
A LaMCTS Partition Function

Algorithm 2 details the pseudocode for the partition function used in LaMCTS, which we use in LaP3

as well.

Algorithm 2 Partition Function
1: Input: Input Space Ω, Samples St, Node partition threshold Nthres, Partitioning Latent Model
s(x)

2: Set V0 = {Ω}
3: Set Vqueue = {Ω}
4: while Vqueue 6= ∅ do
5: Ωp ← Vqueue.pop(0)
6: if n(Ωp) ≥ Nthres then
7: Sgood, Sbad ← samples from St corresponding to indices of k-means(s(Ωp ∩ St))
8: Fit SVM on Sgood, Sbad

9: Use SVM to split Ωp into Ωgood,Ωbad

10: V0 ← V0 ∪ {Ωgood,Ωbad}
11: Vqueue ← Vqueue ∪ {Ωgood,Ωbad}
12: end if
13: end while
14: return V0

B Proofs

B.1 Proof of Lemma 1

Proof. Let δ < 1. Define the following cumulative density function (CDF):

Fk(y) := P[f(x) ≤ g∗k − y|x ∈ Ωk] (2)

where g∗k := supx∈Ωk
f(x). It is clear that Fk(y) is a monotonically decreasing function with

Fk(0) = 1 and limy→+∞ Fk(y) = 0. Here we assume it is strictly decreasing so that Fk(y) has a
well-defined inverse function F−1

k .

In the following, we will omit the subscript k for brevity. Let us bound P[gt ≥ g∗ − y]:

P[gt ≥ g∗ − y] = 1− P[gt ≤ g∗ − y] (3)
1©
= 1−

∏
i

P[f(xi) ≤ g∗ − y|xi ∈ Ωk] (4)

= 1− Fnt

k (y) (5)

Note that 1© is due to the fact that all samples x1, . . . ,xnt
are independently drawn within the region

Ωk. Given δ, let rt := F−1
k (δ1/nt) and we have:

P[gt ≥ g∗ − rt] = 1− δ (6)

B.2 Proof of Corollary 1

Proof. Since f is Lk-Lipschitz over region Ωk, we have:

|f(x)− f(x′)| ≤ Lk‖x− x′‖2 ∀x,x′ ∈ Ωk (7)

Since the optimal solution x∗k ∈ Ωk is in the interior of Ωk, there exists ε0 so that B(x∗k, ε0) ⊆ Ωk.
From the Lipschitz condition, we know that in the ball B(x∗k, ε) with ε ≤ ε0, the function values are
also quite good:

f(x) ≥ f(x∗k)− Lk‖x− x∗k‖2 = g∗ − Lkε, ∀x ∈ B (x∗k, ε) (8)

15

Therefore, at least in the ball of B(x∗k, ε), all function values are larger than a threshold g∗ − Lkε.
This means that for ε ≤ ε0:

Fk(Lkε) = P [f(x) ≤ g∗ − Lkε|x ∈ Ωk] ≤ 1− V0ε
d

Vk
(9)

where V0 is the volume of the unit d-dimensional sphere. Letting Ṽk := Vk/V0 be the relative volume
with respect to unit sphere, we have:

Fk(y) ≤ 1− (y/Lk)d

Ṽk
= 1−

(
y

LkṼ
1/d
k

)d

when y ≤ Lkε0 (10)

Therefore, Ωk is at most (1− εd0Ṽ −1
k , LkṼ

1/d
k)-diluted with zk = 1− εd0Ṽ −1

k and ck = LkṼ
1/d
k .

B.3 New Lemma and Proof

Lemma 2. If Ωk are (zk, ck)-diluted, then for any δ ∈ [zk, 1] and j ≥ 1, we have:

F−1
k (δ1/j) ≤ ck d

√
1

j
ln

1

δ
(11)

Proof. Note that the diluted condition Fk(y) ≤ 1 −
(

y
ck

)d
for y ∈ [0, ck

d
√

1− zk] can be also be
written as:

F−1
k (z) ≤ ck d

√
1− z, ∀z ∈ [zk, 1] (12)

Since now we have zk ≤ δ ≤ δ1/j ≤ 1 for any j ≥ 1, following Eqn. 12 we have:

F−1
k (δ1/j) ≤ ck

d
√

1− δ1/j (13)

Due to the inequality that for a < 1 and x > 0, ax ≥ 1 + x ln a (which can be proven by simply
showing the derivative is non-negative), if we take a = δ and x = 1/j, we have:

δ1/j ≥ 1− 1

j
ln

1

δ
(14)

which gives:
F−1
k (δ1/j) ≤ ck d

√
j−1 ln 1/δ (15)

B.4 Proof of Theorem 1

Proof. Take δ = η/T 3 so that δ ≥ zk for all regions Ωk. Then Eqn. 1 holds for all T iterations and
all K arms with probability at least 1−KTδ by union bound, which we consider a “good event”.

For brevity, define g∗k := g(Ωk) as the optimal function value within the region of Ωk and nk,t :=
nt(Ωk) the visitation count of region Ωk. Define ∆k := f∗ − g∗k the minimal regret of each arm and
rk,t := rt(Ωk) the confidence bound. At iteration t, since we pick k = at as the region to explore, it
must be the case that:

f∗ + rk,t
1©
≥ g∗k + rk,t

2©
≥ gk,t + rk,t

3©
≥ gk∗,t + rk∗,t

4©
≥ g∗k∗ = f∗ (16)

where k∗ is the index of the optimal region Ωk∗ where its maximum g∗k∗ is the global optimal value
f∗. Here 1© is due to global optimality of f∗, 2© is due to global optimality of g∗k within region Ωk:
g∗k ≥ gk,t, 3© is due to the fact that we pick at = k at iteration t, and 4© is due to the non-negativity
of the confidence bound: rk∗,t ≥ 0. Therefore, since g∗k + rk,t ≥ f∗, we have:

∆k := f∗ − g∗k ≤ rk,t (17)

Now we bound the total regret.

Note that for Rt(at) := f∗ − gat,t, we have:

Rt(at) := f∗ − gat,t = f∗ − g∗at
+ g∗at

− gat,t ≤ 2rat,t (18)

16

due to the fact that ∆k = f∗−g∗k ≤ rk,t and the property of the confidence bound that gk,t ≥ g∗k−rk,t
with k = at.

One the other hand, using Lemma 2, we also have

∆k ≤ rk,t = F−1
k (δ1/nk,t) ≤ ck d

√
1

nk,t
ln

1

δ
(19)

which means that

nk,t ≤
(
ck
∆k

)d

ln
1

δ
(20)

So if the region Ωk has a large gap ∆k, then nk,t would have a small upper-bound (and be small). As
a result, we would never visit that region after a fixed number of visitations. This also helps bound
the regret.

If we sum over Rt(at) over t iterations, we get R(T). We could reorganize them into two kinds of
regions, the good regions where Kgood := {k : ∆k ≤ ∆0} and the bad regions where Kbad := {k :
∆k > ∆0}:

R(T) =

T∑
t=1

Rt(at) =
∑

at∈Kgood

Rt(at)︸ ︷︷ ︸
Rgood(T)

+
∑

at∈Kbad

Rt(at)︸ ︷︷ ︸
Rbad(T)

(21)

Let M := supx∈Ω f(x)− infx∈Ω f(x) be the maximal gap between the highest and lowest function
values. Note that M is also the largest regret for a single move at any iteration. Letting Cbad :=(∑

k∈Kbad
cdk
)1/d

be the `d-norm of ck over bad regions, we then have:

Rbad(T) ≤ M

(
Cbad

∆0

)d

ln
1

δ
(22)

Rgood(T) = 2
∑

k∈Kgood

nk,T∑
j=1

rk,t

∣∣∣
nk,t=j

= 2
∑

k∈Kgood

nk,T∑
j=1

F−1
k (δ1/j) (23)

For Rgood(T), this is because for each region k we visit it nk,T times and each time we pay a price
that is proportional to 1/nk,t for nk,t = 1 . . . nk,T .

Using Lemma 2, since all Ωk are (zk, ck)-concentrated and zk ≤ δ, this leads to:

Rgood(T) ≤ 2 d
√

ln 1/δ
∑

k∈Kgood

ck

nk,T∑
j=1

j−1/d (24)

Assuming d > 1 (high-dimensional case), we use the bound
n∑

j=1

j−1/d ≤ d

d− 1
n1−1/d (25)

and we have:
Rgood(T) ≤ 2d

d− 1
d
√

ln 1/δ
∑

k∈Kgood

ckn
d−1
d

k,T (26)

Hölder’s inequality says if 1/p+ 1/q = 1, then
∑

k |xkyk| ≤ (
∑

k |xk|p)1/p(
∑

k |yk|q)1/q. Using
it with p = d and q = d

d−1 , we get

Rgood(T) ≤ 2d

d− 1
d

√
ln

1

δ

 ∑
k∈Kgood

cdk

 1
d
 ∑

k∈Kgood

nk,T


d−1
d

(27)

≤ 2d

d− 1
d

√
ln

1

δ
CgoodT

d−1
d (28)

17

where Cgood :=
(∑

k∈Kgood
cdk

) 1
d

is the `d-norm of ck over good regions.

Finally, if a good event doesn’t happen (with probability KTδ), we would pay a regret of at most M
at each iteration t, yield a bound of MKT 2δ for T iterations.

Since δ = η/T 3 then finally we have

E [R(T)] = O

[
Cgood

d
√
T d−1 lnT +M

(
Cbad

∆0

)d

lnT +KMη/T

]
(29)

B.5 Additional Implications of Theorem 1

Relationship w.r.t sample complexity. Note that one can turn the regret bound ofR(T) in Theorem 1
into sample complexity: if there exists T such that E [R(T)] /T ≤ ε, then with high probability there
exists at least one Rt(at) := f∗ − gt(Ωat) ≤ ε, showing that we already found a good x ∈ Ωat with
f(x) = gt(Ωat

) ≥ f∗ − ε. To achieve this, since R(T) ∼ T d−1
d , we set R(T)/T ∼ T− 1

d . Then the
sample complexity T to achieve the global optimum within an ε-ball is ∼ 1/εd, which is the best we
can achieve without structured information on f . Previous papers [41] show a slightly worse bound
O(T

d+1
d+2) since they also consider stochastic functions and discretization error.

Which region to split? Since Cgood :=
(∑

k∈Kgood
ck

)1/d

is an `d-norm, when d is large (i.e.,
high-dimensional), Cgood ∼ maxk∈Ωgood

ck so ideally we should split the region with the highest ck
to reduce Cgood the most. Intuitively this means the most diluted / scattered region.

C Model-Based Reinforcement Learning

LaP3 can escape local minima and achieve significantly better results in various RL tasks using a
simulated environment. In MiniWorld, we showed that we could also plug LaP3 into the PETS [7]
framework, replacing the CEM method that was originally used as a planner (Sec. 5). Here we
additionally use Mujoco, a commonly used benchmark, to validate the performance. Note that
Mujoco is a very smooth task and doesn’t contain many local minima, so traditional methods work
reasonably well in this domain. In Tab. 3, we can see that in easier tasks like Reacher and Pusher,
LaP3 is a little worse than CEM. However, in hard tasks like Halfcheetah and Walker, LaP3 has over
1000 reward gain over baseline methods.

swimmer acrobot hopper pendulum halfcheetah

PETS(RS) 12.92±7.92 -41.93±2.17 -1525.39±222.43 130.14±28.39 497.03±121.72
PETS(CEM) -6.87±1.30 -24.77±7.63 -2102.57±136.35 153.05±12.00 271.01±165.08
LaP3 10.82±8.47 6.29±10.29 -1205.01±167.52 153.70±38.02 3942.47±400.01

reacher pusher ant I-pendulum walker

PETS(RS) -1165.59±12.04 -220.58±2.94 1330.81±113.17 -11.87±10.43 -1204.94±344.70
PETS(CEM) -36.45±2.87 -90.70±7.29 1405.56±46.94 -4.84±5.29 -2036.28±213.41
LaP3 -40.31±5.05 -103.42±2.91 1033.46±148.87 -0.30±0.09 -53.25±987.53

Table 3: Results for Mujoco with replanning frequency of 5. We see that LaP3 performs substantially
better than CEM and RS in hard tasks like Halfcheetah and Walker.

D Evaluation on Synthetic Functions

We additionally evaluate LaP3 on some synthetic functions (Ackley and Levy functions, both 20-
dimensional and 100-dimensional) used in the original LaMCTS paper [45]. For these tasks we
compare to just the original LaMCTS method. Both LaP3 and LaMCTS use the TuRBO inner solver
following [45] for the 20-dimensional version of both functions, and the CMA-ES inner solver for

18

the 100-dimensional version for computational efficiency. LaP3 performs equal or better on these
tasks (Table 4; note lower is better).

Ackley-20D Levy-20D Ackley-100D Levy-100D

LaMCTS 0.48 ± 0.03 0.51 ± 0.09 0.65 ± 0.25 14.24 ± 4.87
LaP3 0.49 ± 0.04 0.34 ± 0.07 0.46 ± 0.15 11.95 ± 3.56

Table 4: LaP3 vs the original LaMCTS method on some synthetic functions evaluated in the original LaMCTS
work. Note lower is better. LaP3 performs equal or better on these tasks.

E Tables of Numerical Results

We provide in Tables 5 through 9 the numerical final rewards for our tasks, corresponding to the plots
in the main text.

MazeS3 FourRooms SelectObj

LaMCTS 23.4 ± 2.6 20.3 ± 2.5 0.8 ± 0.6
RS 0.4 ± 0.4 0.0 ± 0.0 3.1 ± 1.1
CMA-ES 23.8 ± 2.7 79.7 ± 2.5 1.2 ± 0.7
CEM 25.0 ± 2.7 69.9 ± 2.9 0.4 ± 0.4
VOOT 26.2 ± 2.7 0.0 ± 0.0 0.0 ± 0.0
RandDOOT 25.0 ± 2.7 0.0 ± 0.0 0.0 ± 0.0
iLQR 3.1 ± 1.1 0.8 ± 0.6 1.6 ± 0.8
PPO 0.0 ± 0.0 0.0 ± 0.0 31.3 ± 8.2
LaP3 57.0 ± 3.1 89.1 ± 2.0 45.3 ± 3.1

Table 5: Results (success percentage over 256 trials) for MiniWorld tasks for different methods, querying oracle
transition model. LaP3 substantially outperforms all baselines on all three environments. This table corresponds
to Figure 4.

FourRooms SelectObj

PETS-RS 0.0 ± 0.0 0.0 ± 0.0
PETS-CEM 66.9 ± 6.3 7.2 ± 1.9
PETS-LaP3 83.1 ± 2.3 19.4 ± 1.8

Table 6: Results for MiniWorld tasks for different methods using a learned PETS transition model. The oracle
model is only used for final evaluation on each environment seed, and the resulting trajectory becomes future
training data to the PETS model. We report the total fraction of environment seeds solved by each method, out
of 256 total, averaged across 5 trials. LaP3 substantially outperforms the original PETS implementation. This
table corresponds to Figure 5.

MazeS3 FourRooms SelectObj

LaP3 57.0 ± 3.1 89.1 ± 2.0 45.3 ± 3.1
LaP3-mean 43.4 ± 3.1 83.6 ± 2.3 16.0 ± 2.3
LaP3-nolatent 26.6 ± 2.8 54.3 ± 3.1 2.3 ± 0.9
LaP3-notree 24.6 ± 2.7 0.0 ± 0.0 2.7 ± 1.0
LaP3-noUCB 28.1 ± 2.8 76.6 ± 2.6 1.6 ± 0.8

Table 7: Results for MiniWorld tasks using different region selection methods. 256 trials per method. This
corresponds to Figure 6.

19

adpcm aes blowfish dhrystone gsm matmul mpeg2 qsort sha

-O0 41260 12633 199345 9258 8130 42085 10489 58400 269653
-O3 16844 9937 188237 5936 7137 33244 8266 52256 226235
PPO_50 11175 10263 175649 5753 6286 9644 8281 52137 209142
OpenTuner 10501 9795 180834 7196 6181 33244 8291 52137 209155
CMA-ES 10451 10093 180198 5996 6294 9644 8280 50869 209142
LaP3 10451 9753 180179 5702 6178 9644 8282 47745 209142
PPO_4000 10415 9759 175779 5515 6286 9644 8260 47785 205302

Table 8: Results for compiler phase ordering, in execution cycles for program after a series of transformations,
following setup of [15]. 50 oracle accesses per method. This table corresponds to Figure 7.

QED DRD2 HIV SARS

LaMCTS 0.914 ± 0.002 0.323 ± 0.016 0.406 ± 0.019 0.452 ± 0.010
RS 0.897 ± 0.001 0.081 ± 0.006 0.116 ± 0.002 0.279 ± 0.006
CEM 0.906 ± 0.003 0.250 ± 0.016 0.455 ± 0.021 0.423 ± 0.005
CMA-ES 0.888 ± 0.004 0.216 ± 0.018 0.425 ± 0.020 0.414 ± 0.007
LaP3 0.916 ± 0.001 0.648 ± 0.026 0.588 ± 0.020 0.570 ± 0.018

Table 9: Mean and standard deviation across 128 random seeds for LaP3 and baselines on QED, DRD2, SARS,
and HIV molecular design tasks; results reported for 1000, 4000, 4000, and 4000 oracle queries respectively.
LaP3 significantly outperforms all three baselines on all four properties. This table corresponds to Figure 8.

F Detailed Analyses and Ablations

F.1 Lk and ck Estimation Details

To loosely approximate the Lipschitz constant in our analysis from Sec. 5.3, we simply check
all pairwise Lipschitz constants between existing samples (candidate trajectories) in the tree node
(region). Similarly, to loosely approximate ck, we take the highest-scoring sample in the region as
the “optimum” and estimate ck for zk = 0.5 following our definition using the remaining samples in
the region.

F.2 zk Estimation

We estimate zk over time in our MiniWorld tasks, fixing several different values of ck in intervals of
1 reward (Figure 9). zk is estimated using 50 samples (in between each dynamic re-partitioning of
the space) at each timestep in intervals of 50, with 32 trial runs. In all cases zk initially drops very
quickly, and then somewhat plateaus after finding the initial local optimum (whether global or not),
especially in SelectObj. However, in most cases it still continues to decrease over time.

While this is consistent with our qualitative analysis in Sec. B.5 about how zk changes with recursive
splitting, in some cases, zk seems to stop decreasing over time. Upon inspection, we find that those
regions whose zk remain high correspond to low-performing regions which do not receive many
samples according to UCB exploration. Therefore, such regions won’t improve over time and the zk
remains high.

F.3 Latent Space Visualization

We show a t-SNE visualization (Figure 10) of the latent space of trajectories at the end of a sample
MazeS3 run of LaP3. The first sampled trajectories are colored red, with a gradient toward blue for
the later-sampled trajectories. The later trajectories are clearly separated in the latent space.

F.4 Parameter Space Methods

It is of course possible to optimize the parameters of a policy which outputs an action given the
current state, as in the original LaMCTS formulation, or in PPO. Nevertheless, we tune and run
a parameter-space version of LaMCTS in the MiniWorld tasks, which is essentially the original

20

0 500 1000 1500 2000
Time T

0.0

0.2

0.4

0.6

0.8

1.0

z k

(a) MazeS3

0 500 1000 1500 2000
Time T

0.0

0.2

0.4

0.6

0.8

1.0

z k

(b) FourRooms

0 1000 2000 3000 4000
Time T

0.0

0.2

0.4

0.6

0.8

1.0

z k

(c) SelectObj

Figure 9: Mean and standard deviation (32 trials), of estimated zk for different values of ck on MiniWorld
tasks.

Figure 10: Latent space t-SNE visualization for a sample MazeS3 run of LaP3. Earlier-sampled trajectories
(red) are clearly separated from the latest-sampled trajectories (blue).

LaMCTS adapted to path planning, only with TuRBO replaced with CMA-ES as in LaP3 due to
speed considerations. Specifically, following LaMCTS, we learn the parameters of a linear policy for
outputting actions given states.

MazeS3 FourRooms SelectObj

LaMCTS-parameter 10.9 ± 1.9 9.4 ± 1.8 100.0 ± 0.0
PPO 0.0 ± 0.0 0.0 ± 0.0 31.3 ± 8.2
LaP3 57.0 ± 3.1 89.1 ± 2.0 45.3 ± 3.1

Table 10: Comparison of LaP3 to an adaptation of the original LaMCTS, operating in parameter space, on
MiniWorld tasks. SelectObj is uniquely advantageous to parameter-space methods; for this reason, PPO also
performs better than our other baselines (but worse than LaP3) on that environment only. 256 trials per method.

Working in the parameter space can be clearly advantageous when states are relatively simple and
low-dimensional, as in the Mujoco environments evaluated in LaMCTS and POPLIN [47], or when
the policy barely needs to depend on the state at all, as in our SelectObj task (Table 10). We designed
the SelectObj task as a challenge for path planning algorithms operating in the action space, which
struggle to escape the local optimum, but in truth this environment can be trivially solved by simply
moving in the same correct direction at every step (toward the far goal).

On the other hand, more complex policies may be more challenging to learn when the state represen-
tation is higher-dimensional, which may be the case in practical tasks. This is the case in our MazeS3
and FourRooms environments, where the state is represented as a top-down image rather than a
vector of position and velocity information. Unlike SelectObj, these tasks require navigation around
obstacles rather than just moving in a straight line. Despite featurizing with the same randomly
initialized CNN as LaP3, LaMCTS-parameter performs very poorly on MazeS3 and FourRooms
in comparison. Additionally, methods like LaMCTS-parameter which use a parameter space must
critically depend on the specific parametric form of the policy to be learned (e.g., whether it is a
linear policy, a nonlinear policy parameterized by neural networks, etc); therefore, it is not obvious

21

how to take advantage of a latent space which encodes a sequence of states and/or actions, which is
critical in environments such as our molecular design tasks.

F.5 Hyperparameter Sensitivity Analysis

Since the Cp parameter is the only additional parameter we tune in LaP3, we analyze the sensitivity
of LaP3’s performance with respect to Cp on the MiniWorld tasks. Our main results use Cp = 2
except for SelectObj where we used Cp = 4; here we run Cp = 1, 2, 4 for all three tasks and show
the results in Table 11. LaP3 even with poorly tuned Cp values still substantially outperforms CEM
on these tasks with difficult-to-escape local optima.

MazeS3 FourRooms SelectObj

CEM 25.0 ± 2.7 69.9 ± 2.9 0.4 ± 0.4
LaP3-Cp = 1 52.7 ± 3.1 89.5 ± 1.9 6.6 ± 1.6
LaP3-Cp = 2 57.0 ± 3.1 89.1 ± 2.0 23.1 ± 2.6
LaP3-Cp = 4 53.5 ± 3.1 87.1 ± 2.1 45.3 ± 3.1

Table 11: Results for MiniWorld tasks using different Cp values for LaP3. Cp = 2 corresponds to our main
paper results, except for SelectObj where we used Cp = 4. LaP3 is relatively insensitive to changes in Cp on
MazeS3 and FourRooms and only more sensitive on the more difficult SelectObj task. However, even poorly
tuned versions of LaP3 outperform CEM, reproduced for baseline comparison. 256 trials per method.

F.6 Max vs. Mean UCB Metric For MCTS

Our theory suggests that the UCB metric for MCTS should be based on the max function value rather
than the mean for the deterministic functions that we consider in this work. Figure 6 already shows
this for MiniWorld; here we show the max vs. mean analysis for all tasks in Tables 12, 13, 14, and 15.

MazeS3 FourRooms SelectObj

LaP3-mean 43.4 ± 3.1 83.6 ± 2.3 16.0 ± 2.3
LaP3 57.0 ± 3.1 89.1 ± 2.0 45.3 ± 3.1

Table 12: Results for LaP3 (using max function value for UCB) in MiniWorld compared to LaP3 using the
mean function value metric for UCB. LaP3 is substantially better. 256 trials per method.

DK-6 DK-8 KC-S3R3 KC-S3R4 MR-N4S5 MR-N6

LaP3-mean 0.98 ± 0.02 0.25 ± 0.13 -2.36±0.09 -4.36±0.12 -11.78 ± 0.77 -114.63 ± 4.53
LaP3 0.95±0.03 0.46±0.13 -2.27±0.09 -4.37±0.13 -11.68±0.75 -113.53±4.49

Table 13: Results for LaP3 (using max function value for UCB) in MiniGrid compared to LaP3 using the mean
function value metric for UCB. LaP3 performs similarly or better. 256 trials per method.

adpcm aes blowfish dhrystone gsm matmul mpeg2 qsort sha

LaP3-mean 10501 10407 176429 5740 6305 8841 8281 47745 209142
LaP3 10451 9753 180179 5702 6178 9644 8282 47745 209142

Table 14: Results for LaP3 (using max function value for UCB) in compiler phase ordering compared to LaP3

using the mean function value metric for UCB. The two versions perform similarly. 256 trials per method.

F.7 Latent Space Ablations

We conduct additional analysis on the use of a latent partition space Φs in the MiniWorld, MiniGrid,
and compiler phase ordering tasks in Tables 16 (reproduced from Table 7), 17, and 18 respectively.

22

QED DRD2 HIV SARS

LaP3-mean 0.914 ± 0.002 0.323 ± 0.016 0.406 ± 0.019 0.452 ± 0.010
LaP3 0.916 ± 0.001 0.648 ± 0.026 0.588 ± 0.020 0.570 ± 0.018

Table 15: Results for LaP3 (using max function value for UCB) in molecular design tasks compared to LaP3

using the mean function value metric for UCB. LaP3 performs similarly on the easiest QED task and substantially
better on the others. 256 trials per method.

MazeS3 FourRooms SelectObj

LaP3-nolatent 26.6 ± 2.8 54.3 ± 3.1 2.3 ± 0.9
LaP3 57.0 ± 3.1 89.1 ± 2.0 45.3 ± 3.1

Table 16: Results for LaP3 in MiniWorld compared to LaP3 without the use of a partition latent space Φs. LaP3

is substantially better. 256 trials per method.

DK-6 DK-8 KC-S3R3 KC-S3R4 MR-N4S5 MR-N6

LaP3-nolatent 0.98±0.02 0.25±0.13 -2.36±0.09 -4.36±0.12 -11.78±0.77 -114.63±4.53
LaP3 0.95±0.03 0.46±0.13 -2.27±0.09 -4.37±0.13 -11.68±0.75 -113.53±4.49

Table 17: Results for LaP3 in MiniGrid compared to LaP3 without the use of a partition latent space Φs. LaP3

is better in most cases. 256 trials per method.

adpcm aes blowfish dhrystone gsm matmul mpeg2 qsort sha

LaP3-
nolatent

10451 10263 176429 6617 6169 8841 8280 52137 476269

LaP3 10451 9753 180179 5702 6178 9644 8282 47745 209142

Table 18: Results for LaP3 in compiler phase ordering compared to LaP3 without the use of a partition latent
space Φs. The two versions are comparable in most cases.

LaP3 performs similarly or better compared to the version without a latent space; the difference is
especially large in MiniWorld.

Additionally, it is possible to use a separate sampling latent space Φh, as illustrated here in MiniGrid
(Table 19), although we do not do so in our main results to keep consistency between latent spaces
across tasks. The version with a latent space (a reversible flow model here) performs slightly better.

DK-6 DK-8 KC-S3R3 KC-S3R4 MR-N4S5 MR-N6

LaP3-latentΦh 0.97±0.02 0.48±0.11 -2.19±0.15 -4.22±0.13 -10.68±0.68 -112.72±4.46
LaP3 0.95±0.03 0.46±0.13 -2.27±0.09 -4.37±0.13 -11.68±0.75 -113.53±4.49

Table 19: Results for LaP3 in MiniGrid compared to LaP3 with the use of a sampling latent space. While the
differences are small on most cases, LaP3 with a latent Φh is better on all tasks. 256 trials per method.

We additionally ablate on the latent space (used for both partitioning and sampling) in the easiest of
our molecular design tasks, the QED property. Specifically, we build the molecular SMILES string
autoregressively, using a discrete action space with 10 choices: the 9 most common characters in
molecular SMILES strings, in addition to an end token. (We limit the space of possible characters
in order to increase the chances of generating well-formed SMILES strings.) We optimize in
a continuous space of action probabilities as in MiniGrid, and allow a maximum length of 50
characters.

The poor results demonstrate the absolute necessity of a latent space in the molecular design task
(Table 20). While typical molecular SMILES strings for this task are 30 to 50 characters long,
both LaP3 and baselines struggle to generate well-formed strings even of length 3 to 5 without the
pre-trained latent space. Accordingly, the performance is drastically lower for all methods.

23

QED

RS-noΦ 0.417 ± 0.002
CEM-noΦ 0.411 ± 0.002
CMA-ES-noΦ 0.403 ± 0.003
LaP3-noΦ 0.416 ± 0.003

RS 0.897 ± 0.001
CEM 0.906 ± 0.003
CMA-ES 0.888 ± 0.004
LaP3 0.916 ± 0.001

Table 20: Mean and standard deviation across 128 random seeds for LaP3 and baselines on QED, with and
without the pre-trained latent space.

F.8 Other Inner Solvers

In this work we have used CMA-ES as the inner solver due to its speed and acceptable performance.
The original LaMCTS work used the TuRBO solver [10], which is prohibitively slow for many of
our experiments. Nevertheless, we have run experiments on the MiniWorld tasks using a smaller
number of trials to check performance using an alternate inner solver, both on LaP3 and also on the
LaMCTS baseline (Table 21. In most cases TuRBO performs equal or worse; we hypothesize this
is because our tasks use a smaller query budget per trial compared to the original LaMCTS work,
causing TuRBO to use too large a fraction of its total budget in each inner loop.

MazeS3 FourRooms SelectObj

LaMCTS-TuRBO 21.9 ± 7.3 0.0 ± 0.0 0.0 ± 0.0
LaMCTS 23.4 ± 2.6 20.3 ± 2.5 0.8 ± 0.6
LaP3-TuRBO 52.2 ± 10.4 63.6 ± 14.5 47.1 ± 12.1
LaP3 57.0 ± 3.1 89.1 ± 2.0 45.3 ± 3.1

Table 21: Results for LaP3 and LaMCTS with CMA-ES and TuRBO inner solvers in MiniWorld, with fewer
trials for TuRBO due to computational expense. TuRBO generally performs equal or worse on this task.

G Baseline Details and Hyperparameter Tuning

LaP3. For our method, we try Cp in {0.5, 1, 2, 4}. If the search space is not explicitly bounded, we
sample the first Ninit points used to initialize the partition tree using the same σ as CEM. Note Ninit

is not tuned; we use 5 for compiler phase optimization where our query budget is only 50, and 50
elsewhere. No other hyperparameters are tuned.

LaMCTS. Detailed in Algorithm 1, where we summarize the changes made in LaP3 compared to
LaMCTS. It is tuned similarly to our own method LaP3.

RS. The simplest baseline, in which one simply samples random trajectories and in the end returns
the best-performing among them. We do not tune this baseline.

CEM. An evolutionary method which tracks a population of N samples. At each step, it selects the
best Ne samples from its population to initialize the mean µ for the next generation of N samples,
drawn from a Gaussian distribution with standard deviation σ. However, while too-small σ may
prevent CEM from escaping local optima, too-large σ may yield results little better than random
shooting. We find that the choice of σ is critical to CEM’s performance in our test environments.
Therefore, we systematically tune σ when running CEM in all environments (checking {1, 2, 4, 8}).
While other parameters such as N and Ne are also tunable, we find that these make a smaller
difference, so we did not tune them extensively.

CMA-ES. A more complex evolutionary method which can be viewed as a variant of CEM. After
providing an initial µ and σ for the first generation, CMA-ES determines its own σ automatically
afterward, while also fitting additional parameters. Even so, we find that its performance is highly
sensitive to the initial σ, and we tune this parameter in the same way that we do for CEM.

24

VOOT. An MCTS method which builds a tree on actions. We tune the exploration parameter in the
VOO submodule, trying values in {0.1, 0.3, 0.5}.
RandDOOT. An MCTS method which builds a tree on actions similar to VOOT, but which splits
using axis-aligned boundaries rather than splitting into Voronoi regions; used as a baseline in their
original paper [22]. We did not tune hyperparameters.

iLQR. A gradient-based optimization method for continuously optimizing the planned trajectory,
which we run to convergence. It cannot easily escape local optima. As the performance was relatively
insensitive to hyperparameters, we did not systematically tune.

PPO. A standard reinforcement learning algorithm which operates in the parameter space, unlike
our other baselines. Since PPO is relatively robust to hyperparameters [39], we didn’t systematically
tune.

H Additional Environment Details

H.1 MiniWorld

We modified the original MiniWorld environments to have continuous action spaces and to have more
consistent difficulty across random seeds, as follows.

MazeS3. A 3x3 maze of rooms which are each 3 units by 3 units, with walls between rooms being
0.25 units wide. The maze is constructed by recursive backtracking from the top left room. The agent
begins in the top left room and the goal is placed in the last room generated in the maze construction.
The step size is 0.3 units and the environment length is 216 steps. The final sparse reward is the
Euclidean distance between the agent and the goal if the goal is not reached, otherwise a fixed reward
of 1 penalized by a fraction of the number of steps taken, down to a minimum of 0.8.

FourRooms. A 14x14 unit space with a 6x6 room in each corner. Adjacent rooms are connected
by a width-2 corridor along the outer edge of the space, i.e., there is a cross-shaped obstacle in the
center. The agent starts in a random location and the goal is in the diametrically opposite location.
The step size is 0.2 units and the environment length is 250 steps. The final sparse reward is the
Euclidean distance between the agent and the goal if the goal is not reached, otherwise a fixed reward
of 1 penalized by a fraction of the number of steps taken, down to a minimum of 0.8.

SelectObj. A 12x12 unit open space. The agent starts in the center. The near goal is 4 to 4.5 units
away and the far goal is 5 to 5.5 units away. The two goals are 3 to 4 units away from each other.
The step size is 0.05 units and the environment length is 200 steps. Unlike MazeS3 and FourRooms,
SelectObj does not terminate upon reaching a goal. The final sparse reward is the Euclidean distance
between the final agent position and the closest goal to the final position, plus a fixed reward of 1 for
being within 1 unit of the original far goal.

H.2 Compiler Phase Ordering

The action space consists of 46 different program transformations, and a trajectory consists of 45
transformations (quite short, considering many transformations have no effect unless applied in a
specific order). The reward is the difference between the original and final number of execution
cycles. Since the environment is deterministic, we only run 1 trial for each method. Thus far we have
followed the setup in [15]; however, unlike [15], we allow a budget of only 50 trajectory queries.

25

	LaMCTS Partition Function
	Proofs
	Proof of Lemma 1
	Proof of Corollary 1
	New Lemma and Proof
	Proof of Theorem 1
	Additional Implications of Theorem 1

	Model-Based Reinforcement Learning
	Evaluation on Synthetic Functions
	Tables of Numerical Results
	Detailed Analyses and Ablations
	Lk and ck Estimation Details
	zk Estimation
	Latent Space Visualization
	Parameter Space Methods
	Hyperparameter Sensitivity Analysis
	Max vs. Mean UCB Metric For MCTS
	Latent Space Ablations
	Other Inner Solvers

	Baseline Details and Hyperparameter Tuning
	Additional Environment Details
	MiniWorld
	Compiler Phase Ordering

