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ABSTRACT

We consider using deep neural networks to solve time-dependent partial differential
equations (PDEs), where multi-scale processing is crucial for modeling complex,
time-evolving dynamics. While the U-Net architecture with skip connections is
commonly used by prior studies to enable multi-scale processing, our analysis
shows that the need for features to evolve across layers results in temporally
misaligned features in skip connections, which limits the model’s performance. To
address this limitation, we propose SineNet, consisting of multiple sequentially
connected U-shaped network blocks, referred to as waves. In SineNet, high-
resolution features are evolved progressively through multiple stages, thereby
reducing the amount of misalignment within each stage. We furthermore analyze
the role of skip connections in enabling both parallel and sequential processing of
multi-scale information. Our method is rigorously tested on multiple PDE datasets,
including the Navier-Stokes equations and shallow water equations, showcasing the
advantages of our proposed approach over conventional U-Nets with a comparable
parameter budget. We further demonstrate that increasing the number of waves in
SineNet while maintaining the same number of parameters leads to a monotonically
improved performance. The results highlight the effectiveness of SineNet and the
potential of our approach in advancing the state-of-the-art in neural PDE solver
design. Our code is available as part of AIRS (https://github.com/divelab/AIRS).

1 INTRODUCTION

Partial differential equations (PDEs) describe physics from the quantum length scale (Schrodinger
equation) to the scale of space-time (Einstein field equations) and everywhere in between. Formally,
a PDE is an expression in which the rates of change of one or multiple quantities with respect to
spatial or temporal variation are balanced. PDEs are popular modeling tools across many scientific
and engineering fields to encode force balances, including stresses that are combinations of spatial
derivatives, velocity and acceleration that are time derivatives, and external forces acting on a fluid or
solid. Due to their widespread use in many fields, solving PDEs using numerical methods has been
studied extensively. With advances in deep learning methods, there has been a recent surge of interest
in using deep learning methods for solving PDEs (Raissi et al., 2019; [Kochkov et al.l 2021; Lu et al.|
2021} Stachenfeld et al.| 2022} |Li et al., |2021a; Pfaff et al., 2021} [Takamoto et al.| 2022} |Gupta &
Brandstetter, [2023), which is the subject of this work.

Our main focus here is on fluid dynamics, where we typically encounter two phenomena: advection
and diffusion. Diffusion in isotropic media is modeled using the heat equation (9; — A)u = 0,
which equates the rate of change in time 0w to the spatial Laplacian of the function w, an expression
of second-order derivatives. The fact that a first-order derivative in time is compared to a second
derivative in space leads to the parabolic scaling in which v/t and 2 behave comparably. In many
numerical methods such as finite element discretizations, this behavior requires discretizations for
which the length-scale in time &t is much smaller than the spatial length-scale dz: §t < (6x)2. To
avoid excessive computation time when computing in fine resolution, multi-scale models are attractive
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which accurately resolve both local interfaces and long-range interactions over a larger time interval
per computation step. Methods which are not localized in space, e.g., heat kernel convolutions or
spectral methods, are able to overcome the parabolic scaling.

Unsurprisingly, the situation becomes much more challenging when advection is considered. While
diffusion models how heavily localized quantities spread out to larger regions over time, advection
describes the transport of quantities throughout space without spreading out. In the equations of fluid
dynamics, the transport term (w - V)u is non-linear in » and famously challenging both analytically
and numerically. In particular, any numerical approximation to the solution operator which propagates
u forward in time must be non-linear to comply with the non-linearity in the equation.

For its strength in multi-scale processing, the U-Net architecture has recently become a popular
choice as an inexpensive surrogate model for classical numerical methods mapping dynamics forward
in time (Gupta & Brandstetter], 2023} [Takamoto et al.,[2022} Wang et al., 2020). However, because
the input to the network is earlier in time than the prediction target, latent evolution occurs in the
U-Net feature maps. This implies that skip connections between the down and upsampling paths of
the U-Net, which are crucial for faithfully restoring high-resolution details to the output, will contain
out-of-date information, and poses challenges in settings where advection plays a significant role.

In this work, we propose SineNet, an architecture designed to handle the challenges arising from
dynamics wherein both diffusion and advection interact. SineNet features a multi-stage architecture
in which each stage is a U-Net block, referred to as a wave. By distributing the latent evolution
across multiple stages, the degree of spatial misalignment between the input and target encountered
by each wave is reduced, thereby alleviating the challenges associated with modeling advection.
At the same time, the multi-scale processing strategy employed by each wave effectively models
multi-scale phenomena arising from diffusion. Based on the proposed SineNet, we further analyze the
role of skip connections in enabling multi-scale processing in both parallel and sequential manners.
Finally, we demonstrate the importance of selecting an appropriate padding strategy to encode
boundary conditions in convolution layers, a consideration we find particularly relevant for periodic
boundaries. We conduct empirical evaluations of SineNet across multiple challenging PDE datasets,
demonstrating consistent performance improvements over existing baseline methods. We perform
an ablation study in which we demonstrate performance monotonically improving with number of
waves for a fixed parameter budget. The results highlight the potential of our approach in advancing
the state-of-the-art in neural PDE solver design and open new avenues for future research in this field.

2 NEURAL APPROXIMATIONS TO PDE SOLUTION OPERATORS

Time-evolving partial differential equations describe the behavior of physical systems using partial
derivatives of an unknown multivariate function of space-time u :  x R — RM, where ( is
the spatial domain and R accounts for the temporal dimension. The M -dimensional codomain
of w consists of scalar and/or vector fields such as density, pressure, or velocity describing the
state of the system. Given the solution u(-, o) at time g, our task is to learn the forward operator
mapping u(-,to) to the solution at a later time ¢ given by w(-, ). In practice, u is a numerical
solution to the PDE, that is, discretized in space-time onto a finite grid. As opposed to neural
operators (Kovachki et al.| [2021), which aim to learn this operator independent of the resolution
of the discretization, we instead focus on learning the operator for a fixed, uniform discretization.
Concretely, for a d-dimensional spatial domain 2, the discretized solution at time step ¢ is given by
uy € RMXNix-xXNa fort — 1. ... T, where T is the temporal resolution and N1, ..., N, are the
spatial resolutions along each dimension of €2 (d = 2 in our experiments). Moreover, as is typical
in numerical solvers, we condition our models on h historical time steps. Formally, we seek to
learn the mapping M : RFXM>XNyxxNa _y RMXNXXNa wwith M(wg_ i1, .-, W) = Uppls
fort ="h,..., T — 1.

3 LEARNING TEMPORAL DYNAMICS IN CONTINUUM FIELDS

3.1 MULTI-SCALE LEARNING AND U-NETS

In Fourier space, low frequency modes correspond to global information, and high frequency modes
to local. Convolutions can be performed in the frequency domain via pointwise multiplication of
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Figure 1: Illustration of the misalignment issue in U-Nets. The left side shows the one-step prediction
of a trained U-Net, with each intermediate layer’s feature maps averaged over the channel dimension
displayed in the top row. On the right side, the misalignment between ¢ = 0 and ¢ = 3 is demonstrated.
Specifically, the feature map of £ = 3 is upsampled and then concatenated with £ = 0. The time-
evolving effect of the preceding U-Net layers results in a misalignment of the corresponding physical
features, as indicated by the bounding boxes (a) and (b). This misalignment is particularly problematic
for convolutions. Since the kernel is localized, information from misaligned high frequency features,
such as those visualized in (a) and (b), cannot be optimally integrated in updating the feature map.
Mitigating this misalignment is key for improving the performance of U-Nets.

frequency modes, resulting in parallel processing of multi-scale information (Gupta & Brandstetter
2023). This approach is taken by Fourier Neural Operators (FNOs) (Li et al., 2021a; [Tran et al.
2023; [Li et al.l 2022} [Rahman et al.} 2022} [Helwig et al., [2023)), which directly parameterize their
convolution kernel in the frequency domain.

In the spatial domain, U-Nets (Ronneberger et al.,|2015)) are commonly used to process multi-scale
information in a sequential manner. U-Nets extract information on various scales hierarchically by
performing convolutions on increasingly downsampled feature maps before invoking a symmetric
upsampling path. Skip connections between corresponding downsampling and upsampling layers
are established to restore high-resolution information. To map {w;_p41,- .., Ut} to w1, the U-Net
encodes inputs to & and then processes xg to a sequence of L feature maps along a downsampling
pathxy,...,xp as

Lo = P({ut7h+1v° .. 7ut}); Ly = fl (d(wlfl))v = 17‘ . '7La (1)

where P is an encoder, d is a downsampling function, and f;, composes convolutions and non-
linearities. Next, the U-Net upsamples to a sequence of feature maps x1,...,x2r along the
upsampling path and decodes the final feature map oz, to w4 as

Ty = ge (U (me—l)vaL—Z)a é - L+ la .- 72L7 ut+1 - Q($2L)7 (2)

where () is the decoder, v is an upsampling function, and g, concatenates the upsampled feature map
with the skip connected downsampled feature map before applying convolutions and non-linearities.

3.2 MISALIGNMENTS IN LEARNING TEMPORAL DYNAMICS

U-Nets capture global context by aggregating localized features with downsampling layers. Using
this global context, the output is constructed with upsampling layers, wherein skip connections to the
downsampled feature maps play a key role in restoring high-resolution details. While we consider their
application as neural solvers, U-Nets were originally developed for image segmentation (Ronneberger
2015). In segmentation tasks, features in the input image and target segmentation mask are
spatially aligned. By contrast, in the context of learning temporal dynamics, the spatial localization
property no longer holds, as temporal evolution results in misalignment between the input and
prediction target. Here, misalignment refers to the displacement of local patterns between two feature
maps, which occurs between the PDE solutions at two consecutive time steps due to advection.
To resolve this misalignment, feature maps undergo latent evolution. However, due to the local



Published as a conference paper at ICLR 2024

Skip
Connection

V1 Vy

Figure 2: Illustration of the proposed SineNet for learning temporal dynamics in PDEs. Multiple
U-Net waves are composed to perform one-step prediction, with the output of each wave averaged
over the channel dimension displayed in the top row, demonstrating the time-evolving process from ¢
to t + 1. The orange sinusoidal line illustrates propagation between resolutions and is not part of the
model architecture. Feature maps in this figure are from SINENET without wave residuals for clarity
and with transposed convolutions for upsampling. In Appendix[A.2] we visualize the feature maps
from the SINENET-8 presented in Section@

processing of convolution layers, feature maps closer to the input (or output) will be more aligned
with the input (or output), respectively. This leads to misalignment between the feature maps
propagated via skip connections and those obtained from the upsampling path.

To empirically demonstrate this inconsistency, we visualize the feature maps averaged over the
channel dimension at each block within a well-trained U-Net in Figure[I] Specifically, we examine
the feature map from the skip connection at the highest resolution (¢ = 0) and compare it with the
corresponding one from the upsampling path (¢ = 3). We observe misaligned features between ¢ = 0
and the upsampled ¢ = 3, as highlighted by the features contained in the bounding boxes (a) and (b).
As kernels are most often local, e.g., 3 x 3, following the concatenation, convolution operations will
be either partially or fully unable to incorporate the evolved features with the corresponding features
in skip connections as a result of the misalignment.

3.3 MULTI-STAGE MODELING OF TEMPORAL DYNAMICS WITH SINENET

Despite the inconsistency, skip connections in U-Nets remain crucial to restoring high-frequency
details and thereby enable multi-scale computation via downsampling and upsampling. To mitigate
the misalignment issue while maintaining the benefits of the U-Net architecture, we construct the
SINENET-K architecture by partitioning the latent evolution across K lightweight U-Nets Vy, referred
to as waves. This approach reduces the latent evolution between consecutive downsampling and
upsampling paths, which in turn reduces the degree of misalignment in skip connections. Each
wave V}, is responsible for advancing the system’s latent state by an interval of §; € [0, 1], with
21 <k<K 0r = 1. Specifically, V}.’s objective is to evolve the latent solution from time ¢ + Ay_1,
achieved through the temporal evolution by the preceding k& — 1 waves, to time ¢ + Ay, where Ay,
represents the cumulative sum of all J; up to the k-th interval. The overall mapping is then given by

xy =P ({uiny1,-u}); wgr = Q(Ti1); 3)

Tepn, = Vi(®ia,,), k=1, K, “

where x4 A, denotes the latent map of w1 A, attime ¢ + Ay, and P and () are 3x3 convolution
layers to linearly encode and decode the solutions into or from latent maps, respectively. During
training, the intermediate sub-steps as determined by d. are implicit and optimized end-to-end with
the K waves using pairs of data {({w;_, |,...,uj},u{,)};+ to minimize the objective

E;: [C <WK({u{_h+1,...,u{}),ugﬂ)} i W =QoVkgo---oVjoP, 5)

4
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where L is a suitably chosen loss and j indexes the solutions in the training set. It is worth noting that
the intervals §j, are not necessarily evenly divided. They can be input-dependent and optimized for
superior performance during training to enable adaptable temporal resolution in the latent evolution.
For example, when the temporal evolution involves acceleration, it is generally more effective to
use smaller time steps for temporal windows with larger velocities. We demonstrate a connection
between this formulation and Neural ODE (Chen et al.,[2018)) in Appendix

The proposed approach effectively reduces the time interval each wave is tasked with managing,
thereby simplifying the learning task and mitigating the extent of misalignment in skip connections.
We empirically demonstrate such effect in Appendix [A.T] This strategy not only fosters a more
efficient learning process but also significantly enhances the model’s ability to handle complex,
time-evolving PDEs. Through this approach, we present a robust way to reconcile the essential role
of skip connections with the challenges they pose in the context of PDEs.

3.4 WAVE ARCHITECTURE

Here we discuss the construction of each of the K waves V}, in SineNet mapping the latent solution
TirA,_, 10 Teya, in Equation 4] Vi is implemented as a conventional U-Net Uy, as described in
Equations[T]and 2] with a wave residual as

Vi (mt"rAk—l) = Tt+Ap 4 T+ Uk(mt+ﬁk71)' (6)

Each wave is constructed with a downsampling and upsampling path, both of length L = 4, i.e., x; =
fe(d(xe-1)), € € {1,2,3,4} for downsampling and &, = go (v (x¢—1),2s5-¢), £ € {5,6,7,8}
for upsampling. To maintain a light-weight architecture, the downsampling and upsampling func-
tions d and v are chosen as average pooling and bicubic interpolation. flf“ is constructed with a
convolution block c’g’, that is, two 3 x 3 convolutions with layer norm (Ba et al., [2016) and GeLU
activation (Hendrycks & Gimpel, 2016), with the first convolution increasing the number of channels
in the feature map by a multiplier m g, which is chosen dependent on the number of waves K in the
SineNet such that the number of parameters is roughly constant in K. géf is constructed similarly,
except the first convolution decreases the number of channels by a factor of m . Both ff and gé“
additionally include a block residual, whose role we discuss further in Section @ as

i (d(®)) = wj (d(x)) + cf (d () ©)
g¢ (v(@),y) = wf (v(@)) +cf (cat (v (2),y)), ®

where wf is a point-wise linear transformation acting to increase or decrease the number of channels
in the residual connection.

3.5 DUAL MULTI-SCALE PROCESSING MECHANISMS

While in Equation [6] wave residuals serve to improve the optimization of SineNet (He et al., 2016),
the block residuals utilized in Equation [/| additionally allow each wave Vj, to process multi-scale
information following both the sequential and parallel paradigms analyzed by |Gupta & Brandstetter
(2023)). Parallel processing mechanisms, of which the Fourier convolutions utilized by FNOs (Li et al.|
2021a) are an example, process features directly from the input at various spatial scales independently
of one another. In contrast, under the sequential paradigm inherent to U-Nets, features at each scale
are extracted from the features extracted at the previous scale. Because this approach does not include
a direct path to the input features, processing capacity at a given scale may be partially devoted
toward maintaining information from the input for processing at later scales rather than extracting or
evolving features.

To improve the efficiency of the sequential paradigm, SineNet utilizes block residuals as described in
Equations [7]and[8] which we now show allows both parallel and sequential branches of processing.
Consider the input x, a linear downsampling function d such as average pooling, and convolution
blocks c1, co, c3, all of which are composed as the downsampling path of a U-Net, that is, downsam-
pling followed by convolution blocks. Assume for simplicity that the input and output channels for
each of the convolution blocks are equal and w? is omitted. Then, by including block residuals, the
feature map following the first downsampling and convolution block is given by

x1 = d(xo) + c1 (d (o)), ©)
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and thus, the input to ¢ is given by
d (1) = d* (o) + d (1 (d (x0))) (10)

where d? (xg) := d (d (xo)) represents the direct flow of information from the input in the parallel
branch, enabling ¢ to process information following both the parallel and sequential paradigms.
From the input to c3, given by

d (w2) = d* (o) + d (d (c1 (d (20))) + c2 (d (1)), (11)

it can be seen that this dual-branch framework is maintained in later layers. Specifically, the input to
the k-th layer will be comprised of &y downsampled & times summed with a feature map processed
sequentially. However, since addition will entangle the parallel and sequential branch, we propose
to disentangle the parallel branch by concatenating it to the input of each convolution block in the
downsampling path. Therefore, the downsampling path in SineNet replaces Equation [/| with

f¢ (d () = wp (d(z)) + cf (cat (d () ,d" (x0))) , (12)

where d* (z() is the result of the projection layer P downsampled k times. We note that although
latent evolution in the sequential branch will result in misalignment with the parallel branch, we
empirically observe a performance gain by including the parallel branch, particularly once it has
been disentangled. Additionally, this inconsistency between branches is mitigated by the multi-stage
processing strategy adopted by SineNet.

3.6 ENCODING BOUNDARY CONDITIONS

The boundary conditions of a PDE determine the behavior of the field along the boundary. Our
experiments with the incompressible Navier-Stokes equations use a Dirichlet boundary condition on
the velocity field such that the velocity on the boundary is zero, and a Neumann boundary condition
on the scalar particle concentration such that the spatial derivative along the boundary is zero. These
conditions are encoded in feature maps using standard zero padding.

The remaining PDEs we consider have periodic boundary conditions, wherein points on opposite
boundaries are identified with one another such that the field “wraps around”. For example, for
a function w on the unit torus, that is, a periodic function with domain [0, 1]2, we have that for
x € 10,1], w(x,0) = u(z,1) and w(0,2) = u(l,z). For such a boundary condition, we found
circular padding to be a simple yet crucial component for achieving optimal performance (Dresdner
et al.| 2023)), as otherwise, a great deal of model capacity will be spent towards sharing information
between two boundary points that appear spatially distant, but are actually immediately adjacent due
to periodicity. As Fourier convolutions implicitly assume periodicity, FNO-type architectures are are
ideally suited for such PDEs.

4 RELATED WORK

Neural PDE solvers. Many recent studies explore solving PDEs using neural networks and are often
applied to solve time-dependent PDEs (Poli et al.| 2022; |[Lienen & Giinnemann| [2022)). Physics-
informed neural networks (PINNs) (Raissi et al., 2019; Wang et al., [2021} [Li et al., 2021b)) and
hybrid solvers (Um et al., 2020; | Kochkov et al., [2021} |[Holl et al., 2020b)) share similar philosophies
with classical solvers, where the former directly minimizes PDE objectives and the latter learns to
improve the accuracy of classical solvers. On the other hand, many works focus on purely data-driven
learning of mappings between PDE solutions, which is the approach we take here. |[Wang et al.| (2020)
and |Stachenfeld et al.| (2022)) apply their convolutional architectures to modeling turbulent flows
in 2 spatial dimensions, while [Lienen et al.| (2023)) use diffusion models to simulate 3-dimensional
turbulence. |Li et al.| (2021a) developed the FNO architecture which has been the subject of several
follow-up works (Poli et al., |2022; Tran et al., 2023} |Helwig et al., [2023). Similar to SineNet,
PDE-Refiner (Lippe et al.| 2023) solves PDEs via iterative application of a U-Net, however, instead of
advancing time with each forward pass, U-Net applications after the first serve to refine the prediction.

Stacked U-Nets. There are other studies exploring stacked U-Nets, however, most focus on computer
vision tasks such as image segmentation (Xia & Kulis, [2017} [Shah et al., 2018} Zhuang}, [2018} [Fu
et al.,|2019) and human pose estimation (Newell et al.,|2016). There are also researchers exploring
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U-Nets and variants therein to model PDE solutions. |Chen et al.|(2019)) apply variations of U-Nets,
including stacked U-Nets, to predict the steady state of a fluid flow, although they do not study
temporal evolution and furthermore do not consider a stack greater than 2. [RaonicC et al.| (2023)
propose to use CNNss to solve PDEs, but they do not have the repeated downsampling and upsampling
wave structure. We differ from these works by making the key observation of feature evolution and
feature alignment.

5 EXPERIMENTS

As fluid dynamics are described by time-evolving PDEs where diffusion and advection play major
roles, we perform experiments on multiple fluid dynamics datasets derived from various forms of
the Navier-Stokes equation. We begin by describing our experimental setup, datasets and models in
Sections [5.1}{5.2] before presenting our primary results in Section[5.3] We close with an abalation
study in Section 5.4} Furthermore, in Appendix [A.T] we conduct an experiment to validate our claim
of reduced latent evolution per wave, and demonstrate that this results in reduced misalignment in
skip connections in Appendix [A.2]

5.1 SETUP AND DATASETS

In all experiments, models are trained with data pairs ({w;—py1, ..., U}, us41) where the inputs
are the fields at current and historical steps and the target is the field at the next time step. During
validation and testing, models perform an autoregressive rollout for several time steps into the future.
Scaled Lo loss (Gupta & Brandstetter, [2023f [Tran et al., 2023} |Li et al.,|2021a)) is used as training
loss and evaluation metric, which we describe in Appendix [D.2] We report both the one-step and
rollout test errors.

We consider three datasets in our experiments. Each dataset consists of numerical solutions for
a given time-evolving PDE in two spatial dimensions with randomly sampled initial conditions.
Detailed dataset descriptions can be found in Appendix [B.2]

Incompressible Navier-Stokes (INS). The incompressible Navier-Stokes equations model the flow
of a fluid wherein the density is assumed to be independent of the pressure, but may not be constant
due to properties of the fluid such as salinity or temperature (Vreugdenhil, [1994). The equations are
given by
ov 9

EZ—’U~V’U+MVU—V]9+]¢7V"U=0, (13)
where v is velocity, p is internal pressure, and f is an external force. We use the dataset from Gupta
& Brandstetter| (2023), simulated with a numerical solver from the @y, package (Holl et al.,|2020a).
In Appendix [F.I| we present results on the conditional version of this dataset considered by Gupta &
Brandstetter| (2023)), where the task is to generalize over different time step sizes and forcing terms.

Compressible Navier-Stokes (CNS). Compressibility is generally a consideration most relevant
for fast-moving fluids (Andersonl [2017). We generate our CNS dataset using the numerical solver
from [Takamoto et al.|(2022). The dynamics in this data are more turbulent than those in the INS data,
with the viscosity as 1 x 1078 and the initial Mach number, which quantifies the ratio of the flow
velocity to the speed of sound in the fluid (Anderson}2017), as 0.1.

Shallow Water Equations (SWE). The shallow water equations are derived by depth-integrating the
incompressible Navier-Stokes equations and find applications in modeling atmospheric flows (Vreug,
denhil} [1994). We use the dataset from |Gupta & Brandstetter| (2023) for modeling the velocity and
pressure fields for global atmospheric winds with a periodic boundary condition.

5.2 MODELS

Here, we overview the models used in our experiments, and provide further details in Appendix [D}

SINENET-8/16. SineNet with 8 or 16 waves and 64 channels at the highest resolution. Multiplier
my, = 1.425/1.2435 is used, resulting in channels along the downsampling path of each wave being
arranged as (64,91, 129, 185, 263)/(64, 79,98, 123, 153).
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F-FNO. Fourier Neural Operators (Li et al., |2021a) process multi-scale features by performing
convolutions in the frequency domain (Gupta & Brandstetter, 2023)), and were originally developed
for PDE modeling. As one of the primary components of SineNet is depth, we compare to a state-
of-the-art FNO variant, the Factorized FNO (F-FNO) (Tran et al., |2023), optimized specifically for
depth. In each of the 24 layers, the number of Fourier modes used is 32 and the number of channels
is 96.

DIL-RESNET. As opposed to downsampling and upsampling, the dilated ResNet (DIL-RESNET)
proposed by |Stachenfeld et al.| (2022)) is a neural PDE solver that processes multi-scale features
by composing blocks of convolution layers with sequentially increasing dilation rates followed by
sequentially decreasing dilation rates (Zhang et al., [2023).

U-NET-128 and U-NET-MOD. U-NET-128 is equivalent to SINENET-1 with the multiplier
my = 2 and 128 channels at the highest resolution, with channels along the downsampling path
arranged as (128,256,512, 1024, 2048). U-NET-MOD is a modern version of the U-Net architecture
which parameterizes downsampling using strided convolutions and upsampling using transposed
convolutions. Additionally, it doubles the number of convolutions and skip connections per resolution.

For convolution layers in SINENET, DIL-RESNET, U-NET-128 and U-NET-MOD, zero padding is
used on the INS dataset and circular padding is used on CNS and SWE.

5.3 RESULTS

We present results for INS, CNS, and SWE in Tablem On all datasets, SINENET-8 has the lowest
1-step and rollout errors. Out of the remaining baselines, F-FNO has the strongest performance in
terms of rollout error on CNS and SWE, while DIL-RESNET has the best baseline rollout error on
INS. We visualize SINENET-8 predictions on each dataset in Appendix

Table 1: Summary of rollout test error and one-step test error. The best performance is shown in bold
and the second best is underlined.

INS CNS SWE
METHOD #PAR. (M) 1-STEP (%) RoOLLOUT (%) 1-STEP (%) RoLLOUT (%) 1-STEP (%) RoLLOUT (%)
SINENET-8 35.5 1.66 19.25 0.93 2.10 1.02 1.78
SINENET-16 35.4 1.46 17.63 0.87 2.04 0.92 1.64
F-FNO 30.1 2.41 22.58 1.46 2.91 1.22 2.46
DIL-RESNET 16.7 1.72 19.29 1.17 3.76 2.23 4.12
U-NET-128 135.1 2.69 24.94 1.62 3.05 1.63 3.38
U-NET-MOD 144.3 2.43 23.65 1.32 3.34 1.60 3.02

5.4 ABLATION STUDY

Table 2: Ablation study results. The best performance is shown in bold.

INS CNS SWE
METHOD #PAR. M) 1-STEP (%) RorLouT (%) 1-STEP (%) RoLLouT (%) 1-STEP (%) RoLLOUT (%)
SINENET-8 35.5 1.66 19.25 0.93 2.10 1.02 1.78
SINENET8-ENTANGLED 32.8 1.69 19.46 1.01 2.39 1.14 1.97
DEEPER U-NET-8 28.6 1.74 19.58 1.21 2.76 1.39 2.67

We construct several models to ablate various components of SineNet and present results for these
models in Table 2]

DEEPER U-NET-8. Conventional U-Net, but increases the number of convolutions per resolution
along the down and upsampling paths by a factor of 8 relative to SINENET-8, resulting in an architec-
ture with a similar number of layers to SINENET-8, as visualized in Figure[6]in Appendix D] This
serves to ablate SineNet’s multi-stage processing strategy as a means of resolving the misalignment
issue, and furthermore validate that observed improvements of SineNet are not a mere result of
increased depth. In Table we see that on all datasets, SINENET-8 outperforms DEEPER U-NET-8.
The largest improvements are on the SWE data, where the time interval between consecutive solutions
is 48 hours. While the large timestep results in substantial misalignment in the DEEPER U-NET skip
connections, the multi-stage strategy of SINENET handles it effectively.
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Figure 3: Number of waves K versus test error. Solid line is rollout error, dashed line is 1-step error.
Numerical results are presented in Appendix [F.8]

SINENET-8-ENTANGLED. SINENET-8, but the parallel and sequential processing branches are
entangled, i.e., the downsampling path is constructed as in Equation[7]as opposed to the disentangled
downsampling in Equation [T} In Table[2] we observe that disentangling the parallel branch results in
consistent performance gains.

SINENET- K. SINENET with K waves, and the channel multiplier m g chosen such that the number
of parameters is roughly constant across all models, which we discuss further in Appendix[D.3] In
Figure 3] we present results for K’ = 2,4, 6,8, 10,12, 14, 16 and find that on all 3 datasets, errors
monotonically improve with K, although improvements appear to plateau around K = 16. This
result is consistent with our assumption of the latent evolution of features, as a greater number of
waves leads to a smaller amount of evolution managed by each wave, thereby leading to improved
modeling accuracy through reduced misalignment. In Appendix [Cl we present the inference time and
space requirements for SINENET-K.

Effect of circular padding. In Table 3} we replace Table 3: Comparison between zero and circu-
circular padding with zero padding in SINENET-8 lar padding on SWE with SINENET-8.

on SWE. The periodic boundaries result in boundary

points opposite each other being spatially close, how- ZERO PADDING CIRCULAR PADDING
ever, without appropriate padding to encode this into ~_-STE? ) Rottour (%) 1-Step (%) Rortour (%)
feature maps, the ability to model advection across 130 41 102 178
boundaries is severely limited.

6 DISCUSSION

We discuss potential limitations in Appendix[E] including out-of-distribution (OOD) generalization,
applicability to PDEs with less temporal evolution, computational cost, and handling irregular
spatiotemporal grids. Additionally, while SineNet is a CNN and therefore cannot directly generalize
to discretizations differing from that in the training set, inference at increased spatial resolution can
be achieved through dilated network operations or interpolations without any re-training, which we
discuss and experiment with further in Appendix

7 CONCLUSION

In this work, we have presented SineNet, a neural PDE solver designed to evolve temporal dynamics
arising in time-dependent PDEs. We have identified and addressed a key challenge in temporal
dynamics modeling, the misalignment issue, which results in a performance drop for conventional U-
Nets. By reframing the U-Net architecture into multiple waves, SineNet mitigates this misalignment,
leading to consistent improvements in solution quality over a range of challenging PDEs. Further, we
analyze the role of skip connections in enabling both parallel and sequential processing of multi-scale
information. Additionally, we demonstrate that increasing the number of waves, while keeping the
number of parameters constant, consistently improves the performance of SineNet. Our empirical
evaluation across multiple challenging PDE datasets highlights the effectiveness of SineNet and its
superiority over existing baselines.
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APPENDIX

A MISALIGNMENT ANALYSIS

A.1 SLOWING DOWN EVOLUTION IN LATENT SPACE

We now conduct an empirical analysis to validate
our hypothesis concerning the manageable inconsis- a rer [dings — sl
tency due to reduced misalignment within each wave.
Specifically, we demonstrate the progressive evolu-

3

tion of the system’s state over the waves by injecting . . -
a perturl?ation into the model input and monitoring SINENET )
the ensuing response in the latent maps at each wave. ot arian anay b aas
The response to this perturbation serves as an indica-

tor of the influence of the perturbation at each time - . .

step, thereby enabling us to track the evolution of the

system. To quantify this response, we first carry out R Gl |G — e
a forward pass of the input u; through our trained ~ =
model and capture the /-th feature map, denoted as ‘2
Ty A¢. We then introduce a localized perturbation \
to u; in the form of random noise concentrated in a
small central region and re-record the ¢-th feature
map, denoted as x;4¢. The absolute difference
iy Ar = |Zipar — Tipae| is computed and visual-
ized to represent the response. We add such noise
to samples from the test set as it allows us to see the
feature propagation from an excitation with a small
spatial extent. Otherwise, if we only provide the per-
turbation as input to the network, it will become an out-of-distribution problem for the network since
there are no similar samples in the training set. However, if we inject a small amount of noise to a

sample in the test set, the resulting input remains close to the original test sample, and therefore is
still in-distribution and can be used to analyze the behavior of the trained model.

U-Net

N\’a

Figure 4: Feature map responses to noise in-
jection for trained U-NET-128 and SINENET-
8. As opposed to the U-NET, in SINENET,
the perturbation influence propagates grad-
ually from the first to the last feature map,
demonstrating the reduced latent evolution
managed by each wave.

Figure ] showcases the evolution of this response across the latent maps a;ya,, ..., @ 4A, ina
well-trained SINENET-8 model. For comparison, we also include the response from a well-trained
U-NET-128, using the output of the first projection layer and the output of the last upsampling block.
In both the U-NET and SINENET models, the perturbation influence expands spatially from the input
to the output. However, for SINENET-8, the perturbation influence propagates incrementally from
the first to the last feature map, indicating that the spatial evolution within each wave is reduced. It’s
important to note that this progressive propagation is not merely a consequence of limited receptive
fields, as the receptive field of each wave is substantially larger than the area influenced by the
perturbation. Furthermore, the receptive field for each wave of SINENET is equal to that of the
U-NET.

A.2 FEATURE MAP VISUALIZATION

We visualize feature maps for each wave of SINENET-8 in Figure [5|for a randomly selected example
from the INS data. Specifically, for each wave, we show the highest-resolution skip connection from
the downsampling path alongside the result of the upsampling path to which the skip-connected
feature map is concatenated, as due to latent evolution, these two feature maps will have the greatest
misalignment out of all of the skip connections in a given wave. Visualization is done by averaging
over the channel dimension of each feature map. To increase the overall contrast, we clip the 1%
and 99" quantiles. As can be seen relative to the feature maps from the U-Net in Figure |1} the
misalignment in skip connections is substantially mitigated thanks to the multi-stage feature evolution
in SineNet.
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Skip connected (128 x 128) After upsampling (128 x 128)

Wave 1

Wave 2

Wave 3

Wave 4

Wave 5

Wave 6

Wave 7

Wave 8

Figure 5: Visualization of SINENET-8 feature maps averaged over the channel dimension for INS
data. Skip connections from the highest resolution in the downsampling path of each wave are
visualized on the left, which are concatenated with the upsampled feature maps visualized on the
right. Compared to U-Net (Figure [I)in main text), the degree of misalignment in skip connections is
far less severe, as feature maps progressively evolve more gradually across waves.
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(a) SINENET (b) U-NET (c) DEEPER U-NET

Figure 6: Comparison of SINENET, U-NET and DEEPER U-NET architectures.

B DATASET DETAILS

B.1 THE NAVIER-STOKES EQUATION

The Navier-Stokes equations (Constantin & Foias|, [2020) are the fundamental model which encodes
the conservation of mass and momentum in fluid flows in manifold applications ranging from
weather research to aerospace engineering and stellar magneto-hydrodynamics. It comprises a
system of non-linear partial differential equations for the density p, velocity field u, and pressure
p of a fluid (compressible case) or velocity w and pressure p (incompressible case). The Navier-
Stokes equations are the dominant model of fluid dynamics from which other equations such as
the Euler equation or the shallow water equations are derived in limiting regimes (zero viscosity,
shallow water). Due to its foundational role, it is the subject of an unsolved Millennium Problem
of the Clay Mathematics Institute and has attracted attention from mathematical analysts as well as
applied scientists. Challenges abound, especially for fast-moving turbulent flows, and despite recent
breakthroughs (Albritton et al., [2022), even the existence and uniqueness of solutions is not fully
understood.

B.2 DETAILED SETUP

Incompressible Navier-Stokes (INS). Each trajectory is 14 time steps spaced 1.5 seconds apart
and models the evolution of a vector velocity field with a Dirichlet boundary condition and a scalar
field with a Neumann boundary conditon representing the concentration of particles advected by
the velocity field. Trajectories are spatially discretized onto a 128 x 128 grid. The data follow a
train/valid/test split of 5,200/1,300/1,300, and the length of the time history h is 4 steps such that
trajectories are unrolled for 10 steps during evaluation. The viscosity u controlling the level of
turbulence in the flow is 0.01.

Compressible Navier-Stokes (CNS). Each trajectory has 21 time steps and consists of a scalar
pressure field, a scalar density field, and a vector velocity field, each with periodic boundary conditions.
Trajectories are generated on a 512 x 512 spatial grid and downsampled to 128 x 128. The dataset is
split as 5,400/1,300/1,300 and, following [Takamoto et al.|(2022), models use time history h = 10
such that trajectories are unrolled for 11 steps during evaluation.

Shallow Water Equations (SWE). The trajectories are generated using the numerical solver
from Klower et al,| (2022)) on a 96 x 192 spatial discretization. Each trajectory consists of 11
time steps, with 48 hours between each step. The data are split as 5,600/1,400/1,400, and h = 2
historical time steps are used such that trajectories are unrolled for 9 steps during evaluation.

C TIME AND SPACE COMPLEXITY

In Table[d] we analyze the inference time, training time, and GPU footprint for all models on a batch
of size 32 randomly selected from the INS dataset. The times presented here are an average over
1,000 batches on a single 0GB A100 GPU.
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Table 4: Analysis of inference and training time, as well as memory required for all models on a
batch of size 32 randomly selected from the INS dataset. A batch size of 16 is used for SINENET-
NEURAL-ODE in the Forward+Backward complexity test as it cannot fit into the GPU memory with
batch size 32.

FORWARD FORWARD+BACKWARD
METHOD #PAR. (M) TIME (S) MEMORY (GB) TIME (S) MEMORY (GB)
SINENET-2 35.5 0.122 4.19 0.398 10.63
SINENET-4 35.5 0.180 3.86 0.596 15.11
SINENET-6 35.5 0.225 3.74 0.729 19.18
SINENET-8 35.5 0.286 3.54 0.917 23.31
SINENET-10 35.5 0.328 3.52 1.043 27.21
SINENET-12 35.5 0.368 3.87 1.157 30.90
SINENET-14 35.4 0.410 3.70 1.286 34.61
SINENET-16 35.5 0.447 3.65 1.400 38.21
SINENET-NEURAL-ODE 12.7 1.822 8.60 2.977" 49.53"
F-FNO 30.1 0.399 3.91 1.175 41.05
DIL-RESNET-128 4.2 0.182 3.83 0.387 28.77
DIL-RESNET-256 16.7 0.469 8.37 1.044 56.93
U-NET-128 135.1 0.169 7.58 0.532 13.24
U-NET-MOD 144.3 0.097 4.71 0.236 14.12

D IMPLEMENTATION DETAILS

D.1 TRAINING

Our code is implemented in PyTorch (Paszke et al[2019). Models are trained and evaluated on 2
NVIDIA A100 80GB GPUs. All models are optimized for 50 epochs with batch size 32 and the
model with the best validation rollout results is used for testing. Following |Gupta & Brandstetter
(2023)), each epoch consists of T iterations over the data. For each trajectory, a start time ¢ is
randomly sampled from ¢ = h,...,T — 1. Performing T cycles per epoch ensures that each possible
1-step input-target pair ({w¢—pt1, ..., Ust}, Us41) is sampled more than once in expectation for each
trajectory. We calculate statistics from the training data along the field dimension and normalize
model inputs and targets to have 0 mean and unit variance. During rollouts, we apply the inverse
normalization.

All models are optimized with the AdamW optimizer (Kingma & Bal, [2015; [Loshchilov & Hutter,
2019), using an initial learning rate of n,; = 2 x 10~4, except for the F-FNO on SWE and CNS,
where we found a larger learning rate to improve performance (see Table [6). The learning rate
was warmed up linearly for 5 epochs from 7,;, = 1 X 10™7 to 7y before being decayed for the
remaining 45 epochs using a cosine scheduler.

D.2 Loss

We use the Scaled-Ls loss for both training and evaluation. We observe that the magnitude can vary
significantly across different fields. Therefore, we compute the Scaled- Lo loss separately for different
fields to account for differences in magnitude and then calculate the average across all fields. Given a
prediction i, and a target u, at time step ¢, composed of M fields, the 1-step loss is computed as

1 L [lak — ubl
L2 ) = 37 32 S "
k=1 ull2

where u* denotes the k-th field of « and the norm is taken over all spatial dimensions. Note that we
consider each scalar component as a separate field. For example, the velocities along x direction and
y direction are considered as two different fields and are normalized independently. For validation
and test, the rollout loss is computed as the average 1-step loss over rollout time steps
1 T
Emllout — Z El-slep(,at’ ut)» (15)

T—h
t=h+1
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where T is the number of total time steps and h is the number of conditioning historical time steps.

D.3 SELECTION OF MULTIPLIER HYPERPARAMETER

Table 5: Multiplier hyperparameter and number of channels in each wave for SINENET- K across
various choices of K. The multiplier determines how the number of channels is upscaled along the
downsampling path and downscaled along the upsampling path. We adjust this multiplier to manage
the number of parameters and computational cost of SineNet. We also list the number of channels
produced by each of the 4 blocks from the beginning to the end of the downsampling path. The input
number of channels to each wave in all models is 64.

METHOD # PAR. (M) MULTIPLIER # OF CHANNELS

SINENET-2 35.5 1.8075 (115,209, 377,683)
SINENET-4 35.5 1.6110 (103,166,267, 431)
SINENET-6 35.5 1.5000 (96,144,216, 324)
SINENET-8 35.5 1.4250 (91,129,185, 263)
SINENET-10 35.5 1.3660 (87,119,163, 222)
SINENET-12 35.5 1.3190 (84,111,146, 193)
SINENET-14 35.4 1.2790 (81,104,133,171)
SINENET-16 35.5 1.2435 (79,98,123,153)

We now discuss the choice of the number of channels in the feature maps along the down and
upsampling paths. The number of channels in the feature map output by the ¢-th downsampling and
upsampling blocks, respectively, is given by

2 = Lm%zoj , Zr = Lmﬁ(_gzoj HA=1,...,L (16)

where 2 is the number of channels following the projection by the encoder P and there are L
downsampling and upsampling blocks. While conventional U-Nets use multiplier myx = 2, we
manage the number of parameters and complexity of our SINENET-K architectures by selecting m g
such that the number of parameters is roughly constant in K. In Table 5] we present the multiplier
my and number of channels along the downsampling path for the SINENET- K architecture with
varying number of waves K. All architectures presented here use zo = 64.

D.4 BASELINE TUNING

Here we present hyperparameter tuning results for baseline methods on the SWE dataset. As discussed
in Appendix[D.1] we found that for F-FNO, using a larger learning rate improved results. Additionally,
Tran et al.| (2023)) found that in their setting, sharing weights between Fourier convolution layers
improved F-FNO performance. However, we find not sharing to give better results. We additionally
found that increasing the number of channels in DIL-RESNET improved performance. We present
validation errors for these experiments in Table 6]

Table 6: Best validation results for different baseline hyperparameter settings on SWE. We evaluate
F-FNO with different learning rates, as well as with and without weight sharing. We additionally
evaluate the effect of number of channels on DIL-RESNET.

METHOD #PAR. (M) 1-STEP VALID (%) ROLLOUT VALID (%)
FFNO, 7yt = 1 x 1073 30.1 1.21 2.44
FFNO, nipic = 2 x 1074 30.1 1.88 3.72
FFNO-SHARED, 75 = 1 x 1073 3.0 1.77 3.44
DIL-RESNET-128 4.2 3.40 6.60
DIL-RESNET-256 16.7 221 4.09
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E DISCUSSION ON LIMITATIONS

Out-of-distribution (OOD) generalization. Unlike classical solvers which are based on intrinsic
mathematical model of PDEs and can be applied to almost any initial and boundary conditions,
data-driven surrogate models are only guaranteed to generalize well to scenarios which are close to
the training distribution. For example, performance drops substantially when simulating the same
dynamics but on a larger domain than observed during training (Stachenfeld et al., [2022). It is
possible to improve OOD robustness by combining surrogate models with classical solvers (Kochkov
et al.,[2021). However, pure surrogate models remain attractive due to flexibility in model design
and fast inference. It remains to be seen how training methods can be adapted to improve OOD
robustness, with initial works in this direction focusing on meta-learning approaches (Wang et al.|
2022; Mouli et al.} 2023} |Kirchmeyer et al., 2022). In Appendix @ we found noise injection during
training (Sanchez-Gonzalez et al.| 2020; |Stachenfeld et al., [2022)) improved robustness to difficult
intial conditions and generalization to rollouts 10x longer than training rollouts.

PDEs with reduced temporal evolution. SineNet was developed specifically for time-evolving PDEs
wherein the input fields are spatially misaligned with respect to the target fields. Therefore, further
experimentation is needed to determine the benefits of SineNet in learning dynamics where time
evolution does not play as large of a role, such as the steady-state Darcy flow equations considered
by Li et al.|(2021a).

Computational cost. As shown in Appendix [C] using more waves increases the inference time
and training memory due to the added depth. Nevertheless, as we did in the experiments, channel
multipliers can be adjusted to control the computational cost.

Irregular spatial grids and time intervals. For modeling dynamics on irregular discretizations,
graph neural networks have been used (Brandstetter et al., [2022} |Pfaff et al.| [2021; |Wu et al.| 2022).
As with all CNNs, SineNet can only handle inputs on rectangular grids with uniformly spaced mesh
points. However, it is possible to extend SineNet to irregular meshes with graph neural networks (Gao
& Jil 20195 |Li et al.|[2020), where the key idea of combining multi-resolution processing and multi-
stage processing remains valid. Furthermore, because SineNet is trained for autoregressive prediction,
it can only advance time by a fixed-size timestep A;, and thus, cannot predict the solution at time
points that are not multiples of A,. However, as we show in Appendix [FI] SineNet can be trained to
generalize over A;.

Mixed and non-null boundaries. As discussed in Section the Dirichlet boundary conditions we
consider for the particle concentration field can be effectively encoded via zero padding. Although
the Neumann boundary conditions on the velocity field would ideally be encoded in feature maps
using reflection padding to represent the null spatial derivative, encoding both the Neumann boundary
condition and the Dirichlet boundary condition is not straightforward. This is because it is unclear
which feature maps correspond to the particle concentration, and which correspond to the velocity
field. To further complicate matters, feature maps earlier in the architecture may correspond to
both. Although here we choose to only use zero-padding for simplicity, future work should explore
principled approaches to encoding mixed boundary conditions for convolutional architectures, with
Horie & Mitsume|(2022) having initiated this line of work for graph neural networks.

Furthermore, while we consider null Dirichlet and null Neumann boundaries here, non-null conditions
are also of interest. For non-null Dirichlet conditions, the value of the field on the boundary is known
and can be encoded simply by padding with the known value. In the case of the non-null Neumann
condition, one approach could be to pad with a finite difference-type approximation using the feature
map’s boundary value and the boundary derivative given by the condition. Further work is needed to
validate the effectiveness of both approaches.

F EXTENDED RESULTS

F.1 CONDITIONAL INS
In the conditional task considered by |Gupta & Brandstetter| (2023)), models are trained to generalize

over variable-sized time steps and variable forcing terms. Specifically, in Equation[I3] f is an external
force acting along the = and y axes as f = (0, f) T € R2. In the conditional task, the y-component
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Table 7: Summary of rollout test error and one-step test error for various time step sizes on Conditional
INS.

1-STEP (%)
METHOD # PAR. (M) ‘ Ay =037 A;=075 A;=15 A;=30 A;=6.0 ‘ RoLLOUT (%)
SINENET-8-ADD 38.0 2.29 2.82 3.82 6.84 19.79 5.27
SINENET-8-ADAGN 40.3 2.05 2.59 3.63 6.64 19.21 4.60
U-NET-MOD-ADD 146.6 2.46 3.23 4.94 9.50 24.69 5.85
U-NET-MOD-ADAGN 148.8 2.16 2.91 4.46 8.86 24.94 5.00

of the forcing term varies between trajectories as f € [0.2,0.5]. Furthermore, the time step size is
reduced by a factor of 4 relative to the INS data from 1.5 seconds to 0.375 seconds such that the
number of time steps increases from 14 to 56. The one-step training objective then becomes the
prediction of u¢1 A, given u;, where the time step A, takes values in {0.375k : k = 1,...,55}.

To model the variable forcing term and time step size, network inputs are (u;, ), where & is the
time-step and buoyancy « = (f,A). |Gupta & Brandstetter| (2023)) condition models on x by
learning an embedding € of x obtained by applying sinusoidal embeddings (Vaswani et al.| [2017)
and an MLP to f and A;. In each convolution block, ¢ is linearly projected and added along the
channel dimension of feature maps. |Gupta & Brandstetter| (2023) additionally consider a scale-shift
approach, where a linear projection of ¢ is multiplied element-wise along the channel dimension
prior to addition along the channel dimension with a second linear projection of € (Perez et al., 2018).
Gupta & Brandstetter| (2023) refer to this approach as adaptive group normalization, since the scale
and shift are applied directly following normalization (Nichol & Dhariwal, 2021). Since SineNet does
not use pre-activation as in the U-NET-MOD considered by |Gupta & Brandstetter| (2023), wherein
normalization and activation functions are applied prior to convolution layers, the scale and shift
in SineNet are instead applied following the activation function. Nonetheless, we still refer to the
scale-shift approach as adaptive group normalization for consistency with |(Gupta & Brandstetter|
(2023)).

In Table[7] we compare SINENET-8 to U-NET-MOD using both the additive (ADD) and adaptive group
normalization (ADAGN) approaches on the conditional task. Models are trained on a train/valid/test
split of 2,496/95/608, where all trajectories have 56 time steps and the buoyancies f appearing in
each split are distinct from those appearing in the remaining splits. Following |Gupta & Brandstetter
(2023)), we evaluate each of the models on 1-step prediction with A; € {0.375,0.75, 1.5, 3.0,6.0}.
We additionally report errors on rollouts of length 10 with A; = 0.375 beginning from all possible
time steps in each trajectory. Consistent with |Gupta & Brandstetter| (2023)), we find the ADAGN
versions of SineNet and U-NET-MOD to outperform the ADD versions. SINENET8-ADAGN is the
top performer in all metrics.

Table 8: Results on INS for SINENET-8, SINENET-NEURAL-ODE, and SINENET-8 with reduced
time history h.

METHOD #PAR. (M) 1-STEP (%) RoLLOUT (%)
SINENET-8 35.5 1.66 19.25
SINENET-NEURAL-ODE 12.7 1.83 19.88
SINENET-8, h =1 35.5 1.62 18.86
SINENET-8, h = 2 35.5 1.64 19.07
SINENET-8, h = 3 35.5 1.62 18.90

F.2 CONNECTION TO NEURAL ODE

Neural ODE (Chen et al.| 2018)) is a general neural framework for learning the mapping from an initial
latent representation h(0) to an output latent representation h(1) by parameterizing the derivative of
h with a neural network vy as
dh(T)
dr

= vg(h(1), 7).
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To map from h(0) to h(1), the derivative can then be integrated as

h(1) = h(0) +/(J vg(h(T), T)dT,

where the integral is approximated using a numerical integrator. |Chen et al.[(2018)) derive a method for
backpropagating through the operations of an arbitrary numerical integrator in a stable and memory-
efficient manner, enabling training of vy. Their method includes the case of adaptive time-stepping

integrators, which evaluate the derivative d};(:) an adaptive number of times dependent on h(7) to
induce stability in the integration. This allows vy to be applied a variable number of times in mapping

h(0) to h(1), thereby formulating a continuous-depth neural network.

A number of common machine learning tasks fit in this framework, including image classification,
image generation, and time series modeling. Taking h(7) as the latent solution @, and vy as a
U-Net frames the mapping from x; to =, as a neural ODE formulation of SineNet which we refer
to as SINENET-NEURAL-ODE. We train and evaluate SINENET-NEURAL-ODE on INS using the
fifth order Dormand-Prince-Shampine numerical integrator, which is the default in the Neural-ODE
PyTorch library (Chenl 2018). Following the MNIST (LeCun et al., |1998) experiment from |Chen
et al. (2018)), we reduce the parameters of SINENET-NEURAL-ODE roughly by a factor of 3 relative
to SineNet. We incorporate the coordinate 7 via a learned embedding vector added along the channel
dimension in each convolution block of vy as done in the conditional task in Appendix [F.1]

Although |Chen et al.| (2018)) showed that vg could be Number of Function Evaluations by Epoch
optimized with space complexity independent of the 35.0
number of evaluations, we instead train SINENET- 32.5

NEURAL-ODE with direct back propagation to speed 30.0
up training. As shown in Figure /| the number of I
function evaluations for SINENET-NEURAL-ODE & ™~
increases as training progresses, which is consis- ~ 25:07
tent with the findings of (Chen et al.| (2018)). Due 22.5
to the high number of U-Net calls per forward pass, 5 |
SINENET-NEURAL-ODE is expensive to train in . . . . . .
terms of space and time despite the reduction in the 0 10 20 30 40 50
number of parameters, as we show in Table [d We Epoch

present test results for SINENET-NEURAL-ODE in
Table|8] where we find its performance to be compet-

Figure 7: Average number of forward passes
per batch by epoch when training SINENET-

itive with SINENET-8. NEURAL-ODE. Consistent with [Chen et al.
(2018)), we find that the number of forward
F.3 SUPER-RESOLUTION ANALYSIS passes increases as training progresses.

Table 9: Summary of rollout test error and one-step test error for the super-resolution task on 1,000
CNS trajectories downloaded from PDEBench (Takamoto et al.| [2022).

128 x 128 512 x 512
METHOD # PAR. (M) 1-STEP (%) ROLLOUT (%) SR METHOD 1-STEP (%) ROLLOUT (%)
DILATION 1.06 2.65
SINENET-8 355 1.06 2.64 INTERPOLATION 2.44 3.54
F-FNO 30.1 1.46 2.93 DIRECT 1.44 2.90

As discussed in Section E], neural operators (Kovachki et all [2021)) aim to learn PDE solution
operators independently of the resolution of the training data. This enables generalization beyond
the discretization of the training data such that a trained neural operator can perform zero-shot super
resolution (Li et al., [2021a)), wherein the task is to solve the PDE at a higher resolution than during
training. As U-Nets, SineNets, and other CNN-based architectures learn their kernel functions on
the same grid as the training data, they cannot perform this task directly, although recent work has
adapted CNNss to the neural operator framework (Raonic et al., 2023)).

To perform super-resolution with SineNet, we consider two approaches: interpolation and dilation.
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Figure 8: Absolute error for super-resolved one-step prediction on CNS using dilation and interpola-
tion.

Interpolation. The input initial 10 time steps are downsampled to the training resolution of 128 x 128.
SineNet then solves the PDE at the lower resolution, after which the solution is interpolated to the
higher resolution.

Dilation. Alternatively, SineNet can operate directly on the high resolution data using dilation.
Convolutions, downsampling, and upsampling operations from the SineNet trained on 128 x 128 are
all dilated by a factor of 4. Intuitively, the grid can be viewed to be divided using a checkerboard
pattern, where each grid point interacts exclusively with other grid points that share the same type
(color) as designated by this checkerboard arrangement. This ensures that even at a higher resolution,
each feature map grid point interacts only with grid points spaced equidistant to those it would interact
with at the training resolution. Although dilation is a standard operation in convolution layers, we
highlight that it is crucial to also apply dilation in pooling (for downsampling) and in interpolation
(for upsampling). For example, in the 2 x 2 pooling operation, instead of averaging and reducing
over 2 x 2 regions of immediate neighboring grid points, we average and reduce over the 4 corner
grid points of 5 x 5 regions.

We download 1,000 512 x 512 CNS trajectories from PDEBench (Takamoto et al.}[2022) and evaluate
models trained on the 128 x 128 CNS data presented in the main text. We compare to F-FNO, a
neural operator which does not require interpolation or dilation to perform super-resolution. Results
are presented in Table[9} As in the main text, SINENET-8 outperforms F-FNO at training resolution.
At the higher resolution, interpolation introduces error, while dilation achieves nearly identical error
to at training resolution. In Figure[8] we visualize the super-resolved errors using both approaches for
one-step prediction on a randomly chosen example. As can be seen, unlike dilation, interpolation
introduces errors in regions of high gradient. However, dilation is only applicable for super-resolving
at integer multiples of the training resolution. For non-integer super-resolution multiples, similar
techniques in deformable convolutions could be considered to offset the operations
to non-integer locations during testing. Furthermore, all super-resolution approaches introduce error
in settings where the higher resolution solutions contain high-frequency details not present at training
resolution, or when numerical simulation at a higher resolution alters the behavior of the dynamics
relative to training resolution, e.g., by introducing smaller eddies in a fluid simulation.
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Figure 9: Evolution of rollout error for SINENET-8, SINENET-16, and the best baseline on each
dataset.

F.4 TEMPORAL EVOLUTION OF ROLLOUT ERROR

In Figure[9] we visualize the evolution of the rollout error of SineNet against the best baseline on
each of the considered datasets.

F.5 LONG-TIME PREDICTION ON CNS

To evaluate SineNet on longer time horizons, we generated 100 CNS trajectories with 7" = 120 time
steps. As opposed to the CNS task considered in the main text where solvers unroll trajectories for
11 steps given the initial 10 steps, we increase the time horizon by a factor of 10 in unrolling 110
steps given the initial 10 steps. Although the initially turbulent dynamics stabilize over the lengthy
trajectory and therefore present a more stable prediction target, we evaluated models trained on the
original CNS task such that beyond ¢t = 21, the dynamics were out-of-distribution.

One approach to increase long-term stability is noise CNS Rollout Loss, T=120
injection (Sanchez-Gonzalez et al., 2020; [Stachen+ . -
feld et all [2022)), where 0-mean Gaussian noise is 30{ — SineNet-8-Noise

added to training inputs to simulate noise encountered —— SineNet-8
by the solver during rollouts due to errors in previ- _ F-FNO
ous predictions. Recent work by [Lippe et al.| (2023) &
extended this approach to consider multiple levels &
of noise that the model is trained to remove, which &
shares a connection with denoising diffusion proba- H 104
bilistic models (Ho et al., |2020)). Tran et al. (2023))

found noise injection to be important for stable train-

ing of F-FNO, which we employed in training F-FNO o+~ ‘ ‘ ‘ ‘ ‘
for our tasks. For this longer rollout task, we addi- 20 40 60 80 100 120
tionally evaluated a SINENET-8-NOISE trained on t

the 21-step CNS data with the noise level o = 0.01, Figure 10: Rollout error averaged across

which is the same as F-FNO. 89 CNS trajectories of length T = 120
We present results in Table@} We find a subset of for SINENET-8-NOISE, SINENET-8, and F-
the generated trajectories led to poor performance FNO.

across all models, even causing several of the baselines to diverge entirely and produce solutions
with greater than 100% error in 11/100 cases. The cause is unclear, although the initial density
and/or pressure fields for each of these trajectories have small mean values relative to the remaining
trajectories, potentially creating out-of-distribution dynamics. We therefore present results both with
and without these 11 trajectories. SINENET-8-NOISE has the lowest rollout error in both cases, and
is more robust to the 11 difficult cases than the remaining models.

In Figure |10} we present the rollout error by time step for SINENET-8 trained with and without noise,
as well as F-FNO. As can be seen, noise injection has a regularizing effect that causes the predictions
of SINENET-8 to have better errors for short time horizons than models trained with noise injection.
However, at longer time horizons, models trained with noise injection surpass SINENET-8 due to

23



Published as a conference paper at ICLR 2024

their robustness to the accumulation of rollout error. In Figures [TTHI4] we visualize a randomly
selected trajectory predicted by SINENET-8-NOISE on this data.

Table 10: Summary of rollout test errors on CNS with 7" = 120. ROLLOUT-89 corresponds to
the dataset with the 11 trajectories resulting in a baseline error greater than 100% removed, while
ROLLOUT-100 is for the full dataset. ‘-’ indicates a rollout error greater than 100%.

METHOD #PAR. (M) RoOLLOUT-100 (%) ROLLOUT-89 (%)
SINENET-8-NOISE 35.5 15.94 14.62
SINENET-8 35.5 27.97 15.44
F-FNO 30.1 - 15.15
DIL-RESNET 16.7 - 23.44
U-NET-128 135.1 29.97 15.25
U-NET-MOD 144.3 - 18.95

F.6 ABLATION ON NUMBER OF CONDITIONING STEPS

In Table [8] we ablate the number of historical conditioning steps used on INS. We find that h = 1
gives the lowest test error, followed by & = 3. That h = 1 performs as well or better than & > 1 is in
line with findings reported by [Iran et al.|(2023)). In our experiments, we instead adhere to the number
of historical steps used by the respective benchmarks on each dataset (4 for INS, 10 for CNS and 2
for SWE). However, we believe that principled approaches for choosing the number of conditioning
steps, as well as how to incorporate them into model predictions, is an interesting topic for future
research.

F.7 WAVE BOTTLENECK

Table 11: Results on INS, CNS, and SWE for SINENET-8 and SINENET-8-BOTTLENECK.

INS CNS SWE
METHOD #PAR. (M) 1-STEP (%) RorLouT (%) 1-STEP (%) RorLLouT (%) 1-STEP (%) RoOLLOUT (%)
SINENET-8 35.5 1.66 19.25 0.93 2.10 1.02 1.78
SINENET-8-BOTTLENECK 35.5 1.68 19.19 1.20 3.14 1.63 2.51

In addition to the dual processing mechanism which we discuss in Section and ablate with
SINENET-8-ENTANGLED in Section a primary difference between the waves V}, comprising
SineNet and a conventional U-Net is the encoder and decoder present in conventional U-Nets (P and
@ in Equations[I]and[2). SineNet instead maintains a high-dimensional representation between waves.
We ablate this design choice with SINENET-8-BOTTLENECK, which decodes the latent solution
T4+, output by V}, to the lower-dimensional base space before encoding back to the latent space for
input to Vi 1. Aside from the dual processing mechanism, this renders the architecture of each wave
Vi closer to that of a conventional U-Net, however, it creates a bottleneck between waves.

In Table@ we present results for SINENET-8-BOTTLENECK evaluated on INS, CNS, and SWE.
On all datasets, SINENET-8 outperforms SINENET-8-BOTTLENECK in terms of 1-step error. While
SINENET-8 has a lower rollout error than SINENET-8-BOTTLENECK on CNS and SWE by a
substantial margin, SINENET-8-BOTTLENECK tops the rollout error of SINENET-8 on INS.

The mixed results on these datasets could be due to the difficulty of the initial time steps in the INS
rollouts relative to the remaining time steps. Compared to the 1-step error of 1.66 for SINENET-8
averaged over all possible time steps in INS trajectories, Figure [J]shows that the errors starting from
the beginning of the trajectory are over twice as high. This is likely due to the large velocities in
earlier timesteps creating dynamics which are faster-evolving and with a greater degree of local
variability than at later timesteps, which is exemplified in Figures[I8{20] As a result of larger errors
early on in predicted trajectories, as well as the accumulation of error through autoregressive rollout,
there is a substantially larger gap between 1-step errors and rollout errors on INS. We hypothesize
that the bottleneck serves as a form of regularization which decreases performance in terms of 1-step
prediction, but increases robustness to the difficult initial steps in INS. Performing a similar analysis
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for CNS and SWE, the difficulty of the initial timesteps instead appear similar to the remaining
timesteps on both datasets. Thus, the regularization is not beneficial as before, and in fact leads to a
performance drop, likely due to the information bottleneck between waves.

We visualize the decoded feature maps between each wave for SINENET-8-BOTTLENECK on INS,
CNS, and SWE in Figures and [I7] respectively. Interestingly, as SWE is a global weather
forecasting task, we can see the outline of the world map in the visualized feature maps (e.g., Feature
Map 1 of Wave 3 in Figure[T7), which implies that the primary objective of these feature maps is for
modeling the evolution of dynamics about the boundaries of continents, potentially encouraged by
the information compression in the wave bottleneck.

F.8 SINENET-K RESULTS
In Table[I2] we present numerical results for the SineNets with varying K visualized in Figure 3]

Table 12: Summary of rollout test error and one-step test error for SineNet with varying K.

INS CNS SWE
METHOD #PAR. (M) 1-STEP (%) RoLLouT (%) 1-STEP (%) RoLLouT (%) 1-STEP (%) RoLLOUT (%)
SINENET-2 35.5 2.38 23.71 1.56 4.98 1.38 2.54
SINENET-4 35.5 1.91 21.06 1.26 2.63 1.13 1.97
SINENET-6 35.5 1.73 19.58 1.12 2.40 1.10 1.91
SINENET-8 35.5 1.66 19.25 0.93 2.10 1.02 1.78
SINENET-10 35.5 1.58 18.68 0.94 2.24 0.97 1.73
SINENET-12 35.5 1.53 18.09 0.93 2.12 0.92 1.64
SINENET-14 35.4 1.49 17.66 0.89 1.97 0.94 1.66
SINENET-16 35.5 1.46 17.63 0.87 2.04 0.92 1.64

G DATASET AND PREDICTION VISUALIZATION

Here, we visualize rollout predictions from SINENET-8 on INS (Figures[I8}20), CNS (Figures[21}24),
and SWE (Figures [25{27)) on a randomly selected trajectory from each test set. In each, we show the
ground truth field in the left column, the predicted field in the middle column, and the absolute error
in the right column.
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CNS, T=120: Density
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Figure 11: Compressible Navier-Stokes density field for 7' = 120 downsampled to every 10 time
steps.
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CNS, T=120: Pressure

Ground Truth Predicted Absolute Error
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Figure 12: Compressible Navier-Stokes pressure field for 7' = 120 downsampled to every 10 time
steps.
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CNS, T=120: Velocity x
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Figure 13: Compressible Navier-Stokes velocity « component for 7' = 120 downsampled to every
10 time steps.
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CNS, T=120: Velocity y
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Figure 14: Compressible Navier-Stokes velocity y component for 7' = 120 downsampled to every 10
time steps.
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Figure 15: Visualization of SINENET-8-BOTTLENECK decoded feature maps between each wave on
INS. The Wave 8 feature maps are the predicted particle concentration and velocity field.
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Figure 16: Visualization of SINENET-8-BOTTLENECK decoded feature maps between each wave on
CNS. The Wave 8 feature maps are the predicted density, pressure and velocity fields.

31



Published as a conference paper at ICLR 2024

Feature Map 1 Feature Map 2 Feature Map 3

Wave 1

Wave 2

Wave 3

Wave 4

Wave 5

Wave 6

Wave 7

Wave 8

Figure 17: Visualization of SINENET-8-BOTTLENECK decoded feature maps between each wave on
SWE. The Wave 8 feature maps are the predicted pressure and velocity field.
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Figure 18: Incompressible Navier-Stokes particle concentration.
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Figure 19: Incompressible Navier-Stokes velocity  component.
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Figure 20: Incompressible Navier-Stokes velocity y component.
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Figure 21: Compressible Navier-Stokes density field.
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Figure 22: Compressible Navier-Stokes pressure field.
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Figure 23: Compressible Navier-Stokes velocity = component.
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Figure 24: Compressible Navier-Stokes velocity y component.
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Figure 25: Shallow water equations pressure field.
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Figure 26: Shallow water equations velocity 2 component.
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Figure 27: Shallow water equations velocity y component.
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