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Appendix

Three Towers: Flexible Contrastive Learning
with Pretrained Image Models

A Additional Experiments & Results

A.1 Training Dynamics

(a) (b) x107! (c) x10!
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Figure A.1: Training dynamics: (a) The transfer losses, L, <5, and Ly, <, p,,, improve the image-text
loss, £ .4, in 3T relative to the baseline. (b) Difference between matching loss terms for 3T, LiT, and
the baseline. 3T obtains better image-to-text loss than the baseline and similar locked-image-to-text
loss as LiT. (c) While the loss advantage of 3T over the baseline shrinks during training, this does not
happen for downstream applications; we display image-to-text retrieval on COCO as an example.
Moving averages applied to (a-b) for legibility.

In Fig. A.1, we compare the 3T training losses to LiT and the from-scratch baseline, using the familiar
L scale setup with JFT pretraining. For 3T, we display all loss terms separately: the image-text loss
L+ g, the image-to-third-tower loss Ly, 5, and the text-to-third-tower loss Ly, +;p,, cf. Eq. (4)
and Fig. 2. For LiT and the baseline, there is only the image-to-text loss as per Eq. (1). As we train
for less than one epoch, we do not observe any overfitting, in the sense that contrastive losses are
identical on the training and validation set.

The image-to-third-tower loss, L, «, 1, quickly reduces to near zero, indicating successful knowledge
transfer of the pretrained model into the image tower for 3T. Further, L., behaves similar to the
baseline loss; this makes sense because both objectives compute a loss between an unlocked image
tower and a text tower. Lastly, £y, +,p, closely follows LiT’s loss; this also makes sense because both
are losses between a locked pretrained image model and a text tower trained from scratch.

In Fig. A.1 (b), we compute the difference of the baseline (LiT) loss and matching 3T Ly, «sn,
(Lg, s h,) loss, and observe that 3T generally achieves lower (similar) values for the same objective.
This suggests a mutually beneficial effect for the individual loss terms of the 3T objective. By aligning
the main image and text towers to the pretrained model, 3T obtains improved alignment between the
main towers themselves. For the training loss, this effect is large early in training and then decreases.
However, for downstream task application, we find that the gap between 3T and the baseline persists;
we display retrieval on COCO as an example in Fig. A.1 (c).

A.2 Robustness Metrics

In this section, we study 3T, LiT, and the from-scratch baseline from a robustness perspective,
evaluating on a subset of the tasks considered by Tran et al. [71]. Following §4.3, we evaluate
all methods across multiple model scales and for both JFT and IN-21k pretraining. We use the
full Unfiltered WebLI for all results here. We apply models in zero-shot fashion to these datasets,
following the same protocol as for the main zero-shot classification experiments. We continue to
use the global temperature 7, cf. §3, learned during training to temper the probabilistic zero-shot
predictions.

16



690

691
692
693

694
695
696

698
699
700
701
702
703

704
705

707
708
709
710

71
712
713
714
715
716
717

718

719
720
721
722
723
724
725

726
727
728
729
730
731
732
733
734
735
736
737

739
740
741
742
743

A.2.1 Probabilistic Prediction and Calibration on CIFAR and ImageNet Variants

In Fig. A.2, we report accuracy, negative log likelihood (NLL), Brier score [22], and expected
calibration error (ECE) [47] for 3T, LiT, and the baseline across scales for the following datasets:
CIFAR-10, CIFAR-10-C, ImageNet-1k (IN-1k), IN-A, IN-v2, IN-C, and IN-R.

Accuracy. Across all datasets, we find the familiar scaling behavior discussed in §4.2: 3T is
consistently better than the baseline, 3T benefits more from increases in scale than LiT, LiT performs
well with JFT pretraining but shows weaknesses when pretrained on IN-21k. Note that, for the
ImageNet variants, we have previously reported the accuracies (if only at L scale) in §4.2. (Note
further, that there might be small discrepancies, because we actually recompute all numbers from a
different codebase for the robustness evaluations [15].) For CIFAR-10 [40] and CIFAR-10-C [28],
which we have not previously discussed, we also find the familiar scaling behavior. The absolute
reduction of performance between CIFAR-10 and CIFAR-10-C is similar across methods, indicating
that no approach is significantly more robust to shifts. We observe the same comparing IN-1k to
IN-C.

Probabilistic Prediction and Calibration. NLL and Brier scores follow the general trend laid out
by the accuracy results. Evidently, the probabilistic zero-shot predictions of the methods are all
of similar high quality, cf., for example, Tran et al. [71], who investigate probabilistic few-shot
predictions. This is confirmed by the ECE results: across tasks, ECE values do not exceed 0.1 at L
scale. For 3T, calibration results are regularly better than for LiT, particularly if pretrained on IN-21k,
and comparable to those of the baseline: 3T and the baseline have lower calibration error than LiT on
6 out of 7 tasks at L scale with IN-21k pretraining.

We find the low magnitude of the calibration errors surprising. It is striking that the softmax
temperature learned during contrastive training would work so well across the various downstream
task applications. After all, finding matches across a batch from the contrastive learning dataset and
assigning images to labels are, at least superficially, quite distinct tasks. We stress again that no task
adaptation of either the models, prompt templates, or softmax-temperatures was performed. We refer
to Minderer et al. [45] for a general categorization of our calibration results and discussion in the
context of deep learning models.

A.2.2 Out-Of-Distribution Detection

We evaluate the performance of 3T, LiT, and the baseline for out-of-distribution (OOD) detection.
We follow the common practice of thresholding the maximum softmax probabilities (MSP) of the
models to obtain a binary classifier into in- and out-of-distribution [30, 20]. We report the following
metrics: area under the precision-recall curve (AUC(PR)), the area under the receiver operating curve
(AUROC), as well as the false positive rate at 95 % true positives (FPR95). Following Tran et al. [71],
we study CIFAR-10 as in-distribution against CIFAR-100, DTD, Places365, and SVHN as out-of-
distribution. We also report numbers for IN-1k (in-distribution) vs. Places365 (out-of-distribution).

Typically for OOD evaluations, the model is trained on the in-distribution data. Here, we apply
methods in a zero-shot manner: we only condition the text tower on the label set of the particular
in-distribution dataset. Our image and text towers are trained on the contrastive learning data (image
tower trained on JFT/IN-21k for LiT) and not adapted to the in-distribution samples. Our contrastive
learning methods ‘learn’ about the in-distribution data only through the label set, and they have to
classify each incoming sample as ‘in-distribution’ or ‘out-of-distribution’ based solely on how well it
aligns with the given set of labels. If a given sample does not match any of the in-distribution labels
well, prediction confidence is low, and the sample is classified as OOD. This setup diverges from
typical assumptions about OOD experiments and should be interpreted with care. For example, if
there were label overlap between the in- and out-of-distribution data (e.g. as would be the case for
SVHN vs. MNIST), it would be impossible for the model to classify between in-distribution and
OOD without further assumptions. OOD for CLIP/ALIGN-style models has been studied in similar
settings by Fort et al. [20], Esmaeilpour et al. [18].

We display results in Fig. A.3. Generally, OOD detection works well with the contrastively learned
models, despite conditioning only on the label set: for example, the AUROC for CIFAR10 exceeds
0.95 for both 3T and LiT at L scale for both IN-21k and JFT pretraining. The different metrics,
AUC(PR), AUROC, and FPR95, are generally consistent in their ranking across scales and methods.
We again find the familiar pattern: 3T is consistently improving over the baseline, and 3T catches up
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Figure A.2: Robustness evaluation: Accuracy, negative log likelihood (NLL), Brier score, and
expected calibration error (ECE) for 3T, LiT, and the baseline for IN-21k and JFT pretraining across
scales.
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detection (OOD). Reported metrics are area under the precision
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to LiT as scale is increased. For OOD detection, LiT generally does better than 3T and the baseline,
perhaps owing to the fact that our choice of CIFAR/IN-1k as in-distribution datasets is advantageous
for LiT (similar to how LiT performs particularly well for these datasets for classification).

We find differences between JFT and IN-21k pretraining to be much smaller for the OOD detection
task. In fact, in some cases, IN-21k pretraining outperforms JFT pretraining, for example with LiT
for the CIFAR-10 vs. Places365 detection task. (This might again be due to the fact that IN-21k
pretraining is sufficient for application to CIFAR-10, and only struggles to perform well for other,
more varied datasets.) Further, we can observe a rare victory of 3T over JFT-LiT and the baseline
at L and g scale in terms of FPR95 on CIFAR-10 vs. Places365 and CIFAR-10 vs. SVHN. Lastly,
we see LiT has almost fixed performance at ~ 0.98 for the CIFAR-10 vs. SVHN task across scales,
perhaps due to early task saturation.

A.2.3 JFT Pretraining — Additional Results

In Table A.1, we report few- and zero-shot classification performance for 3T, LiT, and the baseline
across our selection of datasets for L scale models and JFT pretraining. LiT outperforms 3T and the
baseline on average for few- and zero-shot classification tasks.

In Table A.2, we report performance for g scale models and JFT pretraining across all three splits of
the WebLI dataset described in §4. Retrieval performance is generally best for all methods for the
Text-Filtered WebLlI split, with 3T generally performing best across splits and tasks. For classification,
for 3T and the baseline, performance on Text- and Pair-Filtered WebLI is significantly better than
on Unfiltered WebLlI, with LiT generally performing best across splits. In line with our previous
observations, the differences between the WebLlI splits are smaller for LiT. As the image tower is kept
fixed during contrastive training, LiT performance is influenced less by the contrastive learning setup.

Retrieval Results: Comparison to SOTA. While our retrieval performance is competitive, 3T does
not set a new state-of-the art, see, for example, the CoCa paper [80] (Table 3) for a comparison of
current methods. While SOTA results were never the aim of this paper—we instead study pretrained
models for contrastive learning—there are a few advantages the CoCa setup has, and from which
3T would likely benefit, too. Most notably, CoCa trains for about 6 times more examples seen
than we do here (32B vs. 5B). Our scaling experiments, cf. Fig. A.4, suggest we would expect a
significant performance increase for longer training. There are further differences that likely benefit
CoCa, such as the use of a larger batch size (65k for them vs 14k for us) or training on images
with higher resolution for a portion of training (CoCa goes from 288x288 to 576 x576, we stay
at 288 x288)—both of these changes significantly increase computational costs beyond the budget
available to us: while CoCa training takes ‘about 5 days on 2,048 CloudTPUv4 chips’[80], our g
scale runs train for about the same duration on only 512 v4 TPU chips. It would be interesting to see
if, in a fairer comparison, 3T matches or outperforms CoCa for retrieval tasks. Alternatively, ideas
from 3T could also be used to improve CoCa-like architectures.
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Table A.1: For JFT-pretraining, LiT outperforms 3T and the baseline on average on few- and
zero-shot classification tasks. L scale models trained on Unfiltered WebLlI.

Method Basel. LiT 3T
- IN-1k 62.8 813 677
£ CIFAR-100 704 832 743
S Caltech 91.0 89.0 91.8
Z Pets 859 968 884
@) DTD 703 721 724
g UCMerced 918 955 93.1
Z Cars 81,5 929 87.1
& Col-Hist 717 813 770

Birds 534 856 624

IN-1k 69.5 80.1 72.0

CIFAR-100 735 80.1 752

Caltech 819 795 825
g Pets 842 963 887
i DTD 586 59.0 59.0
8 IN-C 496 68.1 52.8
S IN-A 530 69.1 564
= IN-R 858 91.7 884
% IN-v2 622 740 654
£ ObjectNet 562 619 59.3
N EuroSat 327 366 547

Flowers 62.0 76.7 66.6

RESISC 580 589 609

Sun397 67.6 69.7 68.1
Average 684 714 724
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Table A.2: Results for the baseline, 3T, and LiT for g scale models and JFT pretraining for a selection
of different splits of the WebLlI dataset. 3T outperforms LiT for retrieval tasks, while LiT performs
better for image classification. The from-scratch CLIP/ALIGN-style baseline is not competitive.

Dataset Unfiltered WebLlI Pair-Filtered WebLI Text-Filtered WebLI
Method Basel. LiT 3T Basel. LiT 3T Basel. LiT 3T
Flickr img2txt 752 83.0 81.5 814 832 84.0 85.0 839 873
T; Flickr* img2txt 80.0 84.8 842 80.7 839 856 86.7 852 883
2 Flickr txt2img 582 613 643 614 639 66.5 67.0 66.5 72.1
E Flickr* txt2img 60.1 63.1 65.6 62.7 654 68.4 682 67.6 729
COCO img2txt 523 577 575 584 59.7 61.7 60.0 59.5 64.1
COCO txt2img 375 400 41.1 412 419 439 447 43.6 485
- IN-1k 675 84.6 72.8 71.8 84.6 75.7 69.6 846 739
% CIFAR-100 727 832 78.0 73.1 832 78.7 764 832 80.0
= Caltech 91.8 90.0 933 89.7 90.0 90.9 90.8 90.0 924
Z Pets 884 978 91.5 93.0 97.8 943 88.8 978 914
@) DTD 70.7 746 747 742 746 76.1 73.6 746 76.0
E UC Merced 929 969 94.7 952 969 95.6 952 969 96.5
Vé) Cars 84.1 933 88.6 92.6 933 935 89.0 933 91.6
L Col-Hist 720 83.6 76.2 77.8 83.6 80.9 735 836 794
Birds 60.7 89.7 69.8 764 89.7 80.7 625 89.7 71.1
IN-1k 73.5 84.0 763 78.0 84.7 79.6 75.8 843 782
CIFAR-100 775 81.3 80.3 76.2 813 79.5 80.6 81.8 823
Caltech 79.8 814 823 84.0 824 829 79.5 809 81.9
.5 Pets 87.0 964 92.7 928 97.7 93.0 88.1 965 91.5
§ DTD 592 62.1 649 589 556 60.1 614 620 62.1
E IN-C 549 729 582 577 733  60.3 576 733 613
5 IN-A 649 802 67.8 599 795 65.1 67.8 80.5 70.8
= IN-R 89.8 944 91.8 90.5 942 9238 91.8 946 933
5:': IN-v2 66.4 78.1 69.5 70.8 792 73.0 69.1 785 714
% Objectnet 62.7 703 65.3 569 683 59.5 633 700 659
N Eurosat 55.7 336 489 329 30.7 4238 479 36.1 52.1
Flowers 71.0 842 735 824 863 83.0 694 86.6 725
RESISC 61.5 584 60.5 59.8 565 64.8 654 57.8 61.7
Sun397 688 71.0 703 689 719 69.8 70.2 71.6 70.9
Average 702  77.0 73.7 724 770 753 73.1 777 759
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A.2.4 Pretraining Robustness — Additional Results

In Table A.3, we report results on additional tasks for 3T, LiT, and the baseline for both the ‘mis-
matched’ setup and Places365 pretraining. We find again that 3T is much more robust in both setups,
significantly outperforming LiT. The difference is particularly striking when using models pretrained
on Places365, where LiT’s performance degrades drastically while 3T is still able to improve over
the baseline.

Table A.3: Testing robustness to the ‘mismatched setup’ and Places365 pretraining (instead if
IN-21k/JFT) for 3T and LiT. In both cases, 3T performs significantly better than LiT. In particular
when using models pretrained on Places365, LiT’s performance degrades dramatically while 3T
continues to improve over the baseline on average. (Note that the baselines here are different not
because they use the pretraining dataset, but because we compare to an L scale baseline for the
mismatched setup and a B scale baseline (trained for only 900M examples seen) for Places365
pretraining.) We refer to the main text for full details.

Experiment Mismatched Setup Places365 Pretraining
Method Basel. LiT 3T Basel. LiT 3T
~ Flickr* img2txt ~ 75.6  66.5 80.2 560 355 58.1
3 Flickr* txt2img ~ 57.1 451 62.1 362 195 384
§ COCO img2txt  51.0 441 545 341 193 365
COCO txt2img 342 264 378 21.0 109 221
- IN-1k 628 703 676 378 166 415
2 CIFAR-100 704 803 738 471 339 527
S Caltech 91.0 88.1 917 89 665 885
Z Pets 859 86.0 86.8 56.8 203 59.9
O DTD 703 663 3.4 584 397 63.1
g UC Merced 91.8 915 938 858 80.8 894
"; Cars 815 367 853 570 10.1 586
& Col-Hist 717 844 743 729 707 787
Birds 534 768 652 332 157  38.1
IN-1k 69.5 69.5 715 456 245 474
CIFAR-100 735 186 756 483 274 524
Caltech 81.9 820 812 766 627 77.0
g Pets 842 847 874 615 303 602
ki DTD 58.6 494 60.6 39.8 236 39.7
= IN-C 496 555 518 253 144 273
§ IN-A 53.0 29.1 541 120 47 125
= IN-R 858 60.7 879 56.1 203 582
% IN-v2 622 61.1 650 39.4 207 405
s Objectnet 56.2 349 57.8 284 13 296
N Eurosat 327 331 525 337 156 213
Flowers 620 741 662 376 174 373
RESISC 580 290 574 379 240 383
Sun397 67.6 620 684 551  60.6 57.3
Average 66.4 617 698 475 294 493
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A.3 Scaling Model Sizes and Training Duration — Additional Results

Complementing the results of §4.3, in Fig. A.4 we report the performance when scaling only the
number of examples seen during training, keeping the model sizes fixed at B scale. We observe a
similar trend to §4.3 / Fig. 3, where 3T benefits more from increases in scale than LiT. Note that,
because the dataset size is 10B samples, all of our runs equate to less than a full epoch.

Retrieval Few-Shot Classification Zero-Shot Classification
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Figure A.4: Increasing training duration of 3T, LiT, and the baseline; average retrieval, few- and
zero-shot classification performance. The model scale is B (B/32 for ViTs) for all approaches and
towers. 3T and the baseline benefit more from increases in scale than LiT, with 3T maintaining a
consistent increase in performance over the baseline. Note that the few-shot performance for LiT is
fixed, as only the locked pretrained image tower is used for fewshot applications.

A.4 Benefits From Using 3T With All Three Towers at Test Time — Extended Version

We usually discard the pretrained model when applying 3T to downstream tasks, cf. Fig. 2 (b).
Instead, in this section, we explore whether we can find benefits from using the locked third tower at
test time, similar to LiT. More specifically, we are interested in interpolating between the main image
tower and locked pretrained model in the third tower. Can we interpolate between 3T- and LiT-like
prediction by combining the image embeddings?

This idea does not work directly with the default 3T due to our use of linear projection heads,
cf. Fig. 2 (a), since there is no unified embedding space that all towers embed to. Therefore, we
introduce a ‘headless 3T” variant, for which we do not use the linear projection heads, hy, hg, fr, and
gn- (Alternatively, one may think of all linear projection heads fixed to identity mappings.) Thus, all
losses directly use the same embeddings, f(I), p(I), and g(T'), making the embedding spaces directly
comparable. Here, we train B scale models for 3.6B examples seen and use an IN-21k-pretrained
model. Further note that the average zero-shot classification performance we report here is over only
a subset of the list of tasks used in §4.2: we consider IN-1k, CIFAR-100, and Pets. The selection of
few-shot classification and retrieval tasks remains the same, although we do not use the Karpathy
split for Flickr here.*

In Fig. A.5, we display the average retrieval, few-shot classification, and zero-shot classification
performance for the convex combination, alongside a comparable LiT run and a 3T run with default
projection head setup. Across all tasks, we observe similar behavior: for o = 0 (full weight on the
third tower), we obtain performance close to, but ultimately below, LiT; performance then increases
with «, peaking for a € [1/4, 3/4], before decreasing again. At a = 1 (full weight on main image
tower), we recover the performance of the headless 3T setup. Interestingly, for retrieval and few-shot
classification tasks, the convex combination yields better performance than either of the towers
separately across a relatively broad band of « values.
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Figure A.5: Convex combination of the image models in 3T: a-h(I)+(1—«)- f(I). By varying o, we
can generally interpolate between 3T and LiT performance. Interestingly, for a broad range of weights,
the retrieval and few-shot classification performance of the combination outperforms 3T and LiT.

Perhaps counterintuitively, for « = 0, we do not recover the performance of LiT exactly. The reasons
for this differ between tasks: For retrieval and zero-shot applications, while the image tower is
identical to that of LiT, the text tower is different as it has been trained with the 3T objective. For
few-shot application, the default evaluation procedure of Zhai et al. [84] uses the prelogits of the ViTs
underlying f and h as inputs to the few-shot classifier, i.e. not the final embeddings. As the prelogit
spaces of f and h are not aligned, here, we need to instead construct the convex combination in
embedding space, which does however mean that & = 0 does not give performance equivalent to LiT.
Lastly, although the 3T run with the default projection heads does not seem to perform better than ‘3T
headless’ in this instance, we have seen ‘headless’ setups underperform in preliminary experiments
and would suggest additional experiments before opting for a headless design, see also §A.5.

We believe that further study of this approach is exciting future work: the method is entirely post-hoc
and no additional training costs are incurred, although inference costs do increase.

A.5 Ablation

In this section, we give additional results and details for the ablation study presented in §4.6. Table A .4
gives additional results, extending Table 5 in the main paper. In addition to the mean and two standard
errors, we also report standard deviations over tasks here. Note that, for zero-shot classification
performance, we only have access to a subset of the full list of tasks used in Section 4.2: we consider
IN-1k, CIFAR-100, and Pets. The selection of few-shot classification and retrieval tasks remains the
same, although we do not use the Karpathy split for Flickr here.*

No L..,. — Details. For this ablation we consider leaving out either of the three loss terms. ‘No
Leq’: We replace the 3T loss by % “(Lyp,ony + Ly, on,). No Ly, oon,”: We replace the 3T loss
by 3 - (Lycrg + Lg,crh,)- ‘N0 Ly, n,’: We replace the 3T loss by 1 - (L + Ly, >n, ). When
leaving out either of the three loss terms, average performance suffers significantly. Leaving out the
loss between the main two towers (obviously) has the biggest negative effect, as the main embeddings,
f(I) and g(T), are not aligned during training.

Head Variants — Details and Additional Results. In the main part of the paper, we have only given
results for the best alternative variant for the projection head setup. Here, we describe all variants and
report results individually. We refer to Fig. 2 (a) for the projection head notation. ‘Heads only on
Third Tower’: The main tower projection heads f5 and g;, are fixed to identity mappings. ‘Heads
Only on Main Towers’: The third tower projection heads iy and h, are fixed to identity mappings.
‘No Heads/Headless’: This is the setup described in §A.4: all linear projections h¢, hy, frn, gn are
fixed to identity mappings. ‘Heads Fully Independent’: This setup adds linear projection heads before
the computation of L4, i.e. we compute fo(I) = Lin(f(I)) and g¢(T") = Lin(g(7T")), and then
compute the loss £ fqrg; (instead of Lsq). In Table A 4, we give results for all variants that we try;
none outperform the base variant significantly, while some underperform.

MLP Embedding — Details. When replacing the linear projection h in the third tower with an
MLP, we use the following architecture: MLP(z) = Liny(GELU(Lin;(z)), where we use GELU
non-linearities [29], Lin; expands the embedding dimensionality of the input by a factor of 4, and
Liny maps to the shared embedding dimension D.

3T with Loss Weights — Details and Additional Results. We replace the standard 3T loss with
a weighted objective 1 - (Lyeyg +w - (Ly,5n, + Lg,<sn,))- For the weights w, we sweep over
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Table A.4: Extended results for the 3T ablation study. Difference to the 3T reference run for various
architecture ablations. We report mean, standard deviation, and two standard errors of the differences
over the downstream task selection.

Difference Mean Standard Deviation Two Standard Errors
Rerun -0.22 0.50 0.25
No L -26.63 21.22 10.61
No Ly, sh; -1.19 1.51 0.75
No Ly, +sh, -2.77 1.83 0.91
(Head Variants (best)) 0.09 0.70 0.35
Heads Only on Third Tower 0.09 0.70 0.35
Heads Only on Main Towers ~ -0.67 0.66 0.33
Heads Fully Independent -0.60 0.63 0.32
No Heads/Headless -0.47 1.04 0.52
MLP Embedding -0.08 0.69 0.35
More Temperatures -0.26 0.95 0.48
(Loss weight = 2 (best)) 0.17 1.06 0.53
Loss weight 0.1 -2.31 1.33 0.67
Loss weight 0.5 -0.90 0.81 0.41
Loss weight 2 0.17 1.06 0.53
Loss weight 10 -0.56 1.74 0.87
(L2 Transfer (best)) -3.80 2.27 1.13
L2 Transfer w=0.0001 -4.40 1.89 0.94
L2 Transfer w=0.001 -3.80 2.27 1.13
L2 Transfer w=0.05 -4.41 2.24 1.12
L2 Transfer w=0.01 -4.17 1.97 0.99
L2 Transfer w=.1 -3.97 2.06 1.03
L2 Transfer w=.5 -7.12 2.95 1.48
L2 Transfer w=1 -11.38 4.39 2.19
L2 Transfer w=2 -16.09 5.14 2.57
L2 Transfer w=10 -46.80 14.32 7.16
3T Finetuning 1.85 2.53 1.27

w € {0.1,0.5,2,10}. All weights except w = 2 lead to an average performance decrease. However,
the size of the effect for w = 2 is small relative to twice the standard error.

L2 Representation Transfer — Details and Additional Results. We investigate the use of squared
losses for the representation transfer between the main towers and the third tower instead of relying
on the contrastive loss. Concretely, we replace the 3T loss, Eq. (4), with

N
1 1
3 {Efﬁg +wr D () = Ay (I + llgn(Th) = (1)) } : 5)
For the weight hyperparameters w, we sweep over a large set of values, w €
{0.0001, 0.001,0.05,0.01,0.1,0.5,1,2,10}. L2 representation transfer gives worse results than
the contrastive loss for all values of w we try, corroborating the results of Tian et al. [70].

Finetuning — Details and Additional Results. Initializing the main tower in 3T with the same JFT-
pretrained model as the third tower boosts performance significantly, increasing average performance
from 56.76 to 58.61. A rerun confirmed these results; we obtained an increase from 56.46 to 58.82.
Excited by this, we explored the 3T finetuning setup at other scales, and report performance in
Table A.5. Note that here, we increase the numbers of examples seen during training from 450M (S
scale) to 900M (B scale) to 5B (L scale). We observe that, as we increase the scale of the experiments,
the gains from finetuning the main image tower decrease until they are negligible (compared to rerun
variance). We therefore have opted to not make finetuning the main tower part of the standard 3T
setup, as it (a) complicates the setup and (b) restricts the main tower to be the same model architecture
and scale as the third tower.
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Table A.5: Finetuning for 3T: Initializing the main tower in 3T with the same pretrained model as the
third tower improves performance significantly at smaller but not larger experiment scales.

Pretraining Scale Avg. Performance 3T  Avg. Performance 3T Finetuned

JFT B 56.76 58.61
L 73.97 74.22
IN-21k S 44.39 47.61
B 56.30 58.83
L 73.63 73.83

‘FlexiLLiT 1/2° — Details. With the FlexiLiT variants, cf. Table 5 in the main body of the pa-
per, we investigate if there are other, simple ways to improve LiT. For both variants, we create
a new ‘half-locked’ image tower by adding learnable components to the frozen pretrained image
model. For FlexiLiT 1, we add a lightweight learnable 4-layer MLP on top of the frozen back-
bone: FlexiLiT-1(I) = MLP(LiT(I)). The MLP has 4 layers, uses GELU-nonlinearities, and
an expansion factor of 4. For FlexiLiT 2, we add an additional learnable ViT next to the locked
backbone (adding significant cost) and merge representations with an MLP: FlexiliT-2(I) =
MLP(concat(LiT(I)), ViT(])). The additional ViT is B/32, following the main locked image tower.
The MLP merging the two representations is an MLP with the same configuration as for FlexiLiT 1.

B Implementation Details

We follow Zhai et al. [84] for optimization and implementation details. We use the open-source
vision transformer implementation available from Beyer et al. [4].

Unless otherwise mentioned, we use Transformers of scale L, with a 16x 16 patch size for the ViT
image towers, i.e. L/16. We train for 5B examples seen at a batch size of 14 - 1024, i.e. for about
350000 steps. We resize input images to 224 x 224 resolution, and normalize pixel values to the
[—1, 1] range. Note that for experiments with g scale models, we resize images to 288 x 288 instead.
We use a learning rate of 0.001, warming up linearly for 10 000 steps, before following a cosine
decay schedule. We use the Adafactor optimizer [64] with default 5; = 0.9 and 8> = 0.99, and we
clip gradients if their norm exceeds 1.0. For g scale runs, we set 2 = 0.95 by default, which we
found to be important to ensure training stability. We use weight decay of 0.001.

We aggregate embeddings across tokens using multihead attention pooling, i.e. an attention block
where the query is a single learned latent vector, and the keys and values are the outputs of the vision
transformer (cf. vit.py in the code base [4]).

For details on how the different model scales and patch sizes relate to transformer width, depth, MLP
dimension, the number of heads, or parameter count, we refer to Table 1 in [17] and Table 2 in [83].

Compute Cost. We train our models on v3 and v4 TPUs. For our main experiments at L scale, we
use 256 TPU chips per experiment. Our 3T runs converge in about three days, for example, the 3T
run with JFT pretraining took 63 hours of training time to converge over 348772 training steps. The
baseline converges in 54 hours, and LiT in 35. For our five main experiments at L scale—3T, LiT for
JFT and IN-21k pretraining, and a baseline run—the total runtime was about 280 hours, or about 8
TPU—-Chip years worth of compute for the L scale experiments of this project. At g scale, we use 512
TPU chips per run, and our 3T runs converge in about 5 days.

Below we mention additional details pertaining to only some of the experiments.

Details on Few-Shot Classification. Following Zhai et al. [84], we use the prelogits of the ViTs
instead of the final embeddings as input to the linear few-shot classifier.

Details on Places Experiment. Following Zhai et al. [84], for the Places365 experiment, we use a
B/16 ResFormer [69] as the pretrained model.
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C Societal Impact

With 3T, we introduce a novel machine learning method for learning joint embeddings of images and
text. We train on large datasets of noisy and potentially biased data crawled from the internet. The
same general caveats that apply to CLIP/ALIGN and LiT may also apply to 3T. We refer to §7 in
Radford et al. [57] for a general discussion of the societal impact these methods may have.

Additionally, we wish to highlight the importance of carefully evaluating these models, testing for
specific undesired behavior, before applying them in production. While the zero- and few-shot
classification capabilities of these models are generally impressive, it is also important to consider
their limitations and not succumb to wishful thinking when it comes to the real-world performance of
these models on arbitrary tasks. For example, all of the approaches we study here do not perform well
for zero-shot prediction on the structured and specialized tasks contained in VTAB, which include,
for example, medical applications. It is therefore particularly important to carefully evaluate the
performance of these methods when applied to real-world applications. Lastly, because 3T and LiT
rely on two datasets for training, a classification and a contrastive learning dataset, this can complicate
investigations into undesired biases in the final model.

D Libraries & Dataset

We rely on the Jax [5], Flax [26], and TensorFlow [1] Python libraries for our implementation.
Additionally, we make use of the Big Vision [4] and Robustness Metrics [15] code bases.

For retrieval performance, we evaluate on Microsoft COCO [10] and Flickr30k [55]. For image
classification, we evaluate on IN-1k [40, 60], CIFAR-100 [40], Caltech-256 [23], Oxford-IIIT Pet
[52], Describable Textures (DTD) [13], UC Merced Land Use [79], Stanford Cars [39], Col-Hist
[37], Birds [72], ImageNet variants -C [28], -A [32], -R [31], -v2 [58], ObjectNet [3], EuroSat [27],
Oxford Flowers-102 [49], NWPU-RESISC45 [12], and Sun397 [77].

We take the EuroSat, Flowers, RESISC, and Sun397 datasets from the Visual Task Adaptation
Benchmark (VTAB) [82]. They are the only VTAB datasets for which at least one method achieved
better than trivial performance.

28



