
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Massive Memorization with Hundreds of Tril-
lions of Parameters for Sequential Trans-
ducer Generative Recommenders

Anonymous authors
Paper under double-blind review

Abstract

Modern large-scale recommendation systems rely heavily on user interac-
tion history sequences to enhance the model performance. The advent
of large language models and sequential modeling techniques, particularly
transformer-like architectures, has led to significant advancements recently
(e.g., HSTU, SIM, and TWIN models). While scaling to ultra-long user
histories (10k to 100k items) generally improves model performance, it also
creates significant challenges on latency, queries per second (QPS) and GPU
cost in industry-scale recommendation systems. Existing models do not
adequately address these industrial scalability issues. In this paper, we
propose a novel two-stage modeling framework, namely VIrtual Sequential
Target Attention (VISTA), which decomposes traditional target attention
from a candidate item to user history items into two distinct stages: (1) user
history summarization into a few hundred tokens; followed by (2) candidate
item attention to those tokens. These summarization token embeddings
are then cached in storage system and then utilized as sequence features
for downstream model training and inference. This novel design for scala-
bility enables VISTA to scale to lifelong user histories (up to one million
items) while keeping downstream training and inference costs fixed, which
is essential in industry. Our approach achieves significant improvements in
offline and online metrics and has been successfully deployed on an industry
leading recommendation platform serving billions of users.

1 Introduction

Personalized recommendation systems are now integral to digital platforms like streaming
services, e-commerce, and social media, where they boost user engagement and drive key
metrics such as click-through rates (CTR), session duration, and retention. The success of
these systems hinges on their ability to accurately predict user preferences by processing
and interpreting vast user histories.

While traditional recommendation models, such as collaborative filtering (Sarwar et al.,
2001) and matrix factorization (Koren et al., 2009), laid the groundwork for personalized
recommendation, they often struggle to scale and capture long-term user behaviors. Deep
learning introduced more powerful solutions, and the recent integration of large language
models (LLMs) and sequential modeling techniques such as transformers (Section 2) has
marked a significant leap forward, enabling the capture of intricate interactions across vast
user histories.

In the domain of recommendation systems, two primary types of sequence modeling tech-
niques have been explored: full user sequence modeling, as seen in Hierarchical Sequential
Transduction Units (HSTU) (Zhai et al., 2024), and target-specific sequence sampling, as seen
in Search-based Interest Modeling (SIM) (Pi et al., 2020) and its subsequent works (Chang
et al., 2023; Si et al., 2024). Both approaches have demonstrated success in enhancing
recommendation system performance by harnessing users’ extensive historical interactions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: VISTA replaces standard attention with a two-stage process, allowing downstream
models to compute only the highly efficient second stage.

Despite their success, full sequence modeling suffers from the computational cost of scaling.
Modeling full user interaction sequences which are usually on the scale of O(100K) in length
often leads to enormous computational costs and latency issues, which are very challenging
for industrial recommendation systems that need to train O(10B) to O(100B) examples
per day and have strict latency upper limits during inference. As a result, the full sequence
modeling methods such as HSTU (Zhai et al., 2024) are hindered by high computational
costs, limiting its widespread adoption across industries where many companies are still
short of GPU capacities.

The second approach, target-specific sequence sampling, has been extensively explored
through a series of seminal works, including SIM (Pi et al., 2020), TWIN (Chang et al.,
2023), and TWIN V2 (Si et al., 2024). These studies have demonstrated the effectiveness
of leveraging user historical interaction sequences. However, subsequent research in this
direction has encountered two significant challenges: (1) bridging the gap between attention
to the target-specific shortened sequence and the full user sequence, which, however, was
partially addressed in follow-up work TWIN (Chang et al., 2023); and (2) the computational
cost increases linearly with the number of candidates to predict at inference time, due to
the independent target-specific sequences. These two challenges remain largely unresolved,
primarily due to the inherent design limitations of SIM-style models.

Addressing the challenges of scalability in recommendation systems will assist with their
widespread adoption. In this paper, we propose a novel two-stage modeling framework,
VIrtual Sequential Target Attention (VISTA), designed to overcome the scalability challenges.
The first stage compresses the ultra-long user interaction history into a few hundred of
summarization embeddings (see Fig. 1); the second stage serves as efficient candidate aware
target attention mechanism that leverages the summarization from the first stage for final
prediction. The first stage occurs only during foundational model training, where the
resulting summarization embeddings are cached to conceptually represent user embeddings.
Consequently, downstream model training and inference only need to perform the second
stage: computing attention between a candidate item and these cached embeddings, instead
of processing the full user interaction history. This approach significantly reduces the
computational complexity for downstream models, especially during inference, at the cost of
additional storage. In practice, this is a worthwhile trade-off, as the cost of GPU computation
remains multiple orders of magnitude higher than the cost of storage.

As a summary of our contributions, to the best of our knowledge we are the first to propose:

• A two-stage attention framework to decouple foundational model training and downstream
model training and inference, which enables us to leverage ultra-long user histories for
better recommendation model performance in industrial-scale systems,

• A quasi-linear attention formulation tailored for recommendation models,
• A generative sequential reconstruction loss in recommendation models, and
• A practical embedding delivery system successfully deployed in an industrial-scale platform.

2 Related Work

Hierarchical Sequential Transduction Unit (HSTU). A significant advancement in
this area is the Hierarchical Sequential Transduction Unit (HSTU) (Zhai et al., 2024), which
reframes recommendation as a sequential transduction problem. Designed specifically for
high-cardinality, non-stationary streaming recommendation data, HSTU surpasses traditional
models in both accuracy and efficiency. This architecture allows recommendation systems to
scale to trillions of parameters, leading to substantial gains in predictive performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 2: An overview of VISTA architecture.

Transformer Architectures in Recommendation Systems. The application of trans-
former architectures in recommendation systems has been explored extensively. By leveraging
the self-attention mechanism, transformers can model complex user-item interactions over
time, facilitating more nuanced and personalized recommendations (Subbiah and Aggarwal,
2024). The Deep Interest Network (DIN) (Zhou et al., 2018) and its follow-up work, Search-
based Interest Modeling (SIM) (Pi et al., 2020; Chang et al., 2023; Si et al., 2024), leverage
lifelong sequential behavior data. This approach employs search-based mechanisms, also
known as General Search Units (GSUs), to select a small subset of relevant interactions from
the user’s historical sequence that are pertinent to the target item followed by a standard
transformer network, referred to as Exact Search Units (ESUs), to compute the final target
item representation. Notably, this method enables the modeling of user behavior data with
lengths reaching up to hundreds of thousands (Pi et al., 2020).

Linear Complexity Attention Mechanisms. Apart from Flash Attention (Dao et al.,
2022; Dao, 2023) that is designed to improve the efficiency of the softmax attention mecha-
nisms, there is a new trend to explore linear complexity attention mechanisms. Katharopoulos
et al. (2020a) first proposes linear attention. By applying matrix multiplication associative
property, it enables a change in computation order from (QKT)V to Q(KTV), reducing
computation complexity from O(N2) to O(N) with respect to sequence length N . Recently,
Lightning Attention v1 (Qin et al., 2024a) and v2 (Qin et al., 2024b) propose a light network
which contains Gated Linear Attention (GLA) and Simple Gated Linear Unit (SGLU) to
make linear attention more practical. Another branch of linear complexity work, namely state
space model (SSM), has been widely studied. Mamba (Gu and Dao, 2024) is a pioneering
work in SSM and widely used in many real-world applications, followed by Hydra (Hwang
et al., 2024) which is the double-headed version of Mamba to address non-causal scenarios.

3 Method

Here we introduce the details of VISTA’s two cascaded modules: ultra-long user interaction
history (UIH) sequence summarization and target-aware attention, followed by details of a
practical linear complexity self-attention and generative sequence reconstruction loss. We
then explain how VISTA’s design enables the scaling, storage, and processing of industry-scale
user history sequences through its embedding delivery system.

3.1 Model Architecture Overview

As illustrated in Figure 2, the VISTA architecture employs distinct workflows for training and
inference. During training, the computationally expensive UIH summarization module runs
to generate summary embeddings. These embeddings are then quantized and exported to a
large key-value cache in O(100) terabytes to O(1) petabytes. For inference, this expensive

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

step is bypassed entirely. Instead, the pre-computed embeddings are simply retrieved from
the cache and dequantized with minimal distortion. The final component, the target attention
module, operates in both phases, using the summarization embeddings and candidate item
features to make predictions.

3.2 Ultra-long UIH Sequence Summarization

Figure 3: Visualization of UIH sum-
marization embeddings.

In the first stage, we utilize self-attention with virtual
seed embeddings to summarize ultra-long UIH se-
quences. These virtual seeds are initialized randomly
as shared parameters across users, which are updated
with the model through its interaction with the UIH
sequence in the summarization module. The output
of the summarization module can be interpreted as
user embeddings, encoding individual personalized
preferences to inform recommendations. Figure 3 vi-
sualizes these summarization embeddings, projected
onto the first 2 principal components by principal
component analysis (PCA). We can clearly see the
separation for users of different countries, with US
and Canada overlapping, which is expected.

However, typical softmax attentions suffer from O(N2) time complexity, which is prohibitive
when dealing with ultra-long sequences (N > 10k). Therefore, we propose quasi-linear
attention(QLA), a linear time complexity O(N) self-attention mechanism to overcome this
issue.

3.2.1 Linear Attention with Candidate Items for Recommendation

With the emergence of Large Language Models (LLMs), researchers have proposed some
linear complexity attention algorithms to accelerate transformer blocks (Katharopoulos et al.,
2020a; Qin et al., 2024a;b; Han et al., 2024). However in recommendation systems, unlike the
text sequences in LLM, a strict rule is that the candidates cannot attend each other, since it
introduces label leakage due to the fact that the logged candidates typically only form a small
subset of the input candidates during inference. Therefore, we propose a linear-complexity
self attention mechanism that avoids attention among candidates.

The typical softmax self attention for a UIH sequence S can be formulated as follows

SoftmaxAttn(S ⇒full S) = RowSoftmax(QK⊤)V

where Q, K and V have shape (L, d) and L is the sequence length. Then the original linear
attention (Katharopoulos et al., 2020b) for a UIH sequence S can be written similarly as
follows

LinAttn(S ⇒full S) = RowNormalize(QK⊤)V (1)

= Q(K⊤V)/RowSum(QK⊤) = Q(K⊤V)/(Q ColSum(K)⊤).

Note that division / here stands for broadcast division along the rows. The above can be
applied to full (bi-directional) self-attention.

In recommendation models, we also have target (candidate) items, let’s denote them by T .
Then we want to compute target attention of T against K and V .

LinAttn(T ⇒full S) = T(K⊤V)/(T ColSum(K)⊤). (2)

Note that candidates cannot attend to each other. This is a strict rule in recommendation
systems otherwise the model training will fail due to the leakage between candidate items. It
gets slightly trickier if we also want each candidate to attend to itself. Instead of TT⊤T , the
contribution due to the self attention of each target item to herself is given by

LinAttn(T ⇒individual T) = Diag(TT⊤)T. (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.2.2 Quasi-linear Attention for Recommendation

Despite its efficiency, some previous works (Han et al., 2024; 2023) prove that linear attention
suffers from insufficient expressive power, making it impractical for real applications. In this
section, we introduce quasi-linear attention (QLA) as an empirically effective linear attention
algorithm for recommendation. This quasi-linear attention introduces more non-linear
complexity in attention computation, addressing the issue of expressive power.

Figure 4: The QLU module.

The quasi-linear attention contains two parts:
Quasi Linear Unit (QLU) module and Sim-
ple Gated Linear Unit (SGLU) module. The
QLU module aims to model the interaction of
Q,K, V matrices with SiLU non-linear activation
as shown in Figure 4. For the SGLU module,
we use the same gated function as TransNormer-
LLM (Qin et al., 2024a).

Accordingly, we need to slightly modify the above
linear attention formulation to accommodate this
QLU module. For the self attention part we let
the user history items attend to one another.
Similar as in HSTU (Zhai et al., 2024), SAS-
Rec (Kang and McAuley, 2018), and Pinner-
former (Pancha et al., 2022), usually the causal
self-attention approach via a triangular mask is used. In our case, we did not find significant
difference between causal and full self attention, since the user history items merely serve
as features for the final candidate prediction task – their temporal causality is not a strict
requirement. Let φ denote a non-linear activation function (we use SiLU in our experiments),
then the full self quasi-linear attention modified from Eq. (1) is as follows.

O[S] = φ(Q[S])φ(φ(K[S])⊤V [S])

where [S] denotes the source (user history) portion of the sequence. Note that we remove
the RowNormalize operation, similarly as in Lightning Attention (Qin et al., 2024a;b).

For the target portion of the query sequence embeddings, we can similarly apply φ-linear
attention between Q[T] and K[S], V [S]. However to be consistent with the self-attention
semantics, we also include an extra term that captures attention to the target item itself.
Thus, the final formula for the target portion of the quasi-linear attention, modified from
Eq. (2) and (3) is given by

O[T] = φ(Q[T])φ(φ(K[S])⊤V [S]) + ∆(φ(Q[T]), φ(K[T]))V [T].

Here ∆(X,Y)ij :=
∑

k XikYikδij stands for putting the row-wise dot product between the
two matrices X and Y of shape n×m on the diagonal of a square matrix of shape n× n.
In order to implement the quasi-linear attention efficiently using the Triton language (Tillet
et al., 2019) for optimized GPU computation performance, we also calculate the gradient of
the final loss function with respect to the input tensors Q[S], Q[T],K[S],K[T], V [S], V [T],
in terms of the gradient with respect to the output tensor O[S], O[T] in Appendix B.

3.2.3 Generative Sequence Reconstruction Loss

To further enhance the memorization effects, we also introduce a reconstruction loss (see
Fig. 5) to encourage the sequence summarization to fully reproduce the UIH sequence, which
we find particularly useful to improve VISTA’s performance. Intuitively, to reconstruct
the i-th UIH item embedding, we are using all the seed embeddings and the UIH item
embeddings up to the (i− 1)-th position. A natural way to accomplish this is via the decoder
network, such as the causal transformer decoder, without the softmax layer. Formally,

(t1, . . . , tk, v1, . . . , vM) = Decoder(s1, . . . , sk, u1, . . . , uM).

where s1, . . . , sk are the personalized seed embeddings, and u1, . . . , uM are the UIH item
embeddings. We can feed their concatenation through the causal softmax attention block (or

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 5: Generative reconstruction loss.

Region nRegion 2Region 1

Source Training
Model HiveUnfiied training data stream

Replication

Message Queue

Replication

Online Training
Model

Online Training
Model

Online Training
Model

Online Training
Model

Online Training
Model

Index cacheIndex cache Index cache

Figure 6: VISTA embedding delivery system.

any other transformer block) to get the output embeddings concatenated as t1, . . . , tk and
v1, . . . , vM where k is the number of seeds and M the length of the user history sequence.
Then we can simply form the off-by-one mean square error of the vi’s with the ui’s as the
construction loss as Lreconstruct =

∑M−1
i=1 ∥vi − ui+1∥22.

Since causal transformer block ensures that the output embedding vi only depends on
u1, . . . , ui, there is no leak of information from ui+1 to vi. This forces the personalized seed
embeddings si to maximize information retained of the user history sequence u1, . . . , uM .
Similar ideas have roots in the Variational Auto-Encoder (Kingma and Welling, 2022), and
have appeared in the context of transformer networks recently (Henderson and Fehr, 2022).
However to the best of our knowledge, there has not been any explicit use in recommendation.

3.3 Target-aware Attention

As shown in Figure 2, any attention network can technically be used for the target-aware
attention stage. Because this step is computationally inexpensive compared to sequence
summarization, we selected a standard O(N2) transformer block, which delivers excellent
performance on the compact summary sequences.

4 Embedding Delivery System

We emphasize that the VISTA framework is not merely a theoretical model, but a novel
industrial model system co-design to support large scale user interaction history sequence
learning that can be deployed into the real industry infrastructure with reasonable cost.

Figure 6 outlines the system’s end-to-end architecture, which comprises three main stages:
(1) online training of the source model using training data stream, (2) delivery of sequence
summarization embeddings to downstream models via two routes: a real-time message queue,
e.g., Kafka (Kreps et al., 2011) and persistent storage, e.g., Hive (Thusoo et al., 2009),
and (3) serving embeddings through a geographically replicated in-memory key-value store.
This design ensures both real-time performance and scalability for industrial applications.
For scalability, we deliberately compress the user interaction history sequence to O(100)
terabytes level, making it feasible to deploy to existing systems.

5 Experiments

5.1 Datasets and Experimental Setup

The proposed VISTA framework is designed for a large scale real-world dataset, where one
needs to train hundreds of billions of examples per day and each user has a history which
contains hundreds of thousands of items. While existing public datasets are usually much

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Comparisons on public and Minimal Production datasets. VISTA-w/-QLA and
VISTA-w/o-QLA are the VISTA model with and without quasi-linear attention, respectively.

Models Amazon KuaiRand Minimal Production
AUC (↑) NE (↓) AUC (↑) NE (↓) AUC (↑) NE (↓)

DIN 0.873± 8e−4 0.656± 1e−4 0.744± 0.003 0.864± 0.005 0.632± 0.02 1.048± 0.033
TTSN 0.877± 0.005 0.644± 0.010 0.740± 0.003 0.869± 0.004 0.648± 0.005 1.139± 0.156
MHA 0.881± 1e−4 0.634± 0.002 0.743± 0.001 0.863± 0.005 0.630± 0.018 1.049± 0.041

SASRec 0.884± 4e−4 0.627± 0.001 0.742± 0.003 0.868± 0.007 0.605± 0.020 1.129± 0.134
HSTU 0.884± 0.001 0.628± 0.001 0.743± 0.001 0.863± 1e−5 0.668± 0.011 1.099± 0.048

VISTA-w/o-QLA 0.886± 0.002 0.621± 0.005 0.744± 0.001 0.863± 0.003 0.628± 0.014 1.024± 0.03
VISTA-w/-QLA 0.884± 0.005 0.623± 0.003 0.743± 4e−4 0.864± 0.001 0.632± 0.013 1.062± 0.076

smaller, we compare our method against several baselines on public datasets in addition to
reporting results on real production data.

5.1.1 Public Dataset and Industrial-Scale Dataset

We first compare the effectiveness of VISTA against several baseline models on public
datasets Amazon-Electronics 1 and KuaiRand-1K 2. To focus mainly on the effectiveness of
the attention mechanism, we compare VISTA against baselines in replacing the attention
layers in a common model architecture. All models are implemented, trained, and evaluated
under the FuxiCTR 3 framework, focusing on click-through rate prediction. Additionally,
we introduce a Minimal Production dataset from real production data, compatible with
FuxiCTR having minimal features but with longer sequences up to 2,000.

For industrial-scale offline experimentation, we construct full training and evaluation samples
from real production data, with several metrics for engagement, which we denote by V-Task,
L-Task, etc. We use 3-day data as the training set and the next 1-day data as the evaluation
set in our offline experiment. The scale of training examples per day is at O(10) billion level.
The average and maximum UIH sequence lengths are 7,000 and 16,000, respectively. Note
that we deploy the model with 12,000 UIH sequence length in online experiments, but we
only use 2,000 in offline experiments due to GPU resource constraints.

5.1.2 Baselines and Evaluation Metrics

All models share a common feature embedding layer and MLP block, with consistent
hyperparameters, e.g., embedding dimensions, layers, attention heads, for fair comparison. We
briefly describe them: (1) Deep Interest Network (DIN) (Zhou et al., 2018) uses attention to
adaptively weigh user historical behaviors, (2) Two-Tower Sparse Network (TTSN) (Covington
et al., 2016) separately encodes user and item features via two towers, (3) the standard
Multi-Head Attention (MHA) (Vaswani et al., 2017), (4) SASRec (Kang and McAuley, 2018)
is self-attentive sequential recommendation model that uses the Transformer architecture,
and (5) Hierarchical Sequential Transduction Units (HSTU) (Zhai et al., 2024) is an industry
proposed transformer-like model designed to capture multi-scale sequential patterns in user
behavior sequence.

We use normalized entropy (NE) (He et al., 2014) as our evaluation metric, which calculates
the cross entropy between the predicted probabilities and the labels, then normalizes it by
the entropy of the constant predictor at label average. We also report the area under curve
(AUC) for the traditional setting. Additional details about this section are in Appendix C.

5.2 Offline Experimental Results

5.2.1 Public Dataset Results

In Table 1, we summarize the comparative results between VISTA and the baseline models.
For the Amazon-Electronics dataset, VISTA outperforms the other baselines with the use of
quasi-linear attention being the next best model. On the KuaiRand dataset, VISTA slightly

1https://github.com/reczoo/Datasets/tree/main/Amazon/AmazonElectronics_x1
2https://kuairand.com/
3https://github.com/reczoo/FuxiCTR

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 7: Ablation study on quasi-linear attention by varying sequence length.

Figure 8: Ablating VISTA across number of seed embeddings
on Amazon-Electronics.

Figure 9: Inference time gains
with increasing UIH lengths.

outperforms the other models with similar NE to HSTU and MHA. This may suggest that
even at smaller sequence lengths, the virtual seeding embeddings slightly help the model
performance. On much longer sequences in Minimal Production, we see that HSTU and
VISTA perform best demonstrating that both are designed for handling longer sequences.

Figure 7 shows the ablation study results of quasi-linear attention by varying the sequence
length on the Minimal Production dataset. We can clearly see that the QLA mechanism
significantly reduces the the time to train and evaluate 1 epoch of data, while there are small
differences in AUC and NE.

Figure 8 shows the scaling law of increasing number of seed embeddings. We can clearly
see that the model performance improves with larger number of seed embeddings, which,
however, will incur more storage capacity cost in real world production scenario. Thus, in
practice it is a tradeoff between model performance and financial cost.

Figure 10 compares the target embeddings, the output of VISTA’s two-stage attention mod-
ules, for different items given the same user history from Amazon-Electronics. Embeddings
between items from the same category are more similar than those from different ones, as
expected.

5.2.2 Industrial-Scale Dataset Results

In Table 2, we compare our proposed VISTA model with the baseline production model using
HSTU as the backbone in both offline and online experiments, on the industrial-scale dataset.
In this setting, there are multiple tasks which measure different aspects of engagement
information. We report the main consumption task (“C-Task”), and other engagement
events (“E1-Task”, “E2-Task”, and “E3-Task”). To further understand the effectiveness of the
model, we also conduct ablation studies by varying the embedding dimension, the number
of seeds, and the use of generative reconstruction loss. As shorthands, (1) VISTA stands
for the optimized proposed model co-trained with the baseline HSTU model, with 3-layer
self-attention, 3-layer target-aware attention, 128 seeds, 256 embedding dimension and
2, 000 UIH sequence length. (2) VISTA-128D stands for VISTA model with 128 dimension
embedding. (3) VISTA-64Seed stands for VISTA model with 64 seeds. (4) VISTA-w/o-Recon
stands for VISTA model without generative reconstruction loss. The results demonstrate
that our optimized VISTA configuration (128 seeds, 256 embedding dimension, and 2, 000
UIH sequence) significantly outperforms the standalone HSTU baseline for training and
evaluation NE metrics.

Table 3 summarizes the performance improvement of QLA compared with the standard
self-attention on production dataset, where we can see that the QLA is able to scale up with
more layers and longer sequence for better NE metrics and even higher QPS.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) Same category (142). (b) Same category (368). (c) Different categories (each).

Figure 10: Pairwise cosine similarity of the output of two-stage attention of VISTA. For the
same user, we compare the target attention output for items of similar or different categories.

Table 2: Offline comparative results with the baseline model and ablation models.

Models Training NE (↓) Eval NE (↓)
C-Task E1-Task E2-Task E3-Task C-Task E1-Task E2-Task E3-Task

HSTU - - - - - - - -
VISTA -0.47% -0.82% -2.30% -1.72% -0.40% -1.19% -2.98% -2.23%

VISTA-128D -0.32% -0.50% -1.86% -1.43% -0.29% -1.07% -2.51% -1.82%
VISTA-64Seed -0.36% -0.68% -1.70% -1.45% -0.37% -1.11% -3.01% -2.09%

VISTA-w/o-Recon -0.42% -0.72% -2.32% -1.69% -0.29% -1.29% -3.00% -2.21%

Table 3: Comparing VISTA with and without quasi-linear attention.

Model Variant Max Seq. Layers QPS (↑) Training NE (↓) Eval NE (↓)
VISTA-w/o-QLA 6,000 3 - - -
VISTA-w/-QLA 16,000 5 +5% -0.1% -0.13%

Figure 9 shows the VISTA’s advantage on inference performance, especially for much longer
sequence lengths. This is expected since VISTA’s main strength is to cache the UIH
summarization. Thus, the most computationally expensive module, UIH summarization
module, is deactivated during inference.

5.3 Online A/B Experimental Results

We conducted an online A/B test on our production video recommendation system, using 5%
of the entire site traffic during a period of 15 days. The baseline is the HSTU model and we
compare with adding the VISTA module, which is the same as our offline experiment setup.
Online metrics for the main consumption task “C-Task” and other online onboarding metrics,
“O1-Task” and “O2-Task”, were significantly improved by 0.5%, 0.2%, 0.04%, respectively.
With a 0.01% “O2-Task” gain considered a substantial improvement on our platform, the
VISTA model made realized contributions to the recommendation system.

6 Conclusion and Discussions

In this paper, we have proposed the VIrtual Sequential Target Attention (VISTA) framework,
a novel two-stage approach that compresses ultra-long user interaction histories into a set of
compact embeddings. This design strikes a crucial balance between computational efficiency
and predictive accuracy, addressing the latency and scalability challenges of processing
ultra-long user sequence data in production systems. VISTA’s practical applicability is
underscored by its resilience to slight de-synchronization between its stages and its ability to
approximate complex transformer architectures without their substantial computational cost.
Our empirical evaluations demonstrate that VISTA not only captures the core information
within user interactions but also achieves significant improvements across platform metrics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

References
Jianxin Chang, Chenbin Zhang, Zhiyi Fu, Xiaoxue Zang, Lin Guan, Jing Lu, Yiqun Hui, Dewei

Leng, Yanan Niu, Yang Song, and Kun Gai. 2023. TWIN: TWo-stage Interest Network for
Lifelong User Behavior Modeling in CTR Prediction at Kuaishou. arXiv:2302.02352 [cs.IR]
https://arxiv.org/abs/2302.02352

Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for YouTube
Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems
(Boston, Massachusetts, USA) (RecSys ’16). Association for Computing Machinery, New
York, NY, USA, 191–198. doi:10.1145/2959100.2959190

Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Parallelism and Work
Partitioning. arXiv:2307.08691 [cs.LG] https://arxiv.org/abs/2307.08691

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. FlashAttention:
Fast and Memory-Efficient Exact Attention with IO-Awareness. arXiv:2205.14135 [cs.LG]
https://arxiv.org/abs/2205.14135

Chongming Gao, Shijun Li, Yuan Zhang, Jiawei Chen, Biao Li, Wenqiang Lei, Peng Jiang,
and Xiangnan He. 2022. KuaiRand: An Unbiased Sequential Recommendation Dataset
with Randomly Exposed Videos. In Proceedings of the 31st ACM International Conference
on Information and Knowledge Management (Atlanta, GA, USA) (CIKM ’22). 3953–3957.
doi:10.1145/3511808.3557624

Albert Gu and Tri Dao. 2024. Mamba: Linear-Time Sequence Modeling with Selective State
Spaces. arXiv:2312.00752 [cs.LG] https://arxiv.org/abs/2312.00752

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. 2023. FLatten
Transformer: Vision Transformer using Focused Linear Attention. arXiv:2308.00442 [cs.CV]
https://arxiv.org/abs/2308.00442

Dongchen Han, Yifan Pu, Zhuofan Xia, Yizeng Han, Xuran Pan, Xiu Li, Jiwen Lu, Shiji
Song, and Gao Huang. 2024. Bridging the Divide: Reconsidering Softmax and Linear
Attention. arXiv:2412.06590 [cs.CV] https://arxiv.org/abs/2412.06590

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah,
Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting clicks on ads
at facebook. In Proceedings of the eighth international workshop on data mining for online
advertising. 1–9.

James Henderson and Fabio Fehr. 2022. A Variational AutoEncoder for Transformers with
Nonparametric Variational Information Bottleneck. arXiv:2207.13529 [cs.LG] https:
//arxiv.org/abs/2207.13529

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. 2024.
Bridging Language and Items for Retrieval and Recommendation. arXiv preprint
arXiv:2403.03952 (2024).

Sukjun Hwang, Aakash Lahoti, Tri Dao, and Albert Gu. 2024. Hydra: Bidirectional State
Space Models Through Generalized Matrix Mixers. arXiv:2407.09941 [cs.LG] https:
//arxiv.org/abs/2407.09941

Wang-Cheng Kang and Julian McAuley. 2018. Self-Attentive Sequential Recommendation.
arXiv:1808.09781 [cs.IR] https://arxiv.org/abs/1808.09781

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. 2020a. Trans-
formers are rnns: Fast autoregressive transformers with linear attention. In International
conference on machine learning. PMLR, 5156–5165.

Athanasios Katharopoulos, Arron Vyas, Nicolas Pappas, and François Fleuret. 2020b. Trans-
formers are RNNs: Fast Autoregressive Transformers with Linear Attention. In Inter-
national Conference on Learning Representations (ICLR). https://openreview.net/
forum?id=Byl88Wq0FD

10

https://arxiv.org/abs/2302.02352
https://doi.org/10.1145/2959100.2959190
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://doi.org/10.1145/3511808.3557624
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2308.00442
https://arxiv.org/abs/2412.06590
https://arxiv.org/abs/2207.13529
https://arxiv.org/abs/2207.13529
https://arxiv.org/abs/2407.09941
https://arxiv.org/abs/2407.09941
https://arxiv.org/abs/1808.09781
https://openreview.net/forum?id=Byl88Wq0FD
https://openreview.net/forum?id=Byl88Wq0FD

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Diederik P Kingma and Max Welling. 2022. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [stat.ML] https://arxiv.org/abs/1312.6114

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Techniques for
Recommender Systems. Computer 42, 8 (2009), 30–37. doi:10.1109/MC.2009.263

Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging system for
log processing. In Proceedings of the NetDB, Vol. 11. Athens, Greece, 1–7.

Nikil Pancha, Andrew Zhai, Jure Leskovec, and Charles Rosenberg. 2022. PinnerFormer:
Sequence Modeling for User Representation at Pinterest. arXiv:2205.04507 [cs.LG] https:
//arxiv.org/abs/2205.04507

Qi Pi, Xiaoqiang Zhu, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, and
Kun Gai. 2020. Search-based User Interest Modeling with Lifelong Sequential Behavior
Data for Click-Through Rate Prediction. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management (CIKM). ACM. https://doi.
org/10.1145/3340531.3412744

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei,
Baohong Lv, Xiao Luo, Yu Qiao, and Yiran Zhong. 2024a. TransNormerLLM: A Faster
and Better Large Language Model with Improved TransNormer. arXiv:2307.14995 [cs.CL]
https://arxiv.org/abs/2307.14995

Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. 2024b.
Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large
Language Models. arXiv:2401.04658 [cs.CL] https://arxiv.org/abs/2401.04658

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based col-
laborative filtering recommendation algorithms. In Proceedings of the 10th International
Conference on World Wide Web (Hong Kong, Hong Kong) (WWW ’01). Association for
Computing Machinery, New York, NY, USA, 285–295. doi:10.1145/371920.372071

Zihua Si, Lin Guan, Zhongxiang Sun, Xiaoxue Zang, Jing Lu, Yiqun Hui, Xingchao Cao,
Zeyu Yang, Yichen Zheng, Dewei Leng, Kai Zheng, Chenbin Zhang, Yanan Niu, Yang Song,
and Kun Gai. 2024. TWIN V2: Scaling Ultra-Long User Behavior Sequence Modeling for
Enhanced CTR Prediction at Kuaishou. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management (CIKM ’24). ACM, 4890–4897.
doi:10.1145/3627673.3680030

Anushya Subbiah and Vikram Aggarwal. 2024. Transformers in music recommendation.
https://research.google/blog/transformers-in-music-recommendation/.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a warehousing
solution over a map-reduce framework. Proceedings of the VLDB Endowment 2, 2 (2009),
1626–1629.

Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: An Intermediate Language
and Compiler for Tiled Neural Network Computations. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Machine Learning and Programming Languages
(MAPL ’19). ACM, 10. doi:10.1145/3315508.3329973

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. In Advances in
Neural Information Processing Systems (NeurIPS). https://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf

Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie
Gong, Fangda Gu, Michael He, Yinghai Lu, and Yu Shi. 2024. Actions Speak Louder
than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations.
arXiv preprint arXiv:2402.17152. https://arxiv.org/abs/2402.17152

11

https://arxiv.org/abs/1312.6114
https://doi.org/10.1109/MC.2009.263
https://arxiv.org/abs/2205.04507
https://arxiv.org/abs/2205.04507
https://doi.org/10.1145/3340531.3412744
https://doi.org/10.1145/3340531.3412744
https://arxiv.org/abs/2307.14995
https://arxiv.org/abs/2401.04658
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/3627673.3680030
https://research.google/blog/transformers-in-music-recommendation/
https://doi.org/10.1145/3315508.3329973
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://arxiv.org/abs/2402.17152

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan,
Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-Through Rate
Prediction. arXiv:1706.06978 [stat.ML] https://arxiv.org/abs/1706.06978

Jieming Zhu, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Xi Xiao, and Rui
Zhang. 2022. BARS: Towards Open Benchmarking for Recommender Systems. In SIGIR
’22: The 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells,
Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM,
2912–2923. doi:10.1145/3477495.3531723

Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. 2021. Open Bench-
marking for Click-Through Rate Prediction. In CIKM ’21: The 30th ACM International
Conference on Information and Knowledge Management, Virtual Event, Queensland, Aus-
tralia, November 1 - 5, 2021, Gianluca Demartini, Guido Zuccon, J. Shane Culpepper,
Zi Huang, and Hanghang Tong (Eds.). ACM, 2759–2769. doi:10.1145/3459637.3482486

12

https://arxiv.org/abs/1706.06978
https://doi.org/10.1145/3477495.3531723
https://doi.org/10.1145/3459637.3482486

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A Usage of LLMs Disclosure

In this section, we disclose the usage of LLMs in the preparation of this manuscript. LLMs
were used for 1) polishing writing or shortening limited blocks of text and 2) for generating
template code for plotting or minor changes of existing code. LLMs were NOT used for
retrieval and discovery (e.g., finding related work), research ideation, or any other purpose
not explicitly outlined in the above.

B Mixed Full Linear Attention

To simplify triton implementation, especially for the gradient computation, our quasi-Linear
Attention drops the normalization (RowNormalize) in the usual linear attention, similar to
lightning attention. Instead we can mimic what SiLU attention does, by introducing a 1/N
factor.

O = (QKT)⊙MV/N,

where ⊙ is the Hadamard product (componentwise multiplication of two matrices, and

M =

(
1n×n 0n×m

1m×n Im

)
. To compute this in triton, first break into two parts.

Q =

(
Q[S]
Q[T]

)
, Q[S] ∈ Rn×d, Q[T] ∈ Rm×d,

K =

(
K[S]
K[T]

)
, K[S] ∈ Rn×d, K[T] ∈ Rm×d,

V =

(
V [S]
V [T]

)
, V [S] ∈ Rn×d, V [T] ∈ Rm×d.

We will divide n+m into A blocks of size n′, and divide n into B blocks of size n”, so that
Qi are submatrices of dimension n′ × d, and Kj , Vj are submatrices of dimension n”× d.

First we compute

(QK[S]TV [S])i = Qi

B∑
j=1

K[S]⊤j V [S]j .

Next we compute the target part: we divide m into C blocks of size m′ each. For the j-th
block, it’s given by

((Q[T]K[T]⊤ ⊙ Im)V [T])j = diag((Q[T]j ⊙K[T]j)1m′×1)V [T]j .

We usually merge the source and target embedding sequences in an interleaved fashion.
To avoid HBM/SRAM sync, we probably should keep track of the offsets of the boundary
between source and target, and let n′ = m′, so that for the target part, we will overlap the
two computation and obtain

O[S]ℓ = Q[S]ℓ

B∑
j=1

K[S]⊤j V [S]j

O[T]ℓ = Q[T]ℓ

B∑
j=1

K[S]⊤j V [S]j + diag((Q[T]ℓ ⊙K[T]ℓ)1m′×1)V [T]ℓ

In terms of triton implementation, we will use positive offsets for target, and negative offsets
for source, all starting from the boundary offset.

Note that the sum
∑B

j=1 K[S]⊤j V [S]j can be computed first, then multiplied with Q[S]ℓ,
Q[T]ℓ etc. By choosing the block size n′ = m′ sufficiently small, and if necessary, also

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

break the block V [S], V [T] along the columns into smaller dimension d′|d, we can ensure all
O[S]ℓ, O[T]ℓ blocks can be computed entirely in SRAM with a single for loop.

To replace linear attention with (traditional) SiLU attention for target to source, we need to
replace the second line above with

O[T]ℓ =

B∑
j=1

SiLU(Q[T]ℓK[S]Tj)V [S]j + SiLU(Q[T]ℓ ⊙K[T]ℓ1m′×1)V [T]ℓ.

Here we cannot compute all the O[T]ℓ blocks easily, but instead need to have m/m′ SM’s to
compute them separately, otherwise each SM would incur a big for loop of Bm/m′ iterations.
Given H100 has about 132 SMs and batch size per rank is 512, using more SMs will likely
slow things down.

B.1 Gradient Computation

∂L

∂V
= tr

((
KQ⊤ ∂L

∂O

)
⊙M⊤

)
/ N

∂L

∂Q
= tr

((
KQ⊤ ∂L

∂O

)
⊙M⊤

)
Given that L = L(O[S], O[T]), and O[S] and O[T] are disjoint, we can compute

dL =
∑
ij

∂L

∂O[S] ij
dO[S]ij +

∑
ij

∂L

∂O[T] ij
dO[T]ij

B.1.1 Gradient of V

If we differentiate against V , we have

dO[S] = Q[S]K[S]⊤dV [S]

dO[T] = Q[T]K[S]⊤dV [S] + diag((Q[T]⊙K[T])1T×1)dV [T]

So,

dL = tr

(
∂L

∂O[S]

⊤
dO[S]

)
+ tr

(
∂L

∂O[T]

⊤
dO[T]

)

= tr

(
∂L

∂O[S]

⊤
Q[S]K[S]⊤dV [S]

)
+ tr

(
∂L

∂O[T]

⊤
(Q[T]K[S]⊤dV [S] + diag((Q[T]⊙K[T])1T×1)dV [T])

)

= tr

(
(
∂L

∂O
)⊤QK[S]⊤dV [S]

)
+ tr

(
(

∂L

∂O[T]
)⊤diag((Q[T]⊙K[T])1T×1)dV [T])

)
.

So we have that
dL

dV [S]
= K[S]Q⊤ ∂L

∂O

dL

dV [T]
= diag((Q[T]⊙K[T])1T×1)

(
∂L

∂O[T]

)
which means ith row of ∂L

∂O[T] will be multiplied by ith element of (Q[T]⊙K[T])1T×1.

B.1.2 Gradient of Q

Next we differentiate against Q,

dO[S] = dQ[S]K[S]⊤V [S]

dO[T] = dQ[T]K[S]⊤V [S] + diag((dQ[T]⊙K[T])1T×1)V [T]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Which results in

dL = tr

(
(

∂L

∂O[S]
)⊤dQ[S]K[S]⊤V [S]

)
+ tr

(
(

∂L

∂O[T]
)⊤(dQ[T]K[S]⊤V [S]

)
+ diag((dQ[T]⊙K[T])1T×1)V [T])).

So that

dL

dQ[S]
=

∂L

∂O[S]
V [S]⊤K[S].

To derive dL
dQ[T] , we need to pull dQ[T] out of the unconventional expression diag((dQ[T]⊙

K[T])1T×1), within the trace operator. Let’s first write it in terms of Einstein summation,
abbreviation ∂L

∂O[T] , Q[T], K[T], V [T] by X,Q,K, V respectively.

tr(X⊤diag((dQ⊙K)1T×1)V) =
∑
ijkℓ

XjidQjkKjkδjℓVℓi,

where δ is the Kronecker delta matrix given by

δjℓ =

{
1 if j = ℓ,

0 otherwise.
.

Note that ∑
iℓ

XjiKjkδjℓVℓi =
∑
i

XjiVjiKjk = (diag((X ⊙ V)1T×1)K)jk.

Thus the second half of the expression for dL (with respect to dQ[T]) is given by

tr((K[S]⊤V [S](
∂L

∂O[T]
)⊤ + (diag((

∂L

∂O[T]
⊙ V [T])1T×1)K[T])⊤)dQ[T]).

Thus since diagonal matrix is invariant under transposition,

∂L

∂Q[T]
=

∂L

∂O[T]
V [S]⊤K[S] + diag((

∂L

∂O[T]
⊙ V [T])1T×1)K[T].

B.1.3 Gradient of K

Similar computation shows

∂L

∂K[S]
= V [S]((

∂L

∂O[S]
)⊤Q[S] + (

∂L

∂O[T]
)⊤Q[T]) = V [S](

∂L

∂O
)⊤Q

∂L

∂K[T]
= diag((

∂L

∂O[T]
⊙ V [T])1T×1)Q[T]

B.1.4 Summary of Forward Pass and All Gradients

We introduce the notation that produces a diagonal matrix dimension T × T from two
matrices X,Y of dimension T × d:

∆(X,Y) := diag((X ⊙ Y)1T×1) = {
∑
ℓ

XiℓYiℓδij}ij . (4)

Then for forward, we have

O[S] = Q[S]K[S]⊤V [S] =: Q[S]Z[S]⊤ (5)

O[T] = Q[T]K[S]⊤V [S] + ∆(Q[T],K[T])V [T] =: Q[S]Z[S]⊤ + U [T]V [T] (6)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

For backward, we have

∂L

∂Q[S]
=

∂L

∂O[S]
V [S]⊤K[S] =: dO[S]Z[S] (7)

∂L

∂Q[T]
=

∂L

∂O[T]
V [S]⊤K[S] + ∆(

∂L

∂O[T]
, V [T])K[T] =: dO[T]Z[S] +X[T]K[T] (8)

∂L

∂K[S]
= V [S](

∂L

∂O
)⊤Q =: V [S]WT (9)

∂L

∂K[T]
= ∆(

∂L

∂O[T]
, V [T])Q[T] =: X[T]Q[T] (10)

dL

dV [S]
= K[S]Q⊤ ∂L

∂O
=: K[S]W (11)

dL

dV [T]
= ∆(Q[T],K[T])

∂L

∂O[T]
=: U [T]dO[T]. (12)

From equation 7 and equation 8 we see that Z[S] := V [S]⊤K[S] should be an intermediate
step to compute, of dimension d× d.

From equation 9 and equation 11, we should compute W := Q⊤ ∂L
∂O first to obtain a d× d

matrix, before pre-multiplying by K[S] or post-multiplying by V [S]⊤ and then transpose (or
transposing first, then pre-multiplying by V [S]).

From equation 6 and equation 12, we see that forward pass should save the intermediate
step Y [T] := ∆(Q[T],K[T]). In fact we can just save the diagonal elements, which consumes
less memory.

From equation 8 and equation 10, we can also save the intermediate step X[T] :=
∆(∂L

∂O[T] , V [T]).

While X[T], Y [T] only involve 2Td FLOPs, W and Z involve 2Td2 FLOPs.

B.1.5 With shifted Elu activation

Shifted elu (and its derivative) are defined by

φ(x) =

{
x, if x ≥ 1,

ex−1, if x < 1,
and φ′(x) =

{
1, if x ≥ 1,

ex−1, if x < 1.

Given,

O[S] = φ(Q[S])φ(K[S])⊤V [S]

O[T] = φ(Q[T])φ(K[S])⊤V [S] + ∆(φ(Q[T]), φ(K[T]))V [T]

Gradients are given by (partly by guessing via dimension match)

∂L

∂Q[S]
= (

∂L

∂O[S]
V [S]⊤φ(K[S]))⊙ φ′(Q[S])

∂L

∂Q[T]
= (

∂L

∂O[T]
V [S]⊤φ(K[S]))⊙ φ′(Q[T]) + ∆(

∂L

∂O[T]
, V [T])(φ′(Q[T])⊙ φ(K[T]))

∂L

∂K[S]
= (V [S](

∂L

∂O
)⊤φ(Q))⊙ φ′(K[S])

∂L

∂K[T]
= ∆(

∂L

∂O[T]
, V [T])(φ(Q[T])⊙ φ′(K[T]))

dL

dV [S]
= φ(K[S])φ(Q)⊤

∂L

∂O

dL

dV [T]
= ∆(φ(Q[T]), φ(K[T]))

∂L

∂O[T]
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

B.2 Activation for Quasi-Linear Attention

The choice of activation function φ in Section 3.2.2 is non-linear but otherwise arbitrary and
depends on the specific application at hand. The same activation also need not always be
used, for instance one can have two different activations φ1 and φ2 and apply them as:

O[S] = φ1(Q[S])φ2(φ1(K[S])⊤V [S]),

O[T] = φ1(Q[T])φ2(φ1(K[S])⊤V [S]) + ∆(φ1(Q[T]), φ1(K[T]))V [T].

C Additional Experiment Details

C.1 Datasets

We include more details about the datasets used in our experiments. The statistics of the
sequence features of each dataset are summarized in Table 4.

Table 4: Dataset Statistics

Dataset Mean Seq. Max Seq.
Amazon-Electronics 8.93 429

KuaiRand-1K 225.20 256
Simplified Prod 1528.18 2,000

Industrial-Scale Data 7,000 16,000

Amazon-Electronics. The Amazon Products and Reviews dataset Hou et al. (2024)
contains user reviews, item metadata, and user-item interactions. A subset of this data
was preprocessed to make the Amazon-Electronics dataset, which is restricted to electronics
items, initiated by Zhou et al. (2018). The data format is relatively simple, with the columns:
label, user id, item id, category id, item history, and category history.

KuaiRand-1K. The KuaiRand dataset by Gao et al. (2022) is a sequential recommendation
dataset collected from the recommendation logs of the video-sharing mobile app Kuaishou.
The KuaiRand-1K subset contains a random sample 1,000 users after removing irrelevant
videos. There are 4 million videos remaining in this subset. Our experiments use a subset of
all features available in KuaiRand-1K, namely user id, video is, video is history, click history,
like history, and lvv (long video view) history.

Simplified Production and Industrial-Scale Data. The full production data is too
large to be able to run simple experiments quickly (and requires re-implementing baseline
models on internal systems). We construct a minimal version of our production data to focus
on the sequential recommendation task (e.g., keeping the user interaction history largely
intact but removing other features). After preprocessing, this dataset has a mean sequence
length of around 1528 and maximum truncated to 2,000.

C.2 FuxiCTR Framework

We utilize the FuxiCTR library developed by Zhu et al. (2022; 2021) for our traditional
sequential setting experiments. As mentioned in the main text, we designed the traditional
sequential setting experiments mainly to compare the effectiveness of the attention layers
and keep constant other model architecture and hyperparameter choices. (See Figure 11.)

We also report the common hyperparameters used in all the experiment results in Table 12.

The model-specific parameters for VISTA are the number of seeds and weight for the
reconstruction loss, which were set at 128 and 1.0, respectively, for all experiments. No
specific hyperparameter tuning was done, mainly relying on using common parameters for
all models and repeating across 3 seeds for each model and dataset.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 11: FuxiCTR Setup.

Hyperparameter Amazon KuaiRand Simplified Prod
Learning Rate 5.0e−4 1.0e−4 1.0e−3
Optimizer Adam Adam Adam
Batch Size 1024 1024 128
Batch Norm No No Yes
Early Stop Patience 4 5 1
Embedding Regularizer 0.005 None None
Embedding Dimension 64 32 32
Embedding Initializer 1e−4 1e−4 1e−4
MLP Hidden Units [1024, 512, 256] [512, 128, 64] [512, 128, 64]
MLP Activations RELU RELU RELU
Attention Heads 4 4 4
Attention Layers 1 1 2

Figure 12: Common hyperparameters used for traditional
setting experiments.

Figure 13: Visualizing the virtual attention and target attention layers for the same user on
two different candidates (one positive at the top and one negative at the bottom).

C.3 More on VISTA’s Two-Stage Attention

Case Study 1: Same User, Different Candidates. In the following Figure 13, we show
the input to the virtual attention layer, the output of the virtual attention layer, and then
the output of the target attention layer for the same user for two different candidates (one
positive at the top and one negative at the bottom) from the Amazon-Electronics dataset.
We also reduce these along the feature dimension for compact visualization. Note that
since we are looking at two candidates for the same user, the input to the virtual attention
layer and the output of the virtual attention layer are identical; these only depend on the
user’s individual UIH and the virtual seed embeddings which are common between the two.
The difference in this case comes at the target attention part. Here we see that the target

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 14: Visualizing the virtual attention and target attention layers for the different users
having different UIH sequence lengths (both positive candidates).

attention differentiates between positive and negative candidates for this user as evidenced
by the differing mean activation for the target embedding.

Case Study 2: Different UIH Lengths. We also look at a case study comparing two
different users with different UIH histories, one with a very short history (length 4) and
another with a slightly longer history (length 12) in Figure 14. Even with very little historical
data (UIH length 4 at the top), the virtual seed embeddings appear to help influence the
virtual embeddings, which in turn help with model performance.

19

	Introduction
	Related Work
	Method
	Model Architecture Overview
	Ultra-long UIH Sequence Summarization
	Linear Attention with Candidate Items for Recommendation
	Quasi-linear Attention for Recommendation
	Generative Sequence Reconstruction Loss

	Target-aware Attention

	Embedding Delivery System
	Experiments
	Datasets and Experimental Setup
	Public Dataset and Industrial-Scale Dataset
	Baselines and Evaluation Metrics

	Offline Experimental Results
	Public Dataset Results
	Industrial-Scale Dataset Results

	Online A/B Experimental Results

	Conclusion and Discussions
	Usage of LLMs Disclosure
	Mixed Full Linear Attention
	Gradient Computation
	Gradient of V
	Gradient of Q
	Gradient of K
	Summary of Forward Pass and All Gradients
	With shifted Elu activation

	Activation for Quasi-Linear Attention

	Additional Experiment Details
	Datasets
	FuxiCTR Framework
	More on VISTA's Two-Stage Attention

