
Appendix659

Three Towers: Flexible Contrastive Learning660

with Pretrained Image Models661

A Additional Experiments & Results662

A.1 Training Dynamics663
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Figure A.1: Training dynamics: (a) The transfer losses, Lfh↔hf
and Lgh↔hg , improve the image-text

loss, Lf↔g , in 3T relative to the baseline. (b) Difference between matching loss terms for 3T, LiT, and
the baseline. 3T obtains better image-to-text loss than the baseline and similar locked-image-to-text
loss as LiT. (c) While the loss advantage of 3T over the baseline shrinks during training, this does not
happen for downstream applications; we display image-to-text retrieval on COCO as an example.
Moving averages applied to (a-b) for legibility.

In Fig. A.1, we compare the 3T training losses to LiT and the from-scratch baseline, using the familiar664

L scale setup with JFT pretraining. For 3T, we display all loss terms separately: the image-text loss665

Lf↔g, the image-to-third-tower loss Lfh↔hf
, and the text-to-third-tower loss Lgh↔hg

, cf. Eq. (4)666

and Fig. 2. For LiT and the baseline, there is only the image-to-text loss as per Eq. (1). As we train667

for less than one epoch, we do not observe any overfitting, in the sense that contrastive losses are668

identical on the training and validation set.669

The image-to-third-tower loss, Lfh↔hf
, quickly reduces to near zero, indicating successful knowledge670

transfer of the pretrained model into the image tower for 3T. Further, Lf↔g behaves similar to the671

baseline loss; this makes sense because both objectives compute a loss between an unlocked image672

tower and a text tower. Lastly, Lgh↔hg
closely follows LiT’s loss; this also makes sense because both673

are losses between a locked pretrained image model and a text tower trained from scratch.674

In Fig. A.1 (b), we compute the difference of the baseline (LiT) loss and matching 3T Lfh↔hf
675

(Lgh↔hg
) loss, and observe that 3T generally achieves lower (similar) values for the same objective.676

This suggests a mutually beneficial effect for the individual loss terms of the 3T objective. By aligning677

the main image and text towers to the pretrained model, 3T obtains improved alignment between the678

main towers themselves. For the training loss, this effect is large early in training and then decreases.679

However, for downstream task application, we find that the gap between 3T and the baseline persists;680

we display retrieval on COCO as an example in Fig. A.1 (c).681

A.2 Robustness Metrics682

In this section, we study 3T, LiT, and the from-scratch baseline from a robustness perspective,683

evaluating on a subset of the tasks considered by Tran et al. [71]. Following §4.3, we evaluate684

all methods across multiple model scales and for both JFT and IN-21k pretraining. We use the685

full Unfiltered WebLI for all results here. We apply models in zero-shot fashion to these datasets,686

following the same protocol as for the main zero-shot classification experiments. We continue to687

use the global temperature τ , cf. §3, learned during training to temper the probabilistic zero-shot688

predictions.689
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A.2.1 Probabilistic Prediction and Calibration on CIFAR and ImageNet Variants690

In Fig. A.2, we report accuracy, negative log likelihood (NLL), Brier score [22], and expected691

calibration error (ECE) [47] for 3T, LiT, and the baseline across scales for the following datasets:692

CIFAR-10, CIFAR-10-C, ImageNet-1k (IN-1k), IN-A, IN-v2, IN-C, and IN-R.693

Accuracy. Across all datasets, we find the familiar scaling behavior discussed in §4.2: 3T is694

consistently better than the baseline, 3T benefits more from increases in scale than LiT, LiT performs695

well with JFT pretraining but shows weaknesses when pretrained on IN-21k. Note that, for the696

ImageNet variants, we have previously reported the accuracies (if only at L scale) in §4.2. (Note697

further, that there might be small discrepancies, because we actually recompute all numbers from a698

different codebase for the robustness evaluations [15].) For CIFAR-10 [40] and CIFAR-10-C [28],699

which we have not previously discussed, we also find the familiar scaling behavior. The absolute700

reduction of performance between CIFAR-10 and CIFAR-10-C is similar across methods, indicating701

that no approach is significantly more robust to shifts. We observe the same comparing IN-1k to702

IN-C.703

Probabilistic Prediction and Calibration. NLL and Brier scores follow the general trend laid out704

by the accuracy results. Evidently, the probabilistic zero-shot predictions of the methods are all705

of similar high quality, cf., for example, Tran et al. [71], who investigate probabilistic few-shot706

predictions. This is confirmed by the ECE results: across tasks, ECE values do not exceed 0.1 at L707

scale. For 3T, calibration results are regularly better than for LiT, particularly if pretrained on IN-21k,708

and comparable to those of the baseline: 3T and the baseline have lower calibration error than LiT on709

6 out of 7 tasks at L scale with IN-21k pretraining.710

We find the low magnitude of the calibration errors surprising. It is striking that the softmax711

temperature learned during contrastive training would work so well across the various downstream712

task applications. After all, finding matches across a batch from the contrastive learning dataset and713

assigning images to labels are, at least superficially, quite distinct tasks. We stress again that no task714

adaptation of either the models, prompt templates, or softmax-temperatures was performed. We refer715

to Minderer et al. [45] for a general categorization of our calibration results and discussion in the716

context of deep learning models.717

A.2.2 Out-Of-Distribution Detection718

We evaluate the performance of 3T, LiT, and the baseline for out-of-distribution (OOD) detection.719

We follow the common practice of thresholding the maximum softmax probabilities (MSP) of the720

models to obtain a binary classifier into in- and out-of-distribution [30, 20]. We report the following721

metrics: area under the precision-recall curve (AUC(PR)), the area under the receiver operating curve722

(AUROC), as well as the false positive rate at 95% true positives (FPR95). Following Tran et al. [71],723

we study CIFAR-10 as in-distribution against CIFAR-100, DTD, Places365, and SVHN as out-of-724

distribution. We also report numbers for IN-1k (in-distribution) vs. Places365 (out-of-distribution).725

Typically for OOD evaluations, the model is trained on the in-distribution data. Here, we apply726

methods in a zero-shot manner: we only condition the text tower on the label set of the particular727

in-distribution dataset. Our image and text towers are trained on the contrastive learning data (image728

tower trained on JFT/IN-21k for LiT) and not adapted to the in-distribution samples. Our contrastive729

learning methods ‘learn’ about the in-distribution data only through the label set, and they have to730

classify each incoming sample as ‘in-distribution’ or ‘out-of-distribution’ based solely on how well it731

aligns with the given set of labels. If a given sample does not match any of the in-distribution labels732

well, prediction confidence is low, and the sample is classified as OOD. This setup diverges from733

typical assumptions about OOD experiments and should be interpreted with care. For example, if734

there were label overlap between the in- and out-of-distribution data (e.g. as would be the case for735

SVHN vs. MNIST), it would be impossible for the model to classify between in-distribution and736

OOD without further assumptions. OOD for CLIP/ALIGN-style models has been studied in similar737

settings by Fort et al. [20], Esmaeilpour et al. [18].738

We display results in Fig. A.3. Generally, OOD detection works well with the contrastively learned739

models, despite conditioning only on the label set: for example, the AUROC for CIFAR10 exceeds740

0.95 for both 3T and LiT at L scale for both IN-21k and JFT pretraining. The different metrics,741

AUC(PR), AUROC, and FPR95, are generally consistent in their ranking across scales and methods.742

We again find the familiar pattern: 3T is consistently improving over the baseline, and 3T catches up743
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Figure A.2: Robustness evaluation: Accuracy, negative log likelihood (NLL), Brier score, and
expected calibration error (ECE) for 3T, LiT, and the baseline for IN-21k and JFT pretraining across
scales.
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Figure A.3: Robustness evaluation: 3T, LiT, and the baseline for zero-shot out-of-distribution
detection (OOD). Reported metrics are area under the precision-recall curve (AUC(PR)), the area
under the receiver operating curve (AUROC), and the false positive rate at 95% true positives
(FPR95).
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to LiT as scale is increased. For OOD detection, LiT generally does better than 3T and the baseline,744

perhaps owing to the fact that our choice of CIFAR/IN-1k as in-distribution datasets is advantageous745

for LiT (similar to how LiT performs particularly well for these datasets for classification).746

We find differences between JFT and IN-21k pretraining to be much smaller for the OOD detection747

task. In fact, in some cases, IN-21k pretraining outperforms JFT pretraining, for example with LiT748

for the CIFAR-10 vs. Places365 detection task. (This might again be due to the fact that IN-21k749

pretraining is sufficient for application to CIFAR-10, and only struggles to perform well for other,750

more varied datasets.) Further, we can observe a rare victory of 3T over JFT-LiT and the baseline751

at L and g scale in terms of FPR95 on CIFAR-10 vs. Places365 and CIFAR-10 vs. SVHN. Lastly,752

we see LiT has almost fixed performance at ≈ 0.98 for the CIFAR-10 vs. SVHN task across scales,753

perhaps due to early task saturation.754

A.2.3 JFT Pretraining – Additional Results755

In Table A.1, we report few- and zero-shot classification performance for 3T, LiT, and the baseline756

across our selection of datasets for L scale models and JFT pretraining. LiT outperforms 3T and the757

baseline on average for few- and zero-shot classification tasks.758

In Table A.2, we report performance for g scale models and JFT pretraining across all three splits of759

the WebLI dataset described in §4. Retrieval performance is generally best for all methods for the760

Text-Filtered WebLI split, with 3T generally performing best across splits and tasks. For classification,761

for 3T and the baseline, performance on Text- and Pair-Filtered WebLI is significantly better than762

on Unfiltered WebLI, with LiT generally performing best across splits. In line with our previous763

observations, the differences between the WebLI splits are smaller for LiT. As the image tower is kept764

fixed during contrastive training, LiT performance is influenced less by the contrastive learning setup.765

Retrieval Results: Comparison to SOTA. While our retrieval performance is competitive, 3T does766

not set a new state-of-the art, see, for example, the CoCa paper [80] (Table 3) for a comparison of767

current methods. While SOTA results were never the aim of this paper—we instead study pretrained768

models for contrastive learning—there are a few advantages the CoCa setup has, and from which769

3T would likely benefit, too. Most notably, CoCa trains for about 6 times more examples seen770

than we do here (32B vs. 5B). Our scaling experiments, cf. Fig. A.4, suggest we would expect a771

significant performance increase for longer training. There are further differences that likely benefit772

CoCa, such as the use of a larger batch size (65k for them vs 14k for us) or training on images773

with higher resolution for a portion of training (CoCa goes from 288×288 to 576×576, we stay774

at 288×288)—both of these changes significantly increase computational costs beyond the budget775

available to us: while CoCa training takes ‘about 5 days on 2,048 CloudTPUv4 chips’[80], our g776

scale runs train for about the same duration on only 512 v4 TPU chips. It would be interesting to see777

if, in a fairer comparison, 3T matches or outperforms CoCa for retrieval tasks. Alternatively, ideas778

from 3T could also be used to improve CoCa-like architectures.779
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Table A.1: For JFT-pretraining, LiT outperforms 3T and the baseline on average on few- and
zero-shot classification tasks. L scale models trained on Unfiltered WebLI.

Method Basel. LiT 3T
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w

-S
ho

tC
la

ss
ifi

ca
tio

n IN-1k 62.8 81.3 67.7
CIFAR-100 70.4 83.2 74.3
Caltech 91.0 89.0 91.8
Pets 85.9 96.8 88.4
DTD 70.3 72.1 72.4
UC Merced 91.8 95.5 93.1
Cars 81.5 92.9 87.1
Col-Hist 71.7 81.3 77.0
Birds 53.4 85.6 62.4

Z
er

o-
Sh

ot
C

la
ss

ifi
ca

tio
n

IN-1k 69.5 80.1 72.0
CIFAR-100 73.5 80.1 75.2
Caltech 81.9 79.5 82.5
Pets 84.2 96.3 88.7
DTD 58.6 59.0 59.0
IN-C 49.6 68.1 52.8
IN-A 53.0 69.1 56.4
IN-R 85.8 91.7 88.4
IN-v2 62.2 74.0 65.4
ObjectNet 56.2 61.9 59.3
EuroSat 32.7 36.6 54.7
Flowers 62.0 76.7 66.6
RESISC 58.0 58.9 60.9
Sun397 67.6 69.7 68.1

Average 68.4 77.4 72.4
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Table A.2: Results for the baseline, 3T, and LiT for g scale models and JFT pretraining for a selection
of different splits of the WebLI dataset. 3T outperforms LiT for retrieval tasks, while LiT performs
better for image classification. The from-scratch CLIP/ALIGN-style baseline is not competitive.

Dataset Unfiltered WebLI Pair-Filtered WebLI Text-Filtered WebLI
Method Basel. LiT 3T Basel. LiT 3T Basel. LiT 3T

R
et

ri
ev

al

Flickr img2txt 75.2 83.0 81.5 81.4 83.2 84.0 85.0 83.9 87.3
Flickr∗ img2txt 80.0 84.8 84.2 80.7 83.9 85.6 86.7 85.2 88.3
Flickr txt2img 58.2 61.3 64.3 61.4 63.9 66.5 67.0 66.5 72.1
Flickr∗ txt2img 60.1 63.1 65.6 62.7 65.4 68.4 68.2 67.6 72.9
COCO img2txt 52.3 57.7 57.5 58.4 59.7 61.7 60.0 59.5 64.1
COCO txt2img 37.5 40.0 41.1 41.2 41.9 43.9 44.7 43.6 48.5

Fe
w

-S
ho

tC
la

ss
ifi

ca
tio

n IN-1k 67.5 84.6 72.8 71.8 84.6 75.7 69.6 84.6 73.9
CIFAR-100 72.7 83.2 78.0 73.1 83.2 78.7 76.4 83.2 80.0
Caltech 91.8 90.0 93.3 89.7 90.0 90.9 90.8 90.0 92.4
Pets 88.4 97.8 91.5 93.0 97.8 94.3 88.8 97.8 91.4
DTD 70.7 74.6 74.7 74.2 74.6 76.1 73.6 74.6 76.0
UC Merced 92.9 96.9 94.7 95.2 96.9 95.6 95.2 96.9 96.5
Cars 84.1 93.3 88.6 92.6 93.3 93.5 89.0 93.3 91.6
Col-Hist 72.0 83.6 76.2 77.8 83.6 80.9 73.5 83.6 79.4
Birds 60.7 89.7 69.8 76.4 89.7 80.7 62.5 89.7 71.1

Z
er

o-
Sh

ot
C
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ss

ifi
ca

tio
n

IN-1k 73.5 84.0 76.3 78.0 84.7 79.6 75.8 84.3 78.2
CIFAR-100 77.5 81.3 80.3 76.2 81.3 79.5 80.6 81.8 82.3
Caltech 79.8 81.4 82.3 84.0 82.4 82.9 79.5 80.9 81.9
Pets 87.0 96.4 92.7 92.8 97.7 93.0 88.1 96.5 91.5
DTD 59.2 62.1 64.9 58.9 55.6 60.1 61.4 62.0 62.1
IN-C 54.9 72.9 58.2 57.7 73.3 60.3 57.6 73.3 61.3
IN-A 64.9 80.2 67.8 59.9 79.5 65.1 67.8 80.5 70.8
IN-R 89.8 94.4 91.8 90.5 94.2 92.8 91.8 94.6 93.3
IN-v2 66.4 78.1 69.5 70.8 79.2 73.0 69.1 78.5 71.4
Objectnet 62.7 70.3 65.3 56.9 68.3 59.5 63.3 70.0 65.9
Eurosat 55.7 33.6 48.9 32.9 30.7 42.8 47.9 36.1 52.1
Flowers 71.0 84.2 73.5 82.4 86.3 83.0 69.4 86.6 72.5
RESISC 61.5 58.4 60.5 59.8 56.5 64.8 65.4 57.8 61.7
Sun397 68.8 71.0 70.3 68.9 71.9 69.8 70.2 71.6 70.9

Average 70.2 77.0 73.7 72.4 77.0 75.3 73.1 77.7 75.9
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A.2.4 Pretraining Robustness – Additional Results780

In Table A.3, we report results on additional tasks for 3T, LiT, and the baseline for both the ‘mis-781

matched’ setup and Places365 pretraining. We find again that 3T is much more robust in both setups,782

significantly outperforming LiT. The difference is particularly striking when using models pretrained783

on Places365, where LiT’s performance degrades drastically while 3T is still able to improve over784

the baseline.785

Table A.3: Testing robustness to the ‘mismatched setup’ and Places365 pretraining (instead if
IN-21k/JFT) for 3T and LiT. In both cases, 3T performs significantly better than LiT. In particular
when using models pretrained on Places365, LiT’s performance degrades dramatically while 3T
continues to improve over the baseline on average. (Note that the baselines here are different not
because they use the pretraining dataset, but because we compare to an L scale baseline for the
mismatched setup and a B scale baseline (trained for only 900M examples seen) for Places365
pretraining.) We refer to the main text for full details.

Experiment Mismatched Setup Places365 Pretraining
Method Basel. LiT 3T Basel. LiT 3T

R
et

ri
ev

al Flickr∗ img2txt 75.6 66.5 80.2 56.0 35.5 58.1
Flickr∗ txt2img 57.1 45.1 62.1 36.2 19.5 38.4
COCO img2txt 51.0 44.1 54.5 34.1 19.3 36.5
COCO txt2img 34.2 26.4 37.8 21.0 10.9 22.1

Fe
w

-S
ho

tC
la

ss
ifi

ca
tio

n IN-1k 62.8 70.3 67.6 37.8 16.6 41.5
CIFAR-100 70.4 80.3 73.8 47.1 33.9 52.7
Caltech 91.0 88.1 91.7 87.9 66.5 88.5
Pets 85.9 86.0 86.8 56.8 20.3 59.9
DTD 70.3 66.3 73.4 58.4 39.7 63.1
UC Merced 91.8 91.5 93.8 85.8 80.8 89.4
Cars 81.5 36.7 85.3 57.0 10.1 58.6
Col-Hist 71.7 84.4 74.3 72.9 70.7 78.7
Birds 53.4 76.8 65.2 33.2 15.7 38.1

Z
er

o-
Sh

ot
C

la
ss

ifi
ca

tio
n

IN-1k 69.5 69.5 71.5 45.6 24.5 47.4
CIFAR-100 73.5 78.6 75.6 48.3 27.4 52.4
Caltech 81.9 82.0 81.2 76.6 62.7 77.0
Pets 84.2 84.7 87.4 61.5 30.3 60.2
DTD 58.6 49.4 60.6 39.8 23.6 39.7
IN-C 49.6 55.5 51.8 25.3 14.4 27.3
IN-A 53.0 29.1 54.1 12.0 4.7 12.5
IN-R 85.8 60.7 87.9 56.1 20.3 58.2
IN-v2 62.2 61.1 65.0 39.4 20.7 40.5
Objectnet 56.2 34.9 57.8 28.4 7.3 29.6
Eurosat 32.7 33.1 52.5 33.7 15.6 27.3
Flowers 62.0 74.1 66.2 37.6 17.4 37.3
RESISC 58.0 29.0 57.4 37.9 24.0 38.3
Sun397 67.6 62.0 68.4 55.1 60.6 57.3

Average 66.4 61.7 69.8 47.5 29.4 49.3
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A.3 Scaling Model Sizes and Training Duration – Additional Results786

Complementing the results of §4.3, in Fig. A.4 we report the performance when scaling only the787

number of examples seen during training, keeping the model sizes fixed at B scale. We observe a788

similar trend to §4.3 / Fig. 3, where 3T benefits more from increases in scale than LiT. Note that,789

because the dataset size is 10B samples, all of our runs equate to less than a full epoch.790
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Figure A.4: Increasing training duration of 3T, LiT, and the baseline; average retrieval, few- and
zero-shot classification performance. The model scale is B (B/32 for ViTs) for all approaches and
towers. 3T and the baseline benefit more from increases in scale than LiT, with 3T maintaining a
consistent increase in performance over the baseline. Note that the few-shot performance for LiT is
fixed, as only the locked pretrained image tower is used for fewshot applications.

A.4 Benefits From Using 3T With All Three Towers at Test Time – Extended Version791

We usually discard the pretrained model when applying 3T to downstream tasks, cf. Fig. 2 (b).792

Instead, in this section, we explore whether we can find benefits from using the locked third tower at793

test time, similar to LiT. More specifically, we are interested in interpolating between the main image794

tower and locked pretrained model in the third tower. Can we interpolate between 3T- and LiT-like795

prediction by combining the image embeddings?796

This idea does not work directly with the default 3T due to our use of linear projection heads,797

cf. Fig. 2 (a), since there is no unified embedding space that all towers embed to. Therefore, we798

introduce a ‘headless 3T’ variant, for which we do not use the linear projection heads, hf , hg , fh, and799

gh. (Alternatively, one may think of all linear projection heads fixed to identity mappings.) Thus, all800

losses directly use the same embeddings, f(I), p(I), and g(T ), making the embedding spaces directly801

comparable. Here, we train B scale models for 3.6B examples seen and use an IN-21k-pretrained802

model. Further note that the average zero-shot classification performance we report here is over only803

a subset of the list of tasks used in §4.2: we consider IN-1k, CIFAR-100, and Pets. The selection of804

few-shot classification and retrieval tasks remains the same, although we do not use the Karpathy805

split for Flickr here.∗806

In Fig. A.5, we display the average retrieval, few-shot classification, and zero-shot classification807

performance for the convex combination, alongside a comparable LiT run and a 3T run with default808

projection head setup. Across all tasks, we observe similar behavior: for α = 0 (full weight on the809

third tower), we obtain performance close to, but ultimately below, LiT; performance then increases810

with α, peaking for α ∈ [1/4, 3/4], before decreasing again. At α = 1 (full weight on main image811

tower), we recover the performance of the headless 3T setup. Interestingly, for retrieval and few-shot812

classification tasks, the convex combination yields better performance than either of the towers813

separately across a relatively broad band of α values.814
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Figure A.5: Convex combination of the image models in 3T: α·h(I)+(1−α)·f(I). By varying α, we
can generally interpolate between 3T and LiT performance. Interestingly, for a broad range of weights,
the retrieval and few-shot classification performance of the combination outperforms 3T and LiT.

Perhaps counterintuitively, for α = 0, we do not recover the performance of LiT exactly. The reasons815

for this differ between tasks: For retrieval and zero-shot applications, while the image tower is816

identical to that of LiT, the text tower is different as it has been trained with the 3T objective. For817

few-shot application, the default evaluation procedure of Zhai et al. [84] uses the prelogits of the ViTs818

underlying f and h as inputs to the few-shot classifier, i.e. not the final embeddings. As the prelogit819

spaces of f and h are not aligned, here, we need to instead construct the convex combination in820

embedding space, which does however mean that α = 0 does not give performance equivalent to LiT.821

Lastly, although the 3T run with the default projection heads does not seem to perform better than ‘3T822

headless’ in this instance, we have seen ‘headless’ setups underperform in preliminary experiments823

and would suggest additional experiments before opting for a headless design, see also §A.5.824

We believe that further study of this approach is exciting future work: the method is entirely post-hoc825

and no additional training costs are incurred, although inference costs do increase.826

A.5 Ablation827

In this section, we give additional results and details for the ablation study presented in §4.6. Table A.4828

gives additional results, extending Table 5 in the main paper. In addition to the mean and two standard829

errors, we also report standard deviations over tasks here. Note that, for zero-shot classification830

performance, we only have access to a subset of the full list of tasks used in Section 4.2: we consider831

IN-1k, CIFAR-100, and Pets. The selection of few-shot classification and retrieval tasks remains the832

same, although we do not use the Karpathy split for Flickr here.∗833

No L·↔· – Details. For this ablation we consider leaving out either of the three loss terms. ‘No834

Lf↔g’: We replace the 3T loss by 1
2 · (Lfh↔hf

+ Lgh↔hg ). ‘No Lfh↔hf
’: We replace the 3T loss835

by 1
2 · (Lf↔g + Lgh↔hg

). ‘No Lgh↔hg
’: We replace the 3T loss by 1

2 · (Lf↔g + Lfh↔hf
). When836

leaving out either of the three loss terms, average performance suffers significantly. Leaving out the837

loss between the main two towers (obviously) has the biggest negative effect, as the main embeddings,838

f(I) and g(T ), are not aligned during training.839

Head Variants – Details and Additional Results. In the main part of the paper, we have only given840

results for the best alternative variant for the projection head setup. Here, we describe all variants and841

report results individually. We refer to Fig. 2 (a) for the projection head notation. ‘Heads only on842

Third Tower’: The main tower projection heads fh and gh are fixed to identity mappings. ‘Heads843

Only on Main Towers’: The third tower projection heads hf and hg are fixed to identity mappings.844

‘No Heads/Headless’: This is the setup described in §A.4: all linear projections hf , hg, fh, gh are845

fixed to identity mappings. ‘Heads Fully Independent’: This setup adds linear projection heads before846

the computation of Lf↔g, i.e. we compute fg(I) = Lin(f(I)) and gf (T ) = Lin(g(T )), and then847

compute the loss Lfg↔gf (instead of Lf↔g). In Table A.4, we give results for all variants that we try;848

none outperform the base variant significantly, while some underperform.849

MLP Embedding – Details. When replacing the linear projection h in the third tower with an850

MLP, we use the following architecture: MLP(x) = Lin2(GELU(Lin1(x)), where we use GELU851

non-linearities [29], Lin1 expands the embedding dimensionality of the input by a factor of 4, and852

Lin2 maps to the shared embedding dimension D.853

3T with Loss Weights – Details and Additional Results. We replace the standard 3T loss with854

a weighted objective 1
3 · (Lf↔g + w · (Lfh↔hf

+ Lgh↔hg
)). For the weights w, we sweep over855
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Table A.4: Extended results for the 3T ablation study. Difference to the 3T reference run for various
architecture ablations. We report mean, standard deviation, and two standard errors of the differences
over the downstream task selection.

Difference Mean Standard Deviation Two Standard Errors

Rerun -0.22 0.50 0.25

No Lf↔g -26.63 21.22 10.61
No Lfh↔hf

-1.19 1.51 0.75
No Lgh↔hg

-2.77 1.83 0.91

(Head Variants (best)) 0.09 0.70 0.35
Heads Only on Third Tower 0.09 0.70 0.35
Heads Only on Main Towers -0.67 0.66 0.33
Heads Fully Independent -0.60 0.63 0.32
No Heads/Headless -0.47 1.04 0.52

MLP Embedding -0.08 0.69 0.35
More Temperatures -0.26 0.95 0.48

(Loss weight = 2 (best)) 0.17 1.06 0.53
Loss weight 0.1 -2.31 1.33 0.67
Loss weight 0.5 -0.90 0.81 0.41
Loss weight 2 0.17 1.06 0.53
Loss weight 10 -0.56 1.74 0.87

(L2 Transfer (best)) -3.80 2.27 1.13
L2 Transfer w=0.0001 -4.40 1.89 0.94
L2 Transfer w=0.001 -3.80 2.27 1.13
L2 Transfer w=0.05 -4.41 2.24 1.12
L2 Transfer w=0.01 -4.17 1.97 0.99
L2 Transfer w=.1 -3.97 2.06 1.03
L2 Transfer w=.5 -7.12 2.95 1.48
L2 Transfer w=1 -11.38 4.39 2.19
L2 Transfer w=2 -16.09 5.14 2.57
L2 Transfer w=10 -46.80 14.32 7.16

3T Finetuning 1.85 2.53 1.27

w ∈ {0.1, 0.5, 2, 10}. All weights except w = 2 lead to an average performance decrease. However,856

the size of the effect for w = 2 is small relative to twice the standard error.857

L2 Representation Transfer – Details and Additional Results. We investigate the use of squared858

losses for the representation transfer between the main towers and the third tower instead of relying859

on the contrastive loss. Concretely, we replace the 3T loss, Eq. (4), with860

1

3

{
Lf↔g + w

1

N

N∑
i=i

[
‖fh(Ii)− hf (Ii)‖2 + ‖gh(Ti)− hg(Ii)‖2

]}
. (5)

For the weight hyperparameters w, we sweep over a large set of values, w ∈861

{0.0001, 0.001, 0.05, 0.01, 0.1, 0.5, 1, 2, 10}. L2 representation transfer gives worse results than862

the contrastive loss for all values of w we try, corroborating the results of Tian et al. [70].863

Finetuning – Details and Additional Results. Initializing the main tower in 3T with the same JFT-864

pretrained model as the third tower boosts performance significantly, increasing average performance865

from 56.76 to 58.61. A rerun confirmed these results; we obtained an increase from 56.46 to 58.82.866

Excited by this, we explored the 3T finetuning setup at other scales, and report performance in867

Table A.5. Note that here, we increase the numbers of examples seen during training from 450M (S868

scale) to 900M (B scale) to 5B (L scale). We observe that, as we increase the scale of the experiments,869

the gains from finetuning the main image tower decrease until they are negligible (compared to rerun870

variance). We therefore have opted to not make finetuning the main tower part of the standard 3T871

setup, as it (a) complicates the setup and (b) restricts the main tower to be the same model architecture872

and scale as the third tower.873
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Table A.5: Finetuning for 3T: Initializing the main tower in 3T with the same pretrained model as the
third tower improves performance significantly at smaller but not larger experiment scales.

Pretraining Scale Avg. Performance 3T Avg. Performance 3T Finetuned

JFT B 56.76 58.61
L 73.97 74.22

IN-21k S 44.39 47.61
B 56.30 58.83
L 73.63 73.83

‘FlexiLiT 1/2’ – Details. With the FlexiLiT variants, cf. Table 5 in the main body of the pa-874

per, we investigate if there are other, simple ways to improve LiT. For both variants, we create875

a new ‘half-locked’ image tower by adding learnable components to the frozen pretrained image876

model. For FlexiLiT 1, we add a lightweight learnable 4-layer MLP on top of the frozen back-877

bone: FlexiLiT-1(I) = MLP(LiT(I)). The MLP has 4 layers, uses GELU-nonlinearities, and878

an expansion factor of 4. For FlexiLiT 2, we add an additional learnable ViT next to the locked879

backbone (adding significant cost) and merge representations with an MLP: FlexiLiT-2(I) =880

MLP(concat(LiT(I)), ViT(I)). The additional ViT is B/32, following the main locked image tower.881

The MLP merging the two representations is an MLP with the same configuration as for FlexiLiT 1.882

B Implementation Details883

We follow Zhai et al. [84] for optimization and implementation details. We use the open-source884

vision transformer implementation available from Beyer et al. [4].885

Unless otherwise mentioned, we use Transformers of scale L, with a 16×16 patch size for the ViT886

image towers, i.e. L/16. We train for 5B examples seen at a batch size of 14 · 1024, i.e. for about887

350 000 steps. We resize input images to 224 × 224 resolution, and normalize pixel values to the888

[−1, 1] range. Note that for experiments with g scale models, we resize images to 288× 288 instead.889

We use a learning rate of 0.001, warming up linearly for 10 000 steps, before following a cosine890

decay schedule. We use the Adafactor optimizer [64] with default β1 = 0.9 and β2 = 0.99, and we891

clip gradients if their norm exceeds 1.0. For g scale runs, we set β2 = 0.95 by default, which we892

found to be important to ensure training stability. We use weight decay of 0.001.893

We aggregate embeddings across tokens using multihead attention pooling, i.e. an attention block894

where the query is a single learned latent vector, and the keys and values are the outputs of the vision895

transformer (cf. vit.py in the code base [4]).896

For details on how the different model scales and patch sizes relate to transformer width, depth, MLP897

dimension, the number of heads, or parameter count, we refer to Table 1 in [17] and Table 2 in [83].898

Compute Cost. We train our models on v3 and v4 TPUs. For our main experiments at L scale, we899

use 256 TPU chips per experiment. Our 3T runs converge in about three days, for example, the 3T900

run with JFT pretraining took 63 hours of training time to converge over 348772 training steps. The901

baseline converges in 54 hours, and LiT in 35. For our five main experiments at L scale—3T, LiT for902

JFT and IN-21k pretraining, and a baseline run—the total runtime was about 280 hours, or about 8903

TPU–Chip years worth of compute for the L scale experiments of this project. At g scale, we use 512904

TPU chips per run, and our 3T runs converge in about 5 days.905

Below we mention additional details pertaining to only some of the experiments.906

Details on Few-Shot Classification. Following Zhai et al. [84], we use the prelogits of the ViTs907

instead of the final embeddings as input to the linear few-shot classifier.908

Details on Places Experiment. Following Zhai et al. [84], for the Places365 experiment, we use a909

B/16 ResFormer [69] as the pretrained model.910
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C Societal Impact911

With 3T, we introduce a novel machine learning method for learning joint embeddings of images and912

text. We train on large datasets of noisy and potentially biased data crawled from the internet. The913

same general caveats that apply to CLIP/ALIGN and LiT may also apply to 3T. We refer to §7 in914

Radford et al. [57] for a general discussion of the societal impact these methods may have.915

Additionally, we wish to highlight the importance of carefully evaluating these models, testing for916

specific undesired behavior, before applying them in production. While the zero- and few-shot917

classification capabilities of these models are generally impressive, it is also important to consider918

their limitations and not succumb to wishful thinking when it comes to the real-world performance of919

these models on arbitrary tasks. For example, all of the approaches we study here do not perform well920

for zero-shot prediction on the structured and specialized tasks contained in VTAB, which include,921

for example, medical applications. It is therefore particularly important to carefully evaluate the922

performance of these methods when applied to real-world applications. Lastly, because 3T and LiT923

rely on two datasets for training, a classification and a contrastive learning dataset, this can complicate924

investigations into undesired biases in the final model.925

D Libraries & Dataset926

We rely on the Jax [5], Flax [26], and TensorFlow [1] Python libraries for our implementation.927

Additionally, we make use of the Big Vision [4] and Robustness Metrics [15] code bases.928

For retrieval performance, we evaluate on Microsoft COCO [10] and Flickr30k [55]. For image929

classification, we evaluate on IN-1k [40, 60], CIFAR-100 [40], Caltech-256 [23], Oxford-IIIT Pet930

[52], Describable Textures (DTD) [13], UC Merced Land Use [79], Stanford Cars [39], Col-Hist931

[37], Birds [72], ImageNet variants -C [28], -A [32], -R [31], -v2 [58], ObjectNet [3], EuroSat [27],932

Oxford Flowers-102 [49], NWPU-RESISC45 [12], and Sun397 [77].933

We take the EuroSat, Flowers, RESISC, and Sun397 datasets from the Visual Task Adaptation934

Benchmark (VTAB) [82]. They are the only VTAB datasets for which at least one method achieved935

better than trivial performance.936
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