Machine Learning Research, 13
(1), 2012.

Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of bounded
norm infinite width relu nets: The multivariate case. In International Conference on Learning
Representations, 2020.

Rahul Parhi and Robert D Nowak. Banach space representer theorems for neural networks and ridge
splines. J. Mach. Learn. Res., 22(43):1–40, 2021.

Rahul Parhi and Robert D Nowak. What kinds of functions do deep neural networks learn? insights
from variational spline theory. SIAM Journal on Mathematics of Data Science, 4(2):464–489,
2022a.

Rahul Parhi and Robert D Nowak. Near-minimax optimal estimation with shallow relu neural
networks. IEEE Transactions on Information Theory, 2022b.

D Pollard. Convergence of Stochastic Processes. David Pollard, 1984.

12

Nikita Puchkin and Nikita Zhivotovskiy. Exponential savings in agnostic active learning through
abstention. arXiv preprint arXiv:2102.00451, 2021.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. ACM Computing Surveys (CSUR), 54(9):1–40,
2021.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. In NIPS, pages 2256–2264. Citeseer, 2013.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

Burr Settles. Active learning literature survey. 2009.
Shubhanshu Shekhar, Mohammad Ghavamzadeh, and Tara Javidi. Active learning for classification

with abstention. IEEE Journal on Selected Areas in Information Theory, 2(2):705–719, 2021.
Alexander B Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of

Statistics, 32(1):135–166, 2004.
Michael Unser. Ridges, neural networks, and the radon transform. arXiv preprint arXiv:2203.02543,

2022.
VN Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of events to

their probabilities. Theory of Probability and its Applications, 16(2):264, 1971.
Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-

bridge University Press, 2019.
Liwei Wang. Smoothness, disagreement coefficient, and the label complexity of agnostic active

learning. Journal of Machine Learning Research, 12(7), 2011.
Zhilei Wang, Pranjal Awasthi, Christoph Dann, Ayush Sekhari, and Claudio Gentile. Neural active

learning with performance guarantees. Advances in Neural Information Processing Systems, 34,
2021.

Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity. In
18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pages 222–227. IEEE
Computer Society, 1977.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Dmitry Yarotsky. Optimal approximation of continuous functions by very deep relu networks. In
Conference on learning theory, pages 639–649. PMLR, 2018.

Yinglun Zhu and Robert Nowak. Efficient active learning with abstention. arXiv preprint
arXiv:2204.00043, 2022.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5 for discussions on

limitations and directions for future work.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our paper is

theoretical in nature, and there is no negative societal impact of our work in the foreseeable
future.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions are

clearly stated in the statement of each theorem.
(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs are provided

in the Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

14

A Omitted details for Section 2.2

Proposition 1. Suppose DXY ∈ P(α, β). One can construct a set of neural network classifierHdnn

such that the following two properties hold simultaneously:

inf
h∈Hdnn

err(h)− err(h?) = O(ε) and VCdim(Hdnn) = Õ(ε−
d

α(1+β)).

Proof. We take κ = ε
1

1+β in Theorem 3 to construct a set of neural network classifiers Hdnn with
W = O(ε−

d
α(1+β) log 1

ε) total parameters arranged in L = O(log 1
ε) layers. According to Theorem 4,

we know

VCdim(Hdnn) = O(ε−
d

α(1+β) · log2(ε−1)) = Õ(ε−
d

α(1+β)).

We now show that there exists a classifier h ∈ Hdnn with small excess error. Let h = hf be the
classifier such that ‖f − η‖∞ ≤ κ. We can see that

excess(h) = E
[
1(h(x) 6= y)− 1(h?(x) 6= y)

]
= E

[
|2η(x)− 1| · 1(h(x) 6= h?(x))

]
≤ 2κ · Px∼DX (x ∈ X : |η(x)− 1/2| ≤ κ)

= O(κ1+β)

= O(ε),

where the third line follows from the fact that h and h? disagrees only within region {x ∈ X :
|η(x)− 1/2| ≤ κ} and the incurred error is at most 2κ on each disagreed data point. The fourth line
follows from the Tsybakov noise condition and the last line follows from the selection of κ.

Before proving Theorem 5, we first recall the excess error guarantee for empirical risk minimization
under Tsybakov noise condition.

Theorem 11 (Boucheron et al. (2005)). Suppose DXY satisfies Tsybakov noise condition with
parameter β ≥ 0. Consider a datatset Dn = {(xi, yi)}ni=1 of n points i.i.d. sampled from DXY . Let
ĥ ∈ H be the empirical risk minimizer on Dn. For any constant ρ > 0, we have

err(ĥ)−min
h∈H

err(h)

≤ ρ · (min
h∈H

err(h)− err(h?)) +O

(
(1 + ρ)

2

ρ
·
(

VCdim(H) · log n

n

) 1+β
2+β

+
log δ−1

n

)
,

with probability at least 1− δ.

Theorem 5. Suppose DXY ∈ P(α, β). Fix any ε, δ > 0. Let Hdnn be the set of neural network

classifiers constructed in Proposition 1. With n = Õ(ε−
d+2α+αβ
α(1+β)) i.i.d. sampled points, with

probability at least 1− δ, the empirical risk minimizer ĥ ∈ Hdnn achieves excess error O(ε).

Proof. Proposition 1 certifies minh∈Hdnn
err(h) − err(h?) = O(ε) and VCdim(Hdnn) =

O
(
ε−

d
α(1+β) · log2(ε−1)

)
. Take ρ = 1 in Theorem 11, leads to

err(ĥ)− err(h?) ≤ O

(
ε+

(
ε−

d
α(1+β) · log2(ε−1) · log n

n

) 1+β
2+β

+
log δ−1

n

)
,

Taking n = O(ε−
d+2α+αβ
α(1+β) · log(ε−1) + ε−1 · log(δ−1)) = Õ(ε−

d+2α+αβ
α(1+β)) thus ensures that err(ĥ)−

err(h?) = O(ε).

15

B Generic version of Algorithm 1 and its guarantees

We present Algorithm 3 below, a generic version of Algorithm 1 that doesn’t require the approximating
classifiers to be neural networks. The guarantees of Algorithm 3 are provided in Theorem 12, which
is proved in Appendix B.2 based on supporting lemmas provided in Appendix B.1.

Algorithm 3 RobustCAL with Approximation
Input: Accuracy level ε ∈ (0, 1), confidence level δ ∈ (0, 1).

1: LetH be a set of approximating classifiers such that infh∈H err(h)− err(h?) = O(ε).
2: Define T := ε−

2+β
1+β ·VCdim(H), M := dlog2 T e, τm := 2m for m ≥ 1 and τ0 := 0.

3: Define ρm := O

((
VCdim(H)·log(τm−1)·log(M/δ)

τm−1

) 1+β
2+β

)
for m ≥ 2 and ρ1 := 1.

4: Define R̂m(h) :=
∑τm−1

t=1 Qt1(h(xt) 6= yt) with the convention that
∑0
t=1 . . . = 0.

5: InitializeH0 := H.
6: for epoch m = 1, 2, . . . ,M do
7: Update active setHm :=

{
h ∈ Hm−1 : R̂m(h) ≤ infh∈Hm−1

R̂m(h) + τm−1 · ρm
}

8: if epoch m = M then
9: Return any classifier ĥ ∈ HM .

10: for time t = τm−1 + 1, . . . , τm do
11: Observe xt ∼ DX . Set Qt := 1(xt ∈ DIS(Hm)).
12: if Qt = 1 then
13: Query the label yt of xt.

We provide guarantees for Algorithm 3, and then specialize them to the settings with neural network
approximation, i.e., in Theorem 6 and Theorem 10. As discussed before, our analysis is based on
the analysis RobustCAL, but with novel extensions in removing the requirements that the Bayes
classifier is in the class (or a Bernstein condition for every h ∈ H).

Theorem 12. Fix ε, δ > 0. With probability at least 1− δ, Algorithm 3 returns a classifier ĥ ∈ H
with excess error Õ(ε) after querying

Õ
(
θH(ε

β
1+β) · ε−

2
1+β ·VCdim(H)

)
labels.

B.1 Supporting lemmas

We first recall that Tsybakov noise condition leads to the so-called Bernstein condition (with respect
to Bayes classifier h?).
Lemma 1 (Tsybakov (2004)). Suppose DXY satisfies the Tsybakov noise condition with parameter
β ≥ 0, then there exists an universal constant c′ > 0 such that we have

Px∼DX (h(x) 6= h?(x)) ≤ c′(err(h)− err(h?))
β

1+β

for any h : X → Y .

We next present a lemma in the passive learning setting, which will later be incorporated into the
active learning setting. We first define some notations. Suppose Dn = {(xi, yi)}ni=1 are n i.i.d. data
points drawn from DXY . For any h : X → Y , we denote Rn(h) :=

∑n
i=1 1(h(xi) 6= yi) as the

empirical error of h over dataset Dn. We clearly have E[Rn(h)] = n · err(h) by i.i.d. assumption.

Lemma 2. Fix ε, δ > 0. Suppose DXY satisfies Tsybakov noise condition with parameter β ≥ 0
and err(ȟ) − err(h?) = O(ε), where ȟ = arg maxh∈H err(h) and h? is the Bayes classifier. Let
Dn = {(xi, yi)}ni=1 be a set of n i.i.d. data points drawn from DXY . If β > 0, suppose n satisfies

n ≤ ε−
2+β
1+β ·VCdim(H)

2+2β
β · log(δ

−1
) · (log n)

2+2β
β .

16

With probability at least 1− δ, we have the following inequalities hold:

n · (err(h)− err(h?)) ≤ 2 · (Rn(h)−Rn(ȟ)) + n · ρ(n, δ), ∀h ∈ H, (1)

Rn(ȟ)−min
h∈H

Rn(h) ≤ n · ρ(n, δ), (2)

where ρ(n, δ) = C ·

((
VCdim(H)·logn·log δ

−1

n

) 1+β
2+β

+ ε

)
with a universal constant C > 0.8

Proof. Denote H := H ∪ {h?}. We know that VCdim(H) ≤ VCdim(H) + 1 = O(VCdim(H)).
From Lemma 1, we know Bernstein condition is satisfied with respect toH and h? ∈ H. Invoking
Lemma 3.1 in Hanneke (2014), with probability at least 1− δ

2 , ∀h ∈ H, we have

n · (err(h)− err(h?)) ≤ max
{

2 · (Rn(h)−Rn(h?)), n · ρ(n, δ)
}
, (3)

Rn(h)−min
h∈H

Rn(h) ≤ max
{

2n · (err(h)− err(h?)), n · ρ(n, δ)
}
, (4)

where ρ(n, δ) = O

((
VCdim(H)·logn+log δ

−1

n

) 1+β
2+β

)
= O

((
VCdim(H)·logn·log δ

−1

n

) 1+β
2+β

)
.

Eq. (2) follows by taking h = ȟ in Eq. (4) and noticing that

Rh(ȟ)−min
h∈H

Rn(h) ≤ Rn(ȟ)−min
h∈H

Rn(h)

≤ max
{

2n ·O(ε), n · ρ(n, δ)
}
,

where we use the assumption that err(ȟ)− err(h?) = O(ε).

To derive Eq. (1), we first notice that applying Eq. (3) for any h ∈ H, we have

n · (err(h)− err(h?)) ≤ 2 · (Rn(h)−Rn(ȟ) +Rn(ȟ)−Rn(h?)) + n · ρ(n, δ).

We next only need to upper bound Rn(ȟ) − Rn(h?), and show that it is order-wise smaller than
n · ρ(n, δ). We consider random variable gi := 1(ȟ(xi) 6= yi)− 1(h?(xi) 6= yi). We have

V(gi) ≤ E[g2
i]

= E[1(ȟ(xi) 6= h?(xi)]

= O
(
ε

β
1+β

)
,

where the last line follows from Lemma 1 and the assumption that err(ȟ)− err(h?) = O(ε). Denote
g = 1

n

∑n
i=1 gi = 1

n (Rn(ȟ)−Rn(h?)), and notice that E[g] = err(ȟ)−err(h?). Applying Bernstein
inequality on −g, with probability at least 1− δ

2 , we have

g − E[g] ≤ O

(ε β
1+β log δ

−1

n

) 1
2

+
log δ

−1

n

,
which further leads to

Rn(ȟ)−Rn(h?) ≤ n ·O

ε+

(
ε

β
1+β log δ

−1

n

) 1
2

+
log δ

−1

n

.
The RHS is order-wise smaller than ρn when β = 0. We consider the case when β > 0 next. Since

log(δ
−1

)/n is clearly a lower-order term compared to ρn, we only need to show that
(
ε
β

1+β log δ
−1

n

) 1
2

8The logarithmic factors in this bound might be further optimized. We don’t focus on optimizing logarithmic
factors.

17

is order-wise smaller than ρn. We can easily check that(
ε

β
1+β log δ

−1

n

) 1
2

≤

(
VCdim(H) · log n · log δ

−1

n

) 1+β
2+β

whenever n satisfies the following condition

n ≤ ε−
2+β
1+β ·VCdim(H)

2+2β
β · log(δ

−1
) · (log n)

2+2β
β .

We denote ȟ = arg minh∈H err(h). By assumption of Theorem 12, we have err(ȟ)−err(h?) = O(ε).
For any h ∈ H, we also use the shorthand Rm(h) = Rτm−1

(h) :=
∑τm−1

t=1 1(h(xt) 6= yt). Note that
Rm is only used in analysis since some yt are not observable.

Lemma 3. With probability at least 1− δ
2 , the following holds true for all epochs m ∈ [M]:

1. ȟ ∈ Hm.

2. err(h)− err(h?) ≤ 3ρm,∀h ∈ Hm.

Proof. For each m = 2, 3, . . . ,M , we invoke Lemma 2 with n = τm−1 and δ = δ/2M , which
guarantees that

τm−1 · (err(h)− err(h?)) ≤ 2 · (Rm(h)−Rm(ȟ)) + τm−1 · ρm, ∀h ∈ H, (5)

Rm(ȟ)−min
h∈H

Rm(h) ≤ τm−1 · ρm. (6)

Note that the choice T chosen in Algorithm 3 clearly satisfies the requirement needed (for n = τm−1)
in Lemma 2 when β > 0; and ensures that the second term in ρ(τm−1, δ/2M) (i.e., ε, see Lemma 2
for definition of ρ(τm−1, δ/2M)) is a lower-order term compared to the first term.

We use E to denote the good event where Eq. (5) and Eq. (6) hold true across m = 2, 3, . . . ,M . This
good event happens with probability at least 1− δ

2 . We analyze under E in the following.

We prove Lemma 3 through induction. The statements clearly hold true for m = 1. Suppose the
statements hold true up to epoch m, we next prove the correctness for epoch m+ 1.

We know that ȟ ∈ Hm by assumption. Based on the querying criteria of Algorithm 3, we know that

R̂m+1(ȟ)− R̂m+1(h) = Rm+1(ȟ)−Rm+1(h), ∀h ∈ Hm (7)

From Eq. (6), we also have

Rm+1(ȟ)− min
h∈Hm

Rm+1(h) ≤ Rm+1(ȟ)−min
h∈H

Rm+1(h)

≤ τm · ρm+1.

Combining the above two inequalities shows that

R̂m+1(ȟ)− R̂m+1(h) ≤ τm · ρm+1,

implying that ȟ ∈ Hm+1 (due to the construction ofHm+1 in Algorithm 3).

Based on Eq. (7), the construction Hm+1 and the fact that ȟ ∈ Hm, we know that, for any h ∈
Hm+1 ⊆ Hm,

Rm+1(h)−Rm+1(ȟ) = R̂m+1(h)− R̂m+1(ȟ)

≤ R̂m+1(h)− min
h∈Hm

R̂m+1(h)

≤ τm · ρm+1.

Plugging the above inequality into Eq. (5) (at epoch m+ 1) leads to err(h)− err(h?) ≤ 3ρm+1 for
any h ∈ Hm+1. We thus prove the desired statements at epoch m+ 1.

18

B.2 Proof of Theorem 12

Theorem 12. Fix ε, δ > 0. With probability at least 1− δ, Algorithm 3 returns a classifier ĥ ∈ H
with excess error Õ(ε) after querying

Õ
(
θH(ε

β
1+β) · ε−

2
1+β ·VCdim(H)

)
labels.

Proof. Based on Lemma 3, we know that, with probability at least 1− δ
2 , we have

err(ĥ)− err(h?) ≤ 3ρM

= O

((
VCdim(H) · log(τM−1) · log(M/δ)

τM−1

) 1+β
2+β

)
= Õ(ε),

where we use the definition of T and τM .

We next analyze the label complexity of Algorithm 3. Since Algorithm 3 stops and the beginning at
epoch M , we only need to calculated the label complexity in the first M − 1 epochs. We have

τM−1∑
t=1

Qt =

M−1∑
m=1

(τm − τm−1) · 1(xt ∈ DIS(Hm))

≤
M−1∑
m=1

(τm − τm−1) · 1
(
xt ∈ DIS(BH(h?, c′(3ρm)

β
1+β))

)
,

where on the last line we use the facts (1) err(h)− err(h?) ≤ 3ρm,∀h ∈ Hm from Lemma 3; and
(2) P(x : h(x) 6= h?(x)) ≤ c′(err(h) − err(h?))

β
1+β from Lemma 2 (with the same constant c′).

Suppose err(ȟ) − err(h?) = c′′ε (with another universal constant c′′ by assumption). Applying
Lemma 2 on ȟ leads to the fact that h? ∈ BH(ȟ, c′(c′′ε)

β
1+β). Since P(x : h(x) 6= ȟ(x)) ≤ P(x :

h(x) 6= h?(x)) + P(x : h?(x) 6= ȟ(x)), we further have

τM−1∑
t=1

Qt ≤
M−1∑
m=1

(τm − τm−1) · 1
(
xt ∈ DIS(BH(ȟ, c · ρm

β
1+β))

)
,

with a universal constant c > 0. Noticing that the RHS is a sum of independent Bernoulli random
variables, applying a Bernstein-type bound (e.g., Lemma 5), on a good event E ′ that happens with
probability at least 1− δ

2 , we have

τM−1∑
t=1

Qt ≤ 2

M−1∑
m=1

(τm − τm−1) · P
(
x ∈ DIS(BH(ȟ, c · ρm

β
1+β))

)
+ 4 log(4/δ)

≤ 2

M−1∑
m=2

τm−1 · θH,ȟ
(
c · ρ

β
1+β
m

)
· c · ρ

β
1+β
m + 4 log(4/δ) + 4

≤ 2M · θH,ȟ
(
c · ρ

β
1+β

M

)
·
(
c · τM−1 · ρ

β
1+β

M

)
+ 4 log(4/δ) + 4,

where the second using the definition of disagreement coefficient; and the last line follows from the
fact that ρm is non-increasing and τm−1 · ρm is increasing. Basic algebra and basic properties of the
disagreement coefficient (i.e., Theorem 7.1 and Corollary 7.2 in Hanneke (2014)) shows that

τM−1∑
t=1

Qt ≤ Õ
(
θH(ε

β
1+β) · ε−

2
1+β ·VCdim(H)

)
,

under event E ∩ E ′, which happen with probability at least 1− δ.

19

C Omitted details for Section 2.3

We prove Theorem 6 in Appendix C.1 and discuss the disagreement coefficient in Appendix C.2.

C.1 Proof of Theorem 6

Theorem 6. Suppose DXY ∈ P(α, β). Fix any ε, δ > 0. With probability at least 1− δ, Algorithm 1
returns a classifier ĥ ∈ Hdnn with excess error Õ(ε) after querying Õ(θHdnn

(ε
β

1+β) · ε−
d+2α
α+αβ) labels.

Proof. Construct Hdnn based on Proposition 1 such that minh∈Hdnn
err(h) − err(h?) = O(ε) and

VCdim(Hdnn) = Õ(ε−
d

α(1+β)). Taking suchHdnn into Theorem 12 leads to the desired result.

C.2 Discussion on disagreement coefficient in Theorem 6

We discuss cases when the (classifier-based) disagreement coefficient with respect to a set of neural
networks is well-bounded. As mentioned before, even for simple classifiers such as linear functions,
the disagreement coefficient has been analyzed under additional assumptions (Friedman, 2009;
Hanneke, 2014). In this section, we analyze the disagreement coefficient for a set of neural networks
under additional assumptions on DXY and Hdnn (assumptions on Hdnn can be implemented via
proper preprocessing steps). We leave a more comprehensive investigation of the disagreement
coefficient for future work.

The first case is when DX is supported on countably many data points. The following result show
strict improvement over passive learning.
Definition 3 (Disagreement core). For any hypothesis class H and classifier h, the disagreement
core of h with respect toH under DXY is defined as

∂Hh := lim
r→0

DIS(BH(h, r)). (8)

Proposition 2 (Lemma 7.12 and Theorem 7.14 in Hanneke (2014)). For any hypothesis classH and
classifier h, we have θh(ε) = o(1/ε) if and only if DX (∂Hh) = 0. In particular, this implies that
θH(ε) = o(1/ε) whenever DX is supported on countably many data points.

We now discuss conditions under which we can upper bound the disagreement coefficient by O(1),
which ensures results in Theorem 6 matching the minimax lower bound for active learning, up to
logarithmic factors. We introduce the following decomposable condition.
Definition 4. A marginal distribution DX is ε-decomposable if its (known) support supp(DX) can
be decomposed into connected subsets, i.e., supp(DX) = ∪i∈IXi, such that

DX (∪i∈I′Xi) = O(ε),

where I ′ := {i ∈ I : DX (Xi) ≤ ε}.
Remark 1. Note that Definition 4 permits a decomposition such that |I| = Ω(1

ε) where I = I \ I ′.
Definition 4 requires no knowledge of the index set I or any Xi; it also places no restrictions on the
conditional probability on each Xi.

We first give results for a general hypothesis classH as follows, and then discuss how to bound the
disagreement coefficient for a set of neural networks.
Proposition 3. Suppose DX is decomposable (into ∪i∈IXi) and the hypothesis classH consists of
classifiers whose predication on each Xi is the same, i.e., |{h(x) : x ∈ Xi}| = 1 for any h ∈ H and
i ∈ I. We then have θH(ε) = O(1) for ε sufficiently small.

Proof. Fix any h ∈ H. we know that for any h′ ∈ BH(h, ε), we must have DIS({h, h′}) ⊆ ∪i∈I′Xi
since DX (x ∈ X : h(x) 6= h′(x)) ≤ ε, and |{h(x) : x ∈ Xi}| = 1 for any h ∈ H and any Xi. This
further implies that P(DIS(BH(h, ε)) = O(ε), and thus θH(ε) = O(1).

We next discuss conditions under which we can satisfy the prerequisites of Proposition 3. Suppose
DXY ∈ P(α, β). We assume that DX is (ε

β
1+β)-decomposable, and, for the desired accuracy level ε,

we have
|η(x)− 1/2| ≥ 2ε

1
1+β , ∀x ∈ supp(DX). (9)

20

With the above conditions satisfied, we can filter out neural networks that are clearly not “close” to η.
Specifically, with κ = ε

1
1+β and Fdnn be the set of neural networks constructed from Proposition 1,

we consider

F̃dnn := {f ∈ Fdnn : |f(x)− 1/2| ≥ ε
1

1+β ,∀x ∈ supp(DX)}, (10)

which is guaranteed to contain f ∈ Fdnn such that ‖f − η‖∞ ≤ ε
1

1+β . Now focus on the subset

H̃dnn := {hf : f ∈ F̃dnn}. (11)

We clearly have hf ∈ H̃dnn (which ensures an O(ε)-optimal classifier) and VCdim(H̃dnn) ≤
VCdim(Hdnn) (since H̃dnn ⊆ Hdnn). We upper bound the disagreement coefficient θH̃dnn

(ε
β

1+β)
next.

Proposition 4. Suppose DXY ∈ P(α, β) such that DX is (ε
β

1+β)-decomposable and Eq. (9) is
satisfied (with the desired accuracy level ε). We then have θH̃dnn

(ε
β

1+β) = O(1).

Proof. The proof is similar to the proof of Proposition 3. Fix any h = hf ∈ H̃dnn. We first argue
that, for any i ∈ I, under Eq. (9), |{hf (x) : x ∈ Xi}| = 1, i.e., for x ∈ Xi, hf (x) equals either
1 or 0, but not both: This can be seen from the fact that any f ∈ F̃dnn is continuous and satisfies
|f(x)− 1/2| ≥ ε

1
1+β for any x ∈ Xi.

Fix any h ∈ H̃dnn. We know that for any h′ ∈ HH̃dnn
(h, ε

β
1+β), we must have DIS({h, h′}) ⊆

∪i∈I′Xi due to similar reasons argued in the proof of Proposition 3. This further implies that
P(DIS(BH̃dnn

(h, ε
β

1+β)) = O(ε
β

1+β), and thus θH̃dnn
(ε

β
1+β) = O(1).

We next argue that Eq. (9) is only needed in an approximate sense. We define the approximate
decomposable condition in the following.
Definition 5. A marginal distribution DX is (ε, δ)-decomposable if there exists a known subset
X ⊆ supp(DX) such that

DX (X) ≥ 1− δ, (12)

and it can be decomposed into connected subsets, i.e., X = ∪i∈IXi, such that

DX (∪i∈I′Xi) = O(ε),

where I ′ := {i ∈ I : DX (Xi) ≤ ε}.

Suppose DXY ∈ P(α, β). We assume that DX is (ε
β

1+β , ε
β

1+β)-decomposable (wrt X ⊆ DX), and,
for the desired accuracy level ε, we have

|η(x)− 1/2| ≥ 2ε
1

1+β , ∀x ∈ X . (13)

With the above conditions satisfied, we can filter out neural networks that are clearly not “close” to η.
Specifically, with κ = ε

1
1+β and Fdnn be the set of neural networks constructed from Proposition 1,

we consider

Fdnn := {f ∈ Fdnn : |f(x)− 1/2| ≥ ε
1

1+β ,∀x ∈ X}, (14)

which is guaranteed to contain f ∈ Fdnn such that ‖f − η‖∞ ≤ ε
1

1+β . Now focus on the subset

Hdnn := {hf : f ∈ Fdnn}. (15)

We clearly have hf ∈ Hdnn (which ensures an O(ε)-optimal classifier) and VCdim(Hdnn) ≤
VCdim(Hdnn) (since Hdnn ⊆ Hdnn). We upper bound the disagreement coefficient θHdnn

(ε
β

1+β)
next.
Proposition 5. Suppose DXY ∈ P(α, β) such that DX is (ε

1
1+β , ε)-decomposable (wrt known X ⊆

supp(DX)) and Eq. (13) is satisfied (with the desired accuracy level ε). We then have θHdnn
(ε

β
1+β) =

O(1).

21

Proof. The proof is the same as the proof of Proposition 5 except for any h′ ∈ HHdnn
(h, ε

β
1+β),

we must have DIS({h, h′}) ⊆ (∪i∈I′Xi) ∪ (supp(DX) \ X). Based on the assumption that DX is
(ε

1
1+β , ε)-decomposable, this also leads to θHdnn

(ε
β

1+β) = O(1)

D Generic version of Algorithm 2 and its guarantees

This section is organized as follows. We first introduce some complexity measures in Appendix D.1.
We then provide the generic algorithm (Algorithm 4) and state its theoretical guarantees (Theorem 14)
in Appendix D.2.

D.1 Complexity measures

We first introduce pseudo dimension (Pollard, 1984; Haussler, 1989, 1995), a complexity measure
used to analyze real-valued functions.

Definition 6 (Pseudo dimension). Consider a set of real-valued function F : X → R. The pseudo
dimension Pdim(F) of F is defined as the VC dimension of the set of threshold functions {(x, ζ) 7→
1(f(x) > ζ) : f ∈ F}.

As discussed in Bartlett et al. (2019), similar results as in Theorem 4 holds true for Pdim(F) as well.

Theorem 13 (Bartlett et al. (2019)). Let Fdnn be a set of neural network regression functions of the
same architecture and with W parameters arranged in L layers. We then have

Ω(WL log(W/L)) ≤ Pdim(Fdnn) ≤ O(WL log(W)).

We now introduce value function disagreement coefficient, which is proposed by Foster et al. (2020)
in contextual bandits and then adapted to active learning by Zhu and Nowak (2022) with additional
supreme over the marginal distribution DX to deal with distributional shifts caused by selective
sampling.

Definition 7 (Value function disagreement coefficient). For any f? ∈ F and γ0, ε0 > 0, the value
function disagreement coefficient θval

f? (F , γ0, ε0) is defined as

sup
DX

sup
γ>γ0,ε>ε0

{
γ2

ε2
· PDX

(
∃f ∈ F : |f(x)− f?(x)| > γ, ‖f − f?‖DX ≤ ε

)}
∨ 1,

where ‖f‖2DX := Ex∼DX [f2(x)]. We also define θval
F (γ0) := supf?∈F,ε0>0 θ

val
f? (F , γ0, ε0).

D.2 The generic algorithm and its guarantees

We present Algorithm 4, a generic version of Algorithm 2 that doesn’t require the approximating
classifiers to be neural networks.

22

Algorithm 4 NeuralCAL++ (Generic Version)
Input: Accuracy level ε ∈ (0, 1), confidence level δ ∈ (0, 1), abstention parameter γ ∈ (0, 1/2).

1: Let F : X → [0, 1] be a set of regression functions such that there exists a regression function
f ∈ F with ‖f − η‖∞ ≤ κ ≤ γ/4.

2: Define T :=
θval
F (γ/4)·Pdim(F)

ε γ , M := dlog2 T e, and Cδ := O(Pdim(F) · log(T/δ)).
3: Define τm := 2m for m ≥ 1, τ0 := 0, and βm := 3(M −m+ 1)Cδ .
4: Define R̂m(f) :=

∑τm−1

t=1 Qt(f̂(xt)− yt)2 with the convention that
∑0
t=1 . . . = 0.

5: for epoch m = 1, 2, . . . ,M do
6: Get f̂m := arg minf∈F

∑τm−1

t=1 Qt(f(xt)− yt)2.

7: (Implicitely) Construct active set Fm :=
{
f ∈ F : R̂m(f) ≤ R̂m(f̂m) + βm

}
.

8: Construct classifier ĥm : X → {+1,−1,⊥} as

ĥm(x) :=

{
⊥, if [lcb(x;Fm)− γ

4 , ucb(x;Fm) + γ
4] ⊆

[
1
2 − γ,

1
2 + γ

]
;

sign(2f̂m(x)− 1), o.w.

and query function gm(x) := 1
(

1
2 ∈

(
lcb(x;Fm)− γ

4 , ucb(x;Fm) + γ
4

))
· 1(ĥm(x) 6= ⊥).

9: if epoch m = M then
10: Return classifier ĥM .
11: for time t = τm−1 + 1, . . . , τm do
12: Observe xt ∼ DX . Set Qt := gm(xt).
13: if Qt = 1 then
14: Query the label yt of xt.

We next state the theoretical guarantees for Algorithm 4.

Theorem 14. Suppose θval
F (γ/4) ≤ θ and the approximation level κ ∈ (0, γ/4] satisfies(

432θ ·M2

γ2

)
· κ2 ≤ 1

10
. (16)

With probability at least 1− δ, Algorithm 4 returns a classifier ĥ : X → {+1,−1,⊥} with Chow’s
excess error

excessγ(ĥ) = O

(
ε · log

(
θ · Pdim(F)

ε γ δ

))
,

after querying at most

O

(
M2 · Pdim(F) · log(T/δ) · θ

γ2

)
labels.

Theorem 14 is proved in Appendix D.3, based on supporting lemmas and theorems established in
Appendix D.2.1 and Appendix D.2.2. The general result (Theorem 14) will be used to prove results
in specific settings (e.g., Theorem 7 and Theorem 18).

D.2.1 Concentration results

The Freedman’s inequality is commonly used in the field of active learning and contextual bandits,
e.g., (Freedman, 1975; Agarwal et al., 2014; Krishnamurthy et al., 2019; Foster et al., 2020). We thus
state the result without proof.
Lemma 4 (Freedman’s inequality). Let (Xt)t≤T be a real-valued martingale difference sequence
adapted to a filtration Ft, and let Et[·] := E[· | Ft−1]. If |Xt| ≤ B almost surely, then for any
η ∈ (0, 1/B) it holds with probability at least 1− δ,

T∑
t=1

Xt ≤ η
T∑
t=1

Et[X2
t] +

log δ−1

η
.

23

Lemma 5. Let (Xt)t≤T to be real-valued sequence of random variables adapted to a filtration Ft.
If |Xt| ≤ B almost surely, then with probability at least 1− δ,

T∑
t=1

Xt ≤
3

2

T∑
t=1

Et[Xt] + 4B log(2δ−1),

and
T∑
t=1

Et[Xt] ≤ 2

T∑
t=1

Xt + 8B log(2δ−1).

Proof. This is a direct consequence of Lemma 4.

We now define/recall some notations. Denote nm := τm − τm−1. Fix any epoch m ∈ [M]
and any time step t within epoch m. We have f? = η. For any f ∈ F , we denote Mt(f) :=

Qt((f(xt)− yt)2 − (f?(xt)− yt)2), and R̂m(f) :=
∑τm−1

t=1 Qt(f(xt)− yt)2. Recall that we have
Qt = gm(xt). We define filtration Ft := σ((x1, y1), . . . , (xt, yt)),9 and denote Et[·] := E[· | Ft−1].
We next present concentration results with respect to a general set of regression function F with finite
pseudo dimension.

Lemma 6 (Krishnamurthy et al. (2019)). Consider an infinite set of regression function F . Fix any
δ ∈ (0, 1). For any τ, τ ′ ∈ [T] such that τ < τ ′, with probability at least 1− δ

2 , we have

τ ′∑
t=τ

Mt(f) ≤
τ ′∑
t=τ

3

2
Et[Mt(f)] + Cδ,

and

τ ′∑
t=τ

Et[Mt(f)] ≤ 2

τ ′∑
t=τ

Mt(f) + Cδ,

where Cδ = C ·
(

Pdim(F) · log T + log
(

Pdim(F)·T
δ

))
with a universal constant C > 0.

D.2.2 Supporting lemmas for Theorem 14

Fix any classifier ĥ : X → {+1,−1,⊥}. For any x ∈ X , we use the notion

excessγ(ĥ;x) :=

Py|x
(
y 6= sign(ĥ(x))

)
· 1
(
ĥ(x) 6= ⊥

)
+
(
1/2− γ

)
· 1
(
ĥ(x) = ⊥

)
− Py|x

(
y 6= sign(h?(x))

)
= 1

(
ĥ(x) 6= ⊥

)
·
(
Py|x

(
y 6= sign(ĥ(x))

)
− Py|x

(
y 6= sign(h?(x))

))
+ 1

(
ĥ(x) = ⊥

)
·
((

1/2− γ
)
− Py|x

(
y 6= sign(h?(x))

))
(17)

to represent the excess error of ĥ at point x ∈ X . Excess error of classifier ĥ can be then written as
excessγ(ĥ) := errγ(ĥ)− err(h?) = Ex∼DX [excessγ(ĥ;x)].

We let E denote the good event considered in Lemma 6, we analyze under this event through out the
rest of this section. Most lemmas presented in this section are inspired by results provided Zhu and
Nowak (2022). Our main innovation is an inductive analysis of lemmas that eventually relaxes the
requirements for approximation error for Theorem 14.

General lemmas. We introduce some general lemmas for Theorem 14.

Lemma 7. For any m ∈ [M], we have gm(x) = 1 =⇒ w(x;Fm) > γ
2 .

9yt is not observed (and thus not included in the filtration) when Qt = 0. Note that Qt is measurable with
respect to σ((Ft−1, xt)).

24

Proof. We only need to show that ucb(x;Fm) − lcb(x;Fm) ≤ γ
2 =⇒ gm(x) = 0. Suppose

otherwise gm(x) = 1, which implies that both

1

2
∈
(
lcb(x;Fm)− γ

4
, ucb(x;Fm) +

γ

4

)
and[

lcb(x;Fm)− γ

4
, ucb(x;Fm) +

γ

4

]
*
[

1

2
− γ, 1

2
+ γ

]
. (18)

If 1
2 ∈

(
lcb(x;Fm)− γ

4 , ucb(x;Fm) + γ
4

)
and ucb(x;Fm) − lcb(x;Fm) ≤ γ

2 , we must have
lcb(x;Fm) ≥ 1

2 −
3
4γ and ucb(x;Fm) ≤ 1

2 + 3
4γ, which contradicts with Eq. (18).

Lemma 8. Fix any m ∈ [M]. Suppose f ∈ Fm, we have excessγ(ĥm;x) ≤ 0 if gm(x) = 0.

Proof. Recall that

excessγ(ĥ;x) = 1
(
ĥ(x) 6= ⊥

)
·
(
Py|x

(
y 6= sign(ĥ(x))

)
− Py|x

(
y 6= sign(h?(x))

))
+ 1

(
ĥ(x) = ⊥

)
·
((

1/2− γ
)
− Py|x

(
y 6= sign(h?(x))

))
.

We now analyze the event {gm(x) = 0} in two cases.

Case 1: ĥm(x) = ⊥.

Since f(x) ∈ [lcb(x;Fm), ucb(x;Fm)] and κ ≤ γ
4 by assumption, we know that η(x) = f?(x) ∈

[1
2 − γ,

1
2 + γ] and thus Py

(
y 6= sign(h?(x))

)
≥ 1

2 − γ. As a result, we have excessγ(ĥm;x) ≤ 0.

Case 2: ĥm(x) 6= ⊥ but 1
2 /∈ (lcb(x;Fm)− γ

4 , ucb(x;Fm) + γ
4).

Since f(x) ∈ [lcb(x;Fm), ucb(x;Fm)] and κ ≤ γ
4 by assumption, we clearly have sign(ĥm(x)) =

sign(h?(x)) when 1
2 /∈ (lcb(x;Fm)− γ

4 , ucb(x;Fm) + γ
4). We thus have excessγ(ĥm;x) ≤ 0.

Inductive lemmas. We prove a set of statements for Theorem 14 in an inductive way. Fix any
epoch m ∈ [M], we consider

R̂m(f)− R̂m(f?) ≤ Et
[
Qt
(
f(xt)− f?(xt)

)2]
+ Cδ ≤

3

2
Cδ

f ∈ Fm
τm−1∑
t=1

Et[Mt(f)] ≤ 4βm,∀f ∈ Fm

τm−1∑
t=1

E[Qt(xt)(f(xt)− f(xt))
2] ≤ 9βm,∀f ∈ Fm

Fm ⊆ Fm−1

, (19)

Ex∼DX [1(gm(x) = 1)] ≤ 144βm
τm−1 γ2

· θval
f

(
F , γ/4,

√
βm/τm−1

)
≤ 144βm
τm−1 γ2

· θ, (20)

and

Ex∼DX [1(gm(x) = 1) · w(x;Fm)] ≤ 72βm
τm−1γ

· θval
f

(
F , γ/4,

√
βm/τm−1

)
≤ 72βm
τm−1γ

· θ. (21)

Lemma 9. Fix any m = [M]. When m = 1, 2 or when Eq. (20) holds true for epochs m =
2, 3, . . . ,m− 1, then Eq. (19) holds true for epoch m = m.

Proof. The statements in Eq. (19) clearly hold true for m = m = 1 since, by definition, F0 = F and∑0
t=1 . . . = 0. We thus only need to consider the case when m ≥ 2. We next prove each of the five

statements in Eq. (19) for epoch m = m.

25

1. In the case when m = 2, from Lemma 6, we know that

R̂m(f)− R̂m(f?) ≤
τm−1∑
t=1

3

2
· Et
[
Qt
(
f(xt)− f?(xt)

)2]
+ Cδ

≤ 3 + Cδ ≤
3

2
Cδ,

where the second line follows from the fact that τ1 = 2 (without loss of generality, we assume
Cδ ≥ 6 here).

We now focus on the case when m ≥ 3. We have

R̂m(f)− R̂m(f?) ≤
τm−1∑
t=1

3

2
· Et
[
Qt
(
f(xt)− f?(xt)

)2]
+ Cδ

≤ 3

2

m−1∑
m̌=1

nm̌Ex∼DX [1(gm̌(x) = 1)] · κ2 + Cδ

≤ 3

2

(
2 +

m−1∑
m̌=2

nm̌
144βm̌ · θ
τm̌−1γ2

)
· κ2 + Cδ

≤

(
3 +

144θ

γ2
·

(
m−1∑
m̌=2

βm̌

))
· κ2 + Cδ

≤
(

3 +
432θ ·M2

γ2
· Cδ

)
· κ2 + Cδ

≤ 3

2
Cδ,

where the first line follows from Lemma 6; the second line follows from the fact that ‖f−f?‖∞ ≤
κ; the third line follows from Eq. (20); the forth line follows from nm̌ = τm̌−1; the fifth line
follows from the definition of βm̌; and the last line follows from the choice of κ in Eq. (16)

2. Since Et[Mt(f)] = Et[Qt(f(xt)− f?(xt))2], by Lemma 6, we have R̂m(f?) ≤ R̂m(f) +Cδ/2
for any f ∈ F . Combining this with statement 1 leads to

R̂m(f) ≤ R̂m(f) + 2Cδ

≤ R̂m(f) + βm

for any f ∈ F , where the second line follows from the definition of βm. We thus have f ∈ Fm
based on the elimination rule.

3. Fix any f ∈ Fm. We have

τm−1∑
t=1

Et[Mt(f)] ≤ 2

τm−1∑
t=1

Mt(f) + Cδ

= 2R̂m(f)− 2R̂m(f?) + Cδ

≤ 2R̂m(f)− 2R̂m(f) + 4Cδ

≤ 2R̂m(f)− 2R̂m(f̂m) + 4Cδ
≤ 2βm + 4Cδ
≤ 4βm,

where the first line follows from Lemma 6; the third line follows from statement 1; the fourth line
follows from the fact that f̂m is the minimizer of R̂m(·); and the fifth line follows from the fact
that f ∈ Fm.

26

4. Fix any f ∈ Fm. We have
τm−1∑
t=1

Et[Qt(xt)(f(xt)− f(xt))
2] =

τm−1∑
t=1

Et[Qt(xt)((f(xt)− f?(xt)) + (f?(xt)− f(xt)))
2]

≤ 2

τm−1∑
t=1

Et[Qt(xt)(f(xt)− f?(xt))2] + 2Cδ

= 2

τm−1∑
t=1

Et[Mt(f)] + 2Cδ

≤ 8βm + 2Cδ
≤ 9βm,

where the second line follows from (a+ b)2 ≤ 2(a2 + b2) and (the proof of) statement 1 on the
second line; and the fourth line follows from statement 3.

5. Fix any f ∈ Fm. We have

R̂m−1(f)− R̂m−1(f̂m−1) ≤ R̂m−1(f)− R̂m−1(f?) +
Cδ
2

= R̂m(f)− R̂m(f?)−
τm−1∑

t=τm−2+1

Mt(f) +
Cδ
2

≤ R̂m(f)− R̂m(f) +
3

2
Cδ −

τm−1∑
t=τm−2+1

Et[Mt(f)]/2 + Cδ

≤ R̂m(f)− R̂m(f̂m) +
5

2
Cδ

≤ βm + 3Cδ
≤ βm−1,

where the first line follows from Lemma 6; the third line follows from statement 1 and Lemma 6;
the fourth line follows from the fact that f̂m is the minimizer with respect to R̂m and Lemma 6;
the last line follows from the construction of βm.

We introduce more notations. Denote (X ,Σ,DX) as the (marginal) probability space, and denote
Xm := {x ∈ X : gm(x) = 1} ∈ Σ be the region where query is requested within epoch m. Under
the prerequisites of Lemma 10 and Lemma 11 (i.e., Eq. (19) holds true for epochs m = 1, 2, . . . ,m),
we have Fm ⊆ Fm−1 for m = 1, 2, . . . ,m, which leads to Xm ⊆ Xm−1 for m = 1, 2, . . . ,m. We
now define a sub probability measure µm := (DX)|Xm such that µm(ω) = DX (ω ∩ Xm) for any
ω ∈ Σ. Fix any epoch m ≤ m and consider any measurable function F (that is DX integrable), we
have

Ex∼DX [1(gm(x) = 1) · F (x)] =

∫
x∈Xm

F (x) dDX (x)

≤
∫
x∈Xm

F (x) dDX (x)

=

∫
x∈X

F (x) dµm(x)

=: Ex∼µm [F (x)], (22)

where, by a slightly abuse of notations, we use Ex∼µ[·] to denote the integration with any sub
probability measure µ. In particular, Eq. (22) holds with equality when m = m.
Lemma 10. Fix any epoch m ≥ 2. Suppose Eq. (19) holds true for epochs m = 1, 2, . . . ,m, we
then have Eq. (20) holds true for epoch m = m.

27

Proof. We prove Eq. (20) for epoch m = m. We know that 1(gm(x) = 1) = 1(gm(x) =
1) · 1(w(x;Fm) > γ/2) from Lemma 7. Thus, for any m̌ ≤ m, we have

Ex∼DX [1(gm(x) = 1)] = Ex∼DX [1(gm(x) = 1) · 1(w(x;Fm) > γ/2)]

≤ Ex∼µm̌ [1(w(x;Fm) > γ/2)]

≤ Ex∼µm̌
(
1
(

sup
f∈Fm

∣∣f(x)− f(x)
∣∣ > γ/4

))
, (23)

where the second line uses Eq. (22) and the last line follows from the facts that f ∈ Fm (by Eq. (19))
and w(x;Fm) > γ/2 =⇒ ∃f ∈ Fm, |f(x)− f(x)| > γ/4.

For any time step t, let m(t) denote the epoch where t belongs to. From Eq. (19), we know that,
∀f ∈ Fm,

9βm ≥
τm−1∑
t=1

Et
[
Qt
(
f(xt)− f(xt)

)2]
=

τm−1∑
t=1

Ex∼DX
[
1(gm(t)(x) = 1) ·

(
f(x)− f(x)

)2]
=

m−1∑
m̌=1

nm̌ · Ex∼µm̌
[(
f(x)− f(x)

)2]
= τm−1Ex∼νm

[(
f(x)− f(x)

)2]
, (24)

where we use Qt = gm(t)(xt) = 1(gm(t)(x) = 1) and Eq. (22) on the second line, and define a new
sub probability measure

νm :=
1

τm−1

m−1∑
m̌=1

nm̌ · µm̌

on the third line.

Plugging Eq. (24) into Eq. (23) leads to the bound

Ex∼DX [1(gm(x) = 1)]

≤ Ex∼νm
[
1

(
∃f ∈ F ,

∣∣f(x)− f(x)
∣∣ > γ/4,Ex∼νm

[(
f(x)− f(x)

)2] ≤ 9βm
τm−1

)]
,

where we use the definition of νm again (note that Eq. (23) works with any m̌ ≤ m). Based on the
Definition 7,10 we then have

Ex∼DX [1(gm(x) = 1)]

≤ 144βm
τm−1 γ2

· θval
f

(
F , γ/4,

√
9βm/2τm−1

)
≤ 144βm
τm−1 γ2

· θval
f

(
F , γ/4,

√
βm/τm−1

)
≤ 144βm
τm−1 γ2

· θ.

Lemma 11. Fix any epoch m ≥ 2. Suppose Eq. (19) holds true for epochs m = 1, 2, . . . ,m, we
then have Eq. (21) holds true for epoch m = m.

Proof. We prove Eq. (21) for epoch m = m. Similar to the proof of Lemma 10, we have

Ex∼DX [1(gm(x) = 1) · w(x;Fm)] = Ex∼DX [1(gm(x) = 1) · 1(w(x;Fm) > γ/2) · w(x;Fm)]

≤ Ex∼µm̌ [1(w(x;Fm) > γ/2) · w(x;Fm)]

10Note that analyzing with a sub probability measure ν does not cause any problem. See Zhu and Nowak
(2022) for detailed discussion.

28

for any m̌ ≤ m. With νm := 1
τm−1

∑m−1
m̌=1 nm̌ · µm̌, we then have

Ex∼DX [1(gm(x) = 1) · w(x;Fm)]

≤ Ex∼νm [1(w(x;Fm) > γ/2) · w(x;Fm)]

≤ Ex∼νm

[
1

(
sup
f∈Fm

∣∣f(x)− f(x)
∣∣ > γ/4

)
·

(
sup

f,f ′∈Fm
|f(x)− f ′(x)|

)]

≤ 2Ex∼νm

[
1

(
sup
f∈Fm

∣∣f(x)− f(x)
∣∣ > γ/4

)
·

(
sup
f∈Fm

|f(x)− f(x)|

)]

≤ 2

∫ 1

γ/4

Ex∼νm

[
1

(
sup
f∈Fm

∣∣f(x)− f(x)
∣∣ ≥ ω)] dω

≤ 2

∫ 1

γ/4

1

ω2
dω ·

(
9βm
τm−1

· θval
f

(
F , γ/4,

√
9βm/2τm−1

))
≤ 72βm
τm−1 γ

· θval
f

(
F , γ/4,

√
βm/τm−1

)
≤ 72βm
τm−1 γ

· θ,

where we follow similar steps as in the proof of Lemma 10 and use some basic arithmetic facts.

Lemma 12. Eq. (19), Eq. (20) and Eq. (21) hold true for all m ∈ [M].

Proof. We first notice that, by Lemma 9, Eq. (19) holds true for epochsm = 1, 2 unconditionally. We
also know that, by Lemma 10 and Lemma 11, once Eq. (19) holds true for epochs m = 1, 2, . . . ,m,
Eq. (20) and Eq. (21) hold true for epochs m = m as well; at the same time, by Lemma 9, once
Eq. (20) holds true for epochs m = 2, 3, . . . ,m, Eq. (19) will hold true for epoch m = m+ 1.

We thus can start the induction procedure from m = 2, and make sure that Eq. (19), Eq. (20) and
Eq. (21) hold true for all m ∈ [M].

D.3 Proof of Theorem 14

Theorem 14. Suppose θval
F (γ/4) ≤ θ and the approximation level κ ∈ (0, γ/4] satisfies(

432θ ·M2

γ2

)
· κ2 ≤ 1

10
. (16)

With probability at least 1− δ, Algorithm 4 returns a classifier ĥ : X → {+1,−1,⊥} with Chow’s
excess error

excessγ(ĥ) = O

(
ε · log

(
θ · Pdim(F)

ε γ δ

))
,

after querying at most

O

(
M2 · Pdim(F) · log(T/δ) · θ

γ2

)
labels.

Proof. We analyze under the good event E defined in Lemma 6, which holds with probability at least
1− δ

2 . Note that all supporting lemmas stated in Appendix D.2.2 hold true under this event.

Fix any m ∈ [M]. We analyze the Chow’s excess error of ĥm, which is measurable with respect to
Fτm−1 . For any x ∈ X , if gm(x) = 0, Lemma 8 implies that excessγ(ĥm;x) ≤ 0. If gm(x) = 1, we
know that ĥm(x) 6= ⊥ and 1

2 ∈ (lcb(x;Fm)− γ
4 , ucb(x;Fm) + γ

4). Since f ∈ Fm by Lemma 12

29

(with Eq. (19)) and supx∈X |f(x)− f?(x)| ≤ κ ≤ γ/4 by construction. The error incurred in this
case is upper bounded by

excess(ĥm;x) ≤ 2|f?(x)− 1/2|
≤ 2κ+ 2|f(x)− 1/2|

≤ 2κ+ 2w(x;Fm) +
γ

2
≤ 4w(x;Fm),

where we use Lemma 7 in the last line.

Combining these two cases together, we have

excess(ĥm) ≤ 4Ex∼DX [1(gm(x) = 1) · w(x;Fm)].

Take m = M and apply Lemma 12 (and Eq. (21)) leads to the following guarantee.

excess(ĥM) ≤ 576βM
τM−1γ

· θval
f

(
F , γ/4,

√
βM/τM−1

)
≤ O

(
Pdim(F) log(T/δ)

T γ
· θ
)

= O

(
ε · log

(
θ · Pdim(F)

ε γ δ

))
,

where we use the fact that T = θ·Pdim(F)
ε γ .

We now analyze the label complexity (note that the sampling process of Algorithm 4 stops at time
t = τM−1). Note that E[1(Qt = 1) | Ft−1] = Ex∼DX [1(gm(x) = 1)] for any epoch m ≥ 2 and
time step t within epoch m. Combine Lemma 12 with Eq. (20) (and Lemma 12) leads to

τM−1∑
t=1

1(Qt = 1) ≤ 3

2

τM−1∑
t=1

E[1(Qt = 1) | Ft−1] + 4 log(2/δ)

≤ 3 +
3

2

M−1∑
m=2

(τm − τm−1) · 144βm
τm−1 γ2

· θ + 4 log(2/δ)

≤ 3 + 4 log(2/δ) +O

(
M2 · Pdim(F) · log(T/δ) · θ

γ2

)
= O

(
M2 · Pdim(F) · log(T/δ) · θ

γ2

)
with probability at least 1− δ (due to another application of Lemma 5 with confidence level δ/2);
where we use the fact that T = θ·Pdim(F)

ε γ .

E Proof of Theorem 7

We provide prerequisites in Appendix E.1 and the preprocessing procedures in Appendix E.2. We
give the proof of Theorem 7 in Appendix E.3.

E.1 Prerequisites

E.1.1 Upper bound on the pseudo dimension

We present a result regarding the approximation and an upper bound on the pseudo dimension (i.e.,
Definition 6).
Proposition 6. Suppose DXY ∈ P(α, β). One can construct a set of neural network regression
functions Fdnn such that the following two properties hold simultaneously:

∃f ∈ Fdnn s.t. ‖f − f?‖∞ ≤ κ, and Pdim(Fdnn) ≤ c · κ−
d
α log2(κ−1),

where c > 0 is a universal constant.

Proof. The result follows by combining Theorem 3 and Theorem 13.

30

E.1.2 Upper bounds on the value function disagreement coefficient

We derive upper bounds on the value function disagreement coefficient (i.e., Definition 7). We first
introduce the (value function) eluder dimension, a complexity measure that is closely related to the
value function disagreement coefficient Russo and Van Roy (2013); Foster et al. (2020).

Definition 8 (Value function eluder dimension). For any f? ∈ F and γ0 > 0, let ěf?(F , γ) be the
length of the longest sequence of data points x1, . . . , xm such that for all i, there exists f i ∈ F such
that

|f i(xi)− f?(xi)| > γ, and
∑
j<i

(f i(xj)− f?(xj))2 ≤ γ2.

The value function eluder dimension is defined as ef?(F , γ0) := supγ>γ0
ěf?(F , γ).

The next result shows that the value function disagreement coefficient can be upper bounded by
eluder dimension.

Proposition 7 (Foster et al. (2020)). Suppose F is a uniform Glivenko-Cantelli class. For any
f? : X → [0, 1] and γ, ε > 0, we have θval

f? (F , γ, ε) ≤ 4 ef?(F , γ).

We remark here that the requirement that F is a uniform Glivenko-Cantelli class is rather weak: It is
satisfied as long as F has finite pseudo dimension (Anthony, 2002).

In the following, we only need to derive upper bounds on the value function eluder dimension, which
upper bounds on the value function disagreement coefficient.11 We first define two definitions: (i)
the standard definition of covering number (e.g., see Wainwright (2019)), and (ii) a newly-proposed
definition of approximate Lipschitzness.

Definition 9. An ι-covering of a set X with respect to a metric ρ is a set {x1, . . . , xN} ⊆ X such
that for each x ∈ X , there exists some i ∈ [N] such that ρ(x, xi) ≤ ι. The ι-covering number
N (ι;X , ρ) is the cardinality of the smallest ι-cover.

Definition 10. We call a function f : X → R (L, κ)-approximate Lipschitz if

|f(x)− f(x′)| ≤ L · ‖x− x′‖2 + κ

for any x, x′ ∈ X .

We next provide upper bounds on value function eluder dimension and value function disagreement
coefficient.

Theorem 15. Suppose F is a set of (L, κ/4)-approximate Lipschitz functions. For any κ′ ≥ κ, we
have supf∈F ef (F , κ′) ≤ 17 · N (κ

′

8L ;X , ‖·‖2).

Proof. Fix any f ∈ F and κ ≥ κ′. We first give upper bounds on ěf (F , κ).

We construct G := F − f , which is a set of (2L, κ/2)-Lipschitz functions. Fix any eluder sequence
x1, . . . , xm at scale κ and any x̌ ∈ X . We claim that |{xj}j≤m ∩ S| ≤ 17 where S := {x ∈ X :

‖x − x̌‖2 ≤ κ
8L}. Suppose {xj}j≤m ∩ S = xj1 , . . . , xjk (ji is ordered based on the ordering of

{xj}j≤m). Since xjk is added into the eluder sequence, there must exists a gjk ∈ G such that

|gjk(xjk)| > κ, and
∑
j<jk

(gjk(xj))2 ≤ κ2. (25)

Since gjk is (2L, κ/2)-Lipschitz, κ ≥ κ′ ≥ κ and xjk ∈ S , we must have gjk(x) ≥ κ
4 for any x ∈ S .

As a result, we must have |{xj}j<jk ∩Si| ≤ 16 as otherwise the second constraint in Eq. (25) will be
violated. We cover the space X with N (κ

8L ;X , ‖·‖2) balls of radius κ
8L . Since the eluder sequence

contains at most 17 data points within each ball, we know that ěf (F , κ) ≤ 17 · N (κ
8L ;X , ‖·‖2).

The desired result follows by noticing that 17 · N (κ
8L ;X , ‖·‖2) is non-increasing in κ.

11We focus on Euclidean geometry on X (i.e., using ‖·‖2 norm) in deriving the upper bound. Slightly tighter
bounds might be possible with other norms.

31

Corollary 1. Suppose X ⊆ Bdr := {x ∈ Rd : ‖x‖2 ≤ r} and F is a set of (L, κ/4)-approximate
Lipschitz functions. For any κ′ ≥ κ, we have θval

F (κ′) := supf∈F,ι>0 θ
val
f (F , κ′, ι) ≤ c · (Lrκ′)

d with
a universal constant c > 0.

Proof. It is well-known that N (ι;Bdr , ‖·‖2) ≤ (1 + 2r/ι)
d (Wainwright, 2019). The desired result

thus follows from combining Theorem 15 with Proposition 7.

E.2 The preprocessing step: Clipping and filtering

Let η : X → [0, 1] denote the true conditional probability and Fdnn denote a set of neural network
regression functions (e.g., constructed based on Theorem 3). We assume that (i) η is L-Lipschitz, and
(ii) there exists a f ∈ F such that ‖f − η‖∞ ≤ κ for some approximation factor κ > 0. We present
the preprocessing step below in Algorithm 5.

Algorithm 5 The Preprocessing Step: Clipping and Filtering
Input: A set of regression functions F , Lipschitz parameter L > 0, approximation factor κ > 0.

1: Clipping. Set F̌ := {f̌ : f ∈ F}, where, for any f ∈ F , we denote

f̌(x) :=


1, if f(x) ≥ 1;

0, if f(x) ≤ 0;

f(x), o.w.

2: Filtering. Set F̃ := {f̌ ∈ F̌ : f̌ is (L, 2κ)-approximate Lipschitz}
3: Return F̃ .

Proposition 8. Suppose η is L-Lipschitz and Fdnn is a set of neural networks (of the same ar-
chitecture) with W parameters arranged in L layers such that there exists a f ∈ Fdnn with
‖f − η‖∞ ≤ κ. Let F̃dnn be the set of functions obtained by applying Algorithm 5 on Fdnn, we then
have (i) Pdim(F̃dnn) = O(WL log(W)), and (ii) there exists a f̃ ∈ F̃dnn such that ‖f̃ − η‖∞ ≤ κ.

Proof. Suppose f is a neural network function, we first notice that the “clipping” step can be imple-
mented by adding one additional layer with O(1) additional parameters for each neural network func-
tion. More specifically, fix any f : X → R, we can set f̌(x) := ReLU(f(x))−ReLU(f(x)− 1). Set
F̌dnn := {f̌ : f ∈ Fdnn}, we then have Pdim(F̌dnn) = O(WL log(W)) based on Theorem 13. Let
F̃dnn be the filtered version of F̌dnn. Since F̃dnn ⊆ F̌dnn, we have Pdim(F̃dnn) = O(WL log(W)).

Since η : X → [0, 1], we have ‖f̌ − η‖∞ ≤ ‖f − η‖∞, which implies that there must exists a
f̌ ∈ F̌dnn such ‖f̌ − η‖∞ ≤ κ. To prove the second statement, it suffices to show that the f̌ ∈ F̌ that
achieves κ approximation error is not removed in the “filtering” step, i.e., f̌ is (L, 2κ)-approximate
Lipschitz. For any x, x′ ∈ X , we have

|f̌(x)− f̌(x′)| = |f̌(x)− η(x) + η(x)− η(x′) + η(x′)− f̌(x′)|
≤ L‖x− x′‖2 + 2κ,

where we use the L-Lipschitzness of η and the fact that ‖f̌ − η‖∞ ≤ κ.

Proposition 9. Suppose η is L-Lipschitz and X ⊆ Bdr . Fix any κ ∈ (0, γ/32]. There exists a set of
neural network regression functions Fdnn such that the followings hold simultaneously.

1. Pdim(Fdnn) ≤ c · κ−
d
α log2(κ−1) with a universal constant c > 0.

2. There exists a f ∈ Fdnn such that ‖f − η‖∞ ≤ κ.

3. θval
Fdnn

(γ/4) := supf∈Fdnn,ι>0 θ
val
f (Fdnn, γ/4, ι) ≤ c′ · (Lrγ)d with a universal constant c′ > 0.

Proof. Let Fdnn be obtained by (i) invoking Theorem 3 with approximation level κ, and (ii) invoking
Algorithm 5 on the set of functions obtained in step (i). The first two statements follow from

32

Proposition 8, and the third statement follows from Corollary 1 (note that to achieve guarantees for
disagreement coefficient at level γ/4, we need to have κ ≤ γ/32 when invoking Theorem 3).

E.3 Proof of Theorem 7

Theorem 7. Fix any ε, δ, γ > 0. With probability at least 1− δ, Algorithm 2 (with an appropriate
initialization at line 1) returns a classifier ĥ with Chow’s excess error Õ(ε) after querying poly(1

γ) ·
polylog(1

ε δ) labels.

Proof. Let line 1 of Algorithm 2 be the set of neural networksFdnn generated from Proposition 9 with
approximation level κ ∈ (0, γ/32] (and constants c, c′ specified therein). To apply results derived in
Theorem 14, we need to satisfying Eq. (16), i.e., specifying an approximation level κ ∈ (0, γ/32]
such that the following holds true

1

κ2
≥

4320 · c′ · (Lrγ)d ·
(⌈

log2

(
c′·(Lrγ)d·c·(κ−

d
α log2(κ−1))

ε γ

)⌉)2

γ2

For the setting we considered, i.e., X = [0, 1]d and η ∈ Wα,∞
1 (X), we have r =

√
d = O(1) and

L ≤
√
d = O(1) (e.g., see Theorem 4.1 in Heinonen (2005)).12 We thus only need to select a

κ ∈ (0, γ/32] such that

1

κ
≥ c ·

(
1

γ

) d
2 +1

·
(

log
1

ε γ
+ log

1

κ

)
,

with a universal constant c > 0 (that is possibly d-dependent and α-dependent). Since x ≥
2a log a =⇒ x ≥ a log x for any a > 0, we can select a κ > 0 such that

1

κ
= č ·

(
1

γ

) d
2 +1

· log
1

ε γ

with a universal constant č > 0. With such choice of κ, from Proposition 9, we have

Pdim(Fdnn) = O

(1

γ

) d2+d
2α

· polylog

(
1

ε γ

).
Plugging this bound on Pdim(Fdnn) and the upper bound on θval

Fdnn
(γ/4) from Proposition 9 into the

guarantee of Theorem 14 leads to excessγ(ĥ) = O(ε · log(1
ε γ δ)) after querying

O

(1

γ

)d+2+ d2+d
2α

· polylog

(
1

ε γ δ

)
labels.

F Other omitted details for Section 3

We discuss the proper abstention property of classifier learned in Algorithm 2 the computational
efficiency of Algorithm 2 in Appendix F.1. We provide the proof of Theorem 8 in Appendix F.2.

F.1 Proper abstention and computational efficiency

F.1.1 Proper abstention

We first recall the definition of proper abstention proposed in Zhu and Nowak (2022).

12Recall that we ignore constants that can be potentially α-dependent and d-dependent.

33

Definition 11 (Proper abstention). A classifier ĥ : X → Y ∪ {⊥} enjoys proper abstention if and
only if it abstains in regions where abstention is indeed the optimal choice, i.e.,

{
x ∈ X : ĥ(x) =

⊥
}
⊆
{
x ∈ X : η(x) ∈

[
1
2 − γ,

1
2 + γ

]}
=: Xγ .

We next show that the classifier ĥ returned by Algorithm 4 enjoys the proper abstention property. We
also convert the abstaining classifier ĥ : X → Y ∪ {⊥} into a standard classifier ȟ : X → Y and
quantify its standard excess error. The conversion is through randomizing the prediction of ĥ over its
abstention region, i.e., if ĥ(x) = ⊥, then its randomized version ȟ(x) predicts +1/− 1 with equal
probability (Puchkin and Zhivotovskiy, 2021).

Proposition 10. The classifier ĥ returned by Algorithm 4 enjoys proper abstention. With ran-
domization over the abstention region, we have the following upper bound on its standard excess
error

err(ȟ)− err(h?) = errγ(ĥ)− err(h?) + γ · Px∼DX (x ∈ Xγ). (26)

Proof. The proper abstention property of ĥ returned by Algorithm 4 is achieved via conservation: ĥ
will avoid abstention unless it is absolutely sure that abstention is the optimal choice (also see the
proof of Lemma 8.

Let ȟ : X → Y be the randomized version of h : X → {+1,−1,⊥} (over the abstention region
{x ∈ X : ĥ(x) = ⊥} ⊆ Xγ). We can see that, compared to the Chow’s abstention error 1/2− γ, the
additional error incurred over the abstention region is exactly γ · Px∼DX (x ∈ Xγ). We thus have

err(ĥ)− err(h?) ≤ errγ(ĥ)− err(h?) + γ · Px∼DX (x ∈ Xγ).

To characterize the standard excess error of classifier with proper abstention, we only need to upper
bound the term Px∼DX (x ∈ Xγ), which does not depends on the (random) classifier ĥ. Instead, it
only depends on the marginal distribution.

We next introduce the Massart (Massart and Nédélec, 2006), which can be viewed as the extreme
version of the Tsybakov noise by sending β →∞.
Definition 12 (Massart noise). The marginal distribution DX satisfies the Massart noise condition
with parameter τ0 > 0 if Px∼DX (|η(x)− 1/2| ≤ τ0) = 0.

Proposition 11. Suppose Massart noise holds. By setting the abstention parameter γ = τ0 in
Algorithm 4 (and randomization over the abstention region), with probability at least 1− δ, we obtain
a classifier with standard excess error Õ(ε) after querying poly(1

τ0
) · polylog(1

ε δ) labels.

Proof. This is a direct consequence of Theorem 7 and Proposition 10.

F.1.2 Computational efficiency

We discuss the efficient implementation of Algorithm 4 and its computational complexity in the
section. The computational efficiency of Algorithm 4 mainly follows from the analysis in Zhu and
Nowak (2022). We provide the discussion here for completeness.

Regression orcale. We introduce the regression oracle over the set of initialized neural networks
Fdnn (line 1 at Algorithm 2). Given any set S of weighted examples (w, x, y) ∈ R+ × X × Y as
input, the regression oracle outputs

f̂dnn := arg min
f∈Fdnn

∑
(w,x,y)∈S

w(f(x)− y)
2
.

While the exact computational complexity of such oracle with a set of neural networks remains
elusive, in practice, running stochastic gradient descent often leads to great approximations. We
quantify the computational complexity in terms of the number of calls to the regression oracle. Any
future analysis on such oracle can be incorporated into our guarantees.

34

We first state some known results in computing the confidence intervals with respect to a general set
of regression functions F .
Proposition 12 (Krishnamurthy et al. (2017); Foster et al. (2018, 2020)). Consider the setting studied
in Algorithm 4. Fix any epoch m ∈ [M] and denote Bm := {(xt, Qt, yt)}τm−1

t=1 . Fix any ι > 0. For
any data point x ∈ X , there exists algorithms Alglcb and Algucb that certify

lcb(x;Fm)− ι ≤ Alglcb(x;Bm, βm, ι) ≤ lcb(x;Fm) and
ucb(x;Fm) ≤ Algucb(x;Bm, βm, ι) ≤ ucb(x;Fm) + ι.

The algorithms take O(1
ι2 log 1

ι) calls of the regression oracle for general F and take O(log 1
ι) calls

of the regression oracle if F is convex and closed under pointwise convergence.

Proof. See Algorithm 2 in Krishnamurthy et al. (2017) for the general case; and Algorithm 3 in
Foster et al. (2018) for the case when F is convex and closed under pointwise convergence.

We now state the computational guarantee of Algorithm 4, given the regression oracle introduced
above.
Theorem 16. Algorithm 4 can be efficiently implemented via the regression oracle and enjoys the
same theoretical guarantees stated in Theorem 7. The number of oracle calls needed is poly(1

γ) · 1
ε ;

the per-example inference time of the learned ĥM is Õ(1
γ2 · polylog(1

ε γ)) for general F , and

Õ(polylog(1
ε γ)) when F is convex.

Proof. Fix any epoch m ∈ [M]. Denote ι := γ
8M and ιm := (M−m)γ

8M . With any observed x ∈ X ,
we construct the approximated confidence intervals l̂cb(x;Fm) and ûcb(x;Fm) as follows.

l̂cb(x;Fm) := Alglcb(x;Bm, βm, ι)− ιm and ûcb(x;Fm) := Algucb(x;Bm, βm, ι) + ιm.

For efficient implementation of Algorithm 4, we replace lcb(x;Fm) and ucb(x;Fm) with l̂cb(x;Fm)

and ûcb(x;Fm) in the construction of ĥm and gm.

Based on Proposition 12, we know that

lcb(x;Fm)− ιm − ι ≤ l̂cb(x;Fm) ≤ lcb(x;Fm)− ιm and

ucb(x;Fm) + ιm ≤ ûcb(x;Fm) ≤ ucb(x;Fm) + ιm + ι.

Since ιm + ι ≤ γ
8 for any m ∈ [M], the guarantee stated in Lemma 7 can be modified as gm(x) =

1 =⇒ w(x;Fm) ≥ γ
4 . The guarantee stated in Lemma 8 also holds true since we have l̂cb(x;Fm) ≤

lcb(x;Fm) and ûcb(x;Fm) ≥ ucb(x;Fm) by construction. Suppose Fm ⊆ Fm−1 (as in Lemma 9),
we have

l̂cb(x;Fm) ≥ lcb(x;Fm)− ιm − ι ≥ lcb(x;Fm−1)− ιm−1 ≥ l̂cb(x;Fm−1) and

ûcb(x;Fm) ≤ ucb(x;Fm) + ιm + ι ≤ ucb(x;Fm−1) + ιm−1 ≤ ûcb(x;Fm−1),

which ensures that 1(gm(x) = 1) ≤ 1(gm−1(x) = 1). Thus, the inductive lemmas appearing in
Appendix D.2.2 can be proved similarly with changes only in constant terms (also change the constant
terms in the definition of θ and in Eq. (16), since γ

2 is replaced by γ
4 in Lemma 7). As a result, the

guarantees stated in Theorem 14 (and Theorem 7) hold true with changes only in constant terms.

We now discuss the computational complexity of the efficient implementation. At the beginning
of each epoch m. We use one oracle call to compute f̂m := arg minf∈F

∑τm−1

t=1 Qt(f(xt)− yt)2.
The main computational cost comes from computing l̂cb and ûcb at each time step. We take
ι = ι := γ

8M into Proposition 12, which leads to O((log T)2

γ2 · log(log T
γ)) calls of the regression

oracle for general F and O(log(log T
γ)) calls of the regression oracle for any convex F that is closed

under pointwise convergence. This also serves as the per-example inference time for ĥM . The
total computational cost of Algorithm 4 is then derived by multiplying the per-round cost by T and
plugging T = θPdim(F)

ε γ = Õ(poly(1
γ) · 1

ε) into the bound .

35

F.2 Proof of Theorem 8

For ease of construction, we suppose the instance space is X = Bd1 := {x ∈ Rd : ‖x‖2 ≤ 1}. Part of
our construction is inspired by Li et al. (2021).
Theorem 8. Fix any γ ∈ (0, 1/8). For any accuracy level ε sufficiently small, there exists a problem
instance such that (1) η ∈ W1,∞

1 (X) and is of the form η(x) := ReLU(〈w, x〉+ a) + b; and (2) for
any active learning algorithm, it takes at least γ−Ω(d) labels to identify an ε-optimal classifier, for
either standard excess error or Chow’s excess error (with parameter γ).

Proof. Fix any γ ∈ (0, 1/8). We first claim that we can find a discrete subset X ⊆ X with cardinality
|X | ≥ (1/8γ)d/2 such that ‖xi‖2 = 1 and 〈x1, x2〉 ≤ 1− 4γ for any xi ∈ X . To prove this, we first
notice that ‖x1 − x2‖2 ≥ τ ⇐⇒ 〈x1, x2〉 ≤ 1 − τ2/2. Since the τ -packing number on the unit
sphere is at least (1/τ)d, setting τ =

√
8γ leads to the desired claim.

We set DX := unif(X) and Fdnn := {ReLU(〈w, ·〉 − (1 − 4γ)) + (1/2 − 2γ) : w ∈ X}. We
have Fdnn ⊆ W1,∞

1 (X) since ‖w‖2 ≤ for any w ∈ X . We randomly select a w? ∈ X and set
f?(·) = η(·) = ReLU(〈w?, ·〉− (1− 4γ)) + (1/2− 2γ). We assume that the labeling feedback is the
conditional expectation, i.e., η(x) is provided if x is queried. We see that f?(x) = 1/2− 2γ for any
x ∈ X but x 6= w?, and f?(w?) = 1/2 + 2γ. We can see that mistakenly select the wrong f̂ 6= f?

leads to γ
4 ·

2
|X | = γ

2|X | excess error. Note that the excess error holds true in both standard excess
error and Chow’s excess error (with parameter γ) since DX (x ∈ X : η(x) ∈ [1/2− γ, 1/2 + γ]) = 0
by construction.

We suppose the desired access error ε is sufficiently small (e.g., ε ≤ γ

8|X |). We now show that,

with label complexity at most K := b|X |/2c = Ω(γ−d/2), any active learning algorithm will, in
expectation, pick a classifier that has Ω(ε) excess error. Since the worst case error of any randomized
algorithm is lower bounded by the expected error of the best deterministic algorithm against a
input distribution (Yao, 1977), we only need to analyze a deterministic learner. We set the input
distribution as the uniform distribution over instances with parameter w? ∈ X . For any deterministic
algorithm, we use s := (xi1 , . . . , xiK) to denote the data points queried under the constraint that at
most K labels can be queried. We denote f̂ ∈ F as the learned classifier conditioned on s. Since
w? ∼ unif(X), we know that, with probability at least 1

2 , w? /∈ s. Conditioned on that event, we
know that, with probability at least 1

2 , the learner will output f̂ 6= f? since more than half of the
data points remains unqueried. The deterministic algorithm thus outputs the wrong f̂ 6= f? with
probability at least 1

2 ·
1
2 = 1

4 , which has γ

2|X | excess error as previously discussed. When ε ≤ γ

8|X | ,
this leads to Ω(ε) excess error in expectation.

G Omitted details for Section 4

We provide mathematical backgrounds for the Radon BV2 space in Appendix G.1, derive approx-
imation results and passive learning results in Appendix G.2, and derive active learning results in
Appendix G.3.

G.1 The Radon BV2 space

We provide explicit definition of the ‖f‖R BV2(X) and associated mathematical backgrounds in this
section. Also see Ongie et al. (2020); Parhi and Nowak (2021, 2022a,b); Unser (2022) for more
discussions.

We first introduce the Radon transform of a function f : Rd → R as

R{f}(γ, t) :=

∫
{x:γ>x=t}

f(x) ds(x), (γ, t) ∈ Sd−1 × R,

where s denotes the surface measure on the hyperplane {x : γ>x = t}. The Radon domain is
parameterized by a direction γ ∈ Sd−1 and an offset t ∈ R. We also introduce the ramp filter as

Λd−1 := (−∂2
t)

d−1
2 ,

36

where ∂t denotes the partial derivative with respect to the offset variable, t, of the Radon domain, and
the fractional powers are defined in terms of Riesz potentials.

With the above preparations, we can define the R TV2-seminorm as

R TV2(f) := cd‖∂2
t Λd−1Rf‖M(Sd−1×R),

where cd = 1/(2(2π)d−1) is a dimension-dependent constant, and ‖·‖M(Sd−1×R) denotes the total
variation norm (in terms of measures) over the bounded domain Sd−1 × R. The R BV2 norm of f
over Rd is defined as

‖f‖R BV2(Rd) := R TV2(f) + |f(0)|+
d∑
k=1

|f(ek)− f(0)|,

where {ek}dk=1 denotes the canonical basis of Rd. The R BV2(Rd) space is then defined as

R BV2(Rd) := {f ∈ L∞,1(Rd) : R BV2(f) <∞},

where L∞,1(Rd) is the Banach space of functions mapping Rd → R of at most linear growth. To
define the R BV2 norm of f over a bounded domain X ⊆ Rd, we use the standard approach of
considering restrictions of functions in R BV2(Rd), i.e.,

‖f‖R BV2(X) := inf
g∈R BV2(Rd)

‖g‖R BV2(Rd) s.t. g|X = f.

In the rest of Appendix G, we use P(β) to denote the set of distributions that satisfy (1) Tsybakov
noise condition with parameter β ≥ 0; and (2) η ∈ R BV2

1(X).

G.2 Approximation and passive learning results

Proposition 13. Suppose DXY ∈ P(β). One can construct a set of neural network classifierHdnn

such that the following two properties hold simultaneously:

min
h∈Hdnn

err(h)− err(h?) = O(ε) and VCdim(Hdnn) = Õ(ε−
2d

(1+β)(d+3)).

Proof. We take κ = ε
1

1+β in Theorem 9 to construct a set of neural network classifiers Hdnn with
W = O(ε−

2d
(1+β)(d+3)) total parameters arranged in L = O(1) layers. According to Theorem 4, we

know

VCdim(Hdnn) = O(ε−
2d

(1+β)(d+3) · log(ε−1)) = Õ(ε−
2d

(1+β)(d+3)).

We now show that there exists a classifier h ∈ Hdnn with small excess error. Let h = hf be the
classifier such that ‖f − η‖∞ ≤ κ. We can see that

excess(h) = E
[
1(h(x) 6= y)− 1(h?(x) 6= y)

]
= E

[
|2η(x)− 1| · 1(h(x) 6= h?(x))

]
≤ 2κ · Px∼DX (x ∈ X : |η(x)− 1/2| ≤ κ)

= O(κ1+β)

= O(ε),

where the third line follows from the fact that h and h? disagrees only within region {x ∈ X :
|η(x)− 1/2| ≤ κ} and the incurred error is at most 2κ on each disagreed data point. The fourth line
follows from the Tsybakov noise condition and the last line follows from the selection of κ.

Theorem 17. Suppose DXY ∈ P(β). Fix any ε, δ > 0. Let Hdnn be the set of neural network

classifiers constructed in Proposition 13. With n = Õ(ε−
4d+6+β(d+3)
(1+β)(d+3)) i.i.d. sampled data points,

with probability at least 1− δ, the empirical risk minimizer ĥ ∈ Hdnn achieves excess error O(ε).

37

Proof. Proposition 13 certifies minh∈Hdnn
err(h) − err(h?) = O(ε) and VCdim(Hdnn) =

O
(
ε−

2d
(1+β)(d+3) · log(ε−1)

)
. Take ρ = 1 in Theorem 11, leads to

err(ĥ)− err(h?) ≤ O

(
ε+

(
ε−

2d
(1+β)(d+3) · log(ε−1) · log n

n

) 1+β
2+β

+
log δ−1

n

)
,

Taking n = O(ε−
4d+6+β(d+3)
(1+β)(d+3) · log(ε−1) + ε−1 · log(δ−1)) = Õ(ε−

4d+6+β(d+3)
(1+β)(d+3)) thus ensures that

err(ĥ)− err(h?) = O(ε).

G.3 Active learning results

Theorem 10. Suppose η ∈ R BV2
1(X) and the Tsybakov noise condition is satisfied with parameter

β ≥ 0. Fix any ε, δ > 0. There exists an algorithm such that, with probability at least 1− δ, it learns
a classifier ĥ ∈ Hdnn with excess error Õ(ε) after querying Õ(θHdnn

(ε
β

1+β) · ε−
4d+6

(1+β)(d+3)) labels.

Proof. ConstructHdnn based on Proposition 13 such that minh∈Hdnn
err(h)− err(h?) = O(ε) and

VCdim(Hdnn) = Õ(ε−
2d

(1+β)(d+3)). Taking such Hdnn as the initialization of Algorithm 3 (line 1)
and applying Theorem 12 leads to the desired result.

To derive deep active learning guarantee with abstention in the Radon BV2 space, we first present
two supporting results below.

Proposition 14. Suppose DXY ∈ P(β). One can construct a set of neural network regression
functions Fdnn such that the following two properties hold simultaneously:

∃f ∈ Fdnn s.t. ‖f − f?‖∞ ≤ κ, and Pdim(Fdnn) ≤ c · κ−
2d
d+3 log2(κ−1),

where c > 0 is a universal constant.

Proof. The result follows by combining Theorem 9 and Theorem 13.

Proposition 15. Suppose η is L-Lipschitz and X ⊆ Bdr . Fix any κ ∈ (0, γ/32]. There exists a set of
neural network regression functions Fdnn such that the followings hold simultaneously.

1. Pdim(Fdnn) ≤ c · κ−
2d
d+3 log2(κ−1) with a universal constant c > 0.

2. There exists a f ∈ Fdnn such that ‖f − η‖∞ ≤ κ.

3. θval
Fdnn

(γ/4) := supf∈Fdnn,ι>0 θ
val
f (Fdnn, γ/4, ι) ≤ c′ · (Lrγ)d with a universal constant c′ > 0.

Proof. The implementation and proof are similar to those in Proposition 9, except we use Proposi-
tion 14 instead of Proposition 6.

We now state and prove deep active learning guarantees in the Radon BV2 space.

Theorem 18. Suppose η ∈ R BV2
1(X). Fix any ε, δ, γ > 0. There exists an algorithm such that,

with probability at least 1− δ, it learns a classifier ĥ with Chow’s excess error Õ(ε) after querying
poly(1

γ) · polylog(1
ε δ) labels.

Proof. The result is obtained by applying Algorithm 4 with line 1 be the set of neural networks Fdnn

generated from Proposition 15 with approximation level κ ∈ (0, γ/32] (and constants c, c′ specified
therein). The rest of the proof proceeds in a similar way as the proof Theorem 7. Since we have r = 1
and L ≤ 1 (Parhi and Nowak, 2022b), we only need to choose a κ > 0 such that

1

κ
= č ·

(
1

γ

) d
2 +1

· log
1

ε γ

38

with a universal constant č > 0. With such choice of κ, we have

Pdim(Fdnn) = O

(1

γ

) d2+2d
d+3

polylog

(
1

ε γ

).
Plugging this bound on Pdim(Fdnn) and the upper bound on θval

Fdnn
(γ/4) from Proposition 15 into the

guarantee of Theorem 14 leads to excessγ(ĥ) = O(ε · log(1
ε γ δ)) after querying

O

(1

γ

)d+2+ d2+2d
d+3

· polylog

(
1

ε γ δ

)
labels.

39

	Introduction
	Problem setting
	Contributions and paper organization
	Related work

	Label complexity of deep active learning
	Tsybakov noise condition
	Approximation and expressiveness of neural networks
	Deep active learning and guarantees

	Deep active learning with abstention: Exponential speedups
	Active learning without low noise conditions
	Exponential speedups with abstention

	Extensions
	Discussion
	Omitted details for sec:noisepassive
	Generic version of alg:NCAL and its guarantees
	Supporting lemmas
	Proof of thm:RCALgen

	Omitted details for sec:noiseactive
	Proof of thm:activenoise
	Discussion on disagreement coefficient in thm:activenoise

	Generic version of alg:NCALP and its guarantees
	Complexity measures
	The generic algorithm and its guarantees
	Concentration results
	Supporting lemmas for thm:absgen

	Proof of thm:absgen

	Proof of thm:abs
	Prerequisites
	Upper bound on the pseudo dimension
	Upper bounds on the value function disagreement coefficient

	The preprocessing step: Clipping and filtering
	Proof of thm:abs

	Other omitted details for sec:abstention
	Proper abstention and computational efficiency
	Proper abstention
	Computational efficiency

	Proof of thm:singlerelulb

	Omitted details for sec:extension
	The Radon BV2 space
	Approximation and passive learning results
	Active learning results

