
A Architectures

We evaluate two different segmentation networks proposed by [6], i.e., a fully connected neural
network (FCN) and a convolutional neural network (CNN).

The FCN performs its segmentation pixel-wise, with an input of shape R(nx·ny)×nc , whereby nc

contains RGB values and further pixel information, based on the selected input feature setting;
nc = 5, for RGB and spatial information ω, the same for RGB and semantic information ξ [1], and
further nc = 7, for RGB with spatial as well as semantic information. The FCN consists of 5 linear
layers, with ReLU activations, respectively, and a width of 16.

On the other hand, the CNN operates on the full image of size Rnx×ny×nc , consisting of 4 convolu-
tional layers with kernel size 3, width 16 and Leaky ReLU activation function.

Our input convex neural network Gν [2] is defined by 3 linear layers with a width of 130 and ReLU
activations, and using pixel-wise spatial coordinates as input ω ∈ R2. We additionally incorporate
linear layer skip-connections (without bias), whose outputs are added in a point-wise manner to the
respective output of the Gν layer outputs. Lastly, to ensure positivity of the output of each layer,
which is crucial to form a convex region, the weights of the layers are altered using a ReLU function
after each optimization step.

B Training Variants

B.1 Joint Training

For the training of our networks in a joint fashion, we use the energy minimization approach (3) with
a binary cross entropy as data term and our proposed convexity regularizer (4). As data is scarce,
e.g. the set of scribbled pixels s ∈ [0, 1] in one image (f ), whereby 0 denotes foreground and 1
background, one can evaluate the data term only within these. Yet, this could lead to an optimum
of the smallest convex region around the foreground scribbles. To prevent this, we evaluate our
regularizer on random pixels r in the case of FCN and on all pixels of the image when using the
CNN. Preliminary work [6] has shown that an additional regularization with respect to the RGB color
channels (c), or spatial inputs can be beneficial. Therefore, we consider for the CNN a mean gradient
regularization of these input parts with respect to the sum of our segmentation network output (e.g.
segmentation u), resulting in a combined cost function (6), with f concatenating all information, i.e.,
c, ω, ξ.

Ljoint = argmin
θ,ν

BCE(Nθ(fs), s) + BCE(Gν(ωs), s)

+α ∥Nθ(fr)− σ(Gν(ωr))∥+ β

P∑
i=0

∥∥∥∥∂Nθ

∂ci
(cs,r, ωs,r, ξs,r)

∥∥∥∥
+γ

P∑
i=0

∥∥∥∥∂Nθ

∂ωi
(cs,r, ωs,r, ξs,r)

∥∥∥∥,
(6)

with α being an additional hyperparameter for our proposed convexity regularization method. The
additional hyperparameter β influences the decision boundary for the RGB information, γ is the
penalizer for the spatial decision boundaries. The networks were trained using Adam optimizer
with a learning rate of 0.02 for 3000 optimization steps per image. For the first 200 steps, we set
α = 0, to train both networks, Nθ,Gν , individually without regularization effects. This allows the
networks to first individually predict stable segmentation before further joint optimization. Also with
the start of joint training, we decrease the learning rate to 0.002. We set β and γ to 0.01. The joint
loss function (6), is defined with the training for RGB, spatial and semantic features [1]. Following
[6], we also performed training runs with RGB and spatial, as well as RGB and semantic features,
respectively. If spatial features are not used for optimization, the corresponding regularization term is
omitted (γ = 0). For the FCN, we only use the joint regularization term but no gradient regularization
(β = 0, γ = 0); the other parameters are also consistent.
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Figure 4: Experimental results w.r.t different input schemes. The convex prior segmentation clearly
outperforms the normal segmentation when using semantic features. In all cases, joint training with
the convex segmentation (dashed orange bar) works best. All numerical results of these experiments
are also listed in Table 3.

B.2 Sequential Training

For the sequential training, we use the same models and parameters as for joint training. The
difference to the previously mentioned joint training is that the segmentation model is trained first
and afterward its output is projected onto the convex set by fitting the convex network. We use Lseq

(7) and Lcvx (8) as loss functions for the respective networks, similar to the one stated in (6). The
training procedure is also the same, except that we are keeping the learning rate constant over the
whole training time.

Lseq = argmin
θ

BCE(Nθ(fs), s) + β
1

p

P∑
i=0

∥∥∥∥∂Nθ

∂ci
(cs,r, ωs,r, ξs,r)

∥∥∥∥
+γ

P∑
i=0

∥∥∥∥∂Nθ

∂ωi
(cs,r, ωs,r, ξs,r)

∥∥∥∥,
(7)

Lcvx = argmin
ν

BCE(Gν(ωs), s) + α ∥Nθ(fr)− σ(Gν(ωr))∥ . (8)

We have visualized the training results in Figure 4.

B.3 Sequential Training with SAM

In case of SAM [11], we project its outputs similar to (8) on the convex set. Therefore, we evaluate
the sigmoid of logits of the SAM model on the convexity dataset and sample an equal number of
foreground and background points. The spatial information of these samples is then the input to the
convex network.
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Table 3: Segmentation results using different network types and their convex projection, as well as
joint training of segmentation and input convex neural network. We report the mean, as well as the
standard deviation, over three differently seeded runs. The intersection over union (IoU) as well as
the pixel accuracy (Acc.) are calculated as the mean over each foreground object within the images
in the used dataset. See also Figure 4 for a bar plot.
Training Type Segmentation Model additional Input IoU ↑ Acc. ↑

Individually Trained

Predicted Seg.

CNN
spatial 0.697 ± 0.066 0.903 ± 0.028
semantic 0.726 ± 0.014 0.929 ± 0.006
spatial and semantic 0.778 ± 0.019 0.937 ± 0.005

FCN
spatial 0.732 ± 0.010 0.928 ± 0.003
semantic 0.714 ± 0.010 0.929 ± 0.003
spatial and semantic 0.736 ± 0.009 0.928 ± 0.003

Convex Seg.

CNN
spatial 0.763 ± 0.013 0.934 ± 0.006
semantic 0.843 ± 0.012 0.965 ± 0.004
spatial and semantic 0.766 ± 0.022 0.935 ± 0.007

FCN
spatial 0.711 ± 0.019 0.921 ± 0.006
semantic 0.851 ± 0.008 0.967 ± 0.002
spatial and semantic 0.746 ± 0.021 0.931 ± 0.005

Jointly Trained

Predicted Seg.

CNN
spatial 0.798 ± 0.004 0.943 ± 0.001
semantic 0.818 ± 0.012 0.957 ± 0.003
spatial and semantic 0.805 ± 0.014 0.946 ± 0.003

FCN
spatial 0.755 ± 0.013 0.931 ± 0.004
semantic 0.635 ± 0.008 0.898 ± 0.006
spatial and semantic 0.768 ± 0.003 0.935 ± 0.002

Convex Seg.

CNN
spatial 0.799 ± 0.005 0.944 ± 0.001
semantic 0.899 ± 0.002 0.978 ± 0.000
spatial and semantic 0.809 ± 0.015 0.948 ± 0.004

FCN
spatial 0.756 ± 0.006 0.932 ± 0.001
semantic 0.894 ± 0.013 0.977 ± 0.002
spatial and semantic 0.769 ± 0.010 0.936 ± 0.003
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