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Abstract

We study the problem of episodic reinforcement learning in continuous state-1

action spaces with unknown rewards and transitions. Specifically, we consider the2

setting where the rewards and transitions are modeled using parametric bilinear3

exponential families. We propose an algorithm, BEF-RLSVI, that a) uses penalized4

maximum likelihood estimators to learn the unknown parameters, b) injects a5

calibrated Gaussian noise in the parameter of rewards to ensure exploration, and c)6

leverages linearity of the exponential family with respect to an underlying RKHS7

to perform tractable planning. We further provide a frequentist regret analysis of8

BEF-RLSVI that yields an upper bound of Õ(
√
d3H3K), where d is the dimension9

of the parameters, H is the episode length, and K is the number of episodes. Our10

analysis improves the existing bounds for the bilinear exponential family of MDPs11

by
√
H and removes the handcrafted clipping deployed in existing RLSVI-type12

algorithms. Our regret bound is order-optimal with respect to H and K.13

1 Introduction14

Reinforcement Learning (RL) is a well-studied and popular framework for sequential decision making,15

where an agent aims to compute a policy that allows her to maximize the accumulated reward over a16

horizon by interacting with an unknown environment [SB18].17

Episodic RL. In this paper, we consider the episodic finite-horizon MDP formulation of RL, in short18

Episodic RL [ORVR13, AOM17, DLB17]. Episodic RL is a tuple M = ⟨S,A,P, r,K,H⟩, where19

the state (resp. action) space S (resp. A) might be continuous. In episodic RL, the agent interacts20

with the environment in episodes consisting of H steps. Episode k starts by observing state sk1 . Then,21

for t = 1, . . . H , the agent draws action akt from a (possibly time-dependent) policy πt(skt ), observes22

the reward r(skt , a
k
t ) ∈ [0, 1], and transits to a state skt+1 ∼ P(. | skt , akt ) according to the transition23

function P. The performance of a policy π is measured by the total expected reward V π
1 starting from24

a state s ∈ S, the value function and the state-action value functions at step h ∈ [H] are defined as25

V π
h (s)

def
= E

[
H∑
t=h

r(st, at) | sh = s

]
, and Qπ

h(s, a)
def
= E

[
H∑
t=h

r(st, at) | sh = s, ah = a

]
.

Here, computing the policy leading to maximization of cumulative reward requires the agent to
strategically control the actions in order to learn the transition functions and reward functions
as precisely as required. This tension between learning the unknown environment and reward
maximization is quantified as regret: the typical performance measure of an episodic RL algorithm.
Regret is defined as the difference between the expected cumulative reward or value collected by the
optimal agent that knows the environment and the expected cumulative reward or value obtained by
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an agent that has to learn about the unknown environment. Formally, the regret over K episodes is

R(K) ≜
K∑

k=1

(
V π⋆

1 (sk1)− V πt
1 (sk1)

)
.

Key Challenges. The first key challenge in episodic RL is to tackle the exploration–exploitation trade-26

off. This is traditionally addressed with the optimism principle that either carefully crafts optimistic27

upper bounds on the value (or state-action value) functions [AOM17], or maintains a posterior28

on the parameters to perform posterior sampling [ORVR13], or perturbs the value (or state-action29

value) function estimates with calibrated noise [OVRW16]. Though the first two approaches induce30

theoretically optimal exploration, they might not yield tractable algorithms for large/continuous31

state-action spaces as they either involve optimization in the optimistic set or maintaining a high-32

dimensional posterior. Thus, we focus on extending the third approach of Randomized Least-Square33

Value Iteration (RLSVI) framework, and inject noise only in rewards to perform tractable exploration.34

The second challenge, which emerges for continuous state-action spaces, is to learn a parametric35

functional approximation of either the value function or the rewards and transitions in order to perform36

planning and exploration. Different functional representations (or models), such as linear [JYWJ20],37

bilinear [DKL+21], and bilinear exponential families [CGM21], are studied in literature to develop38

optimal algorithms for episodic RL with continuous state-action spaces. Since the linear assumption39

is restrictive in real-life -where non-linear structures are abundant-, generalized representations have40

obtained more attention recently [CGM21, LLS+21, DKL+21, FKQR21]. The bilinear exponential41

family model is of special interest as it is expressive enough to represent tabular MDPs (discrete42

state-action), factored MDPs [KK99], linear MDPs [JYWJ20], linearly controlled dynamical systems43

(such as Linear Quadratic Regulators [AYS11]) as special cases [CGM21]. Thus, in this paper, we44

study the bilinear exponential family of MDPs, i.e. the episodic RL setting where the rewards and45

transition functions can be modelled with bilinear exponential families.46

The third challenge is to perform tractable planning1 given the perturbation for exploration and47

the model class. Existing work [OVR14, CGM21] assumes an oracle to perform planning and48

yield policies that aren’t explicit. The main difficulty in such planning approaches is that dynamic49

programming requires calculating
∫
P(s′ | s, a)Vh(s) for all (s, a) pairs. This is not trivial unless the50

transition is assumed to be linear and decouples s′ from (s, a), which is not known to hold except for51

tabular MDPs. Much ink has been spilled about this challenge recently, e.g. [DKWY19] asks when52

misspecified linear representations are enough for a polynomial sample complexity in several settings.53

[SS20, LSW20, VRD19] provide positive answers for specific linear settings. In this paper, we aim to54

address this issue by designing a tractable planner for the bilinear exponential family representation.55

In this paper, we aim to address the following question that encompasses the three challenges:56

Can we design an algorithm that performs tractable exploration and planning for bilinear57

exponential family of MDPs yielding a near-optimal frequentist regret bound?58

Our Contributions. Our contributions to this question are three-fold.59

1. Formalism: We assume that neither rewards nor transitions are known, whereas existing efforts on60

the bilinear exponential family of MDPs assume knowledge of rewards. This makes the addressed61

problem harder, practical, and more general. We also observe that though the transition model can62

represent non-linear dynamics, it implies a linear behavior (see Section 2) in a Reproducible Kernel63

Hilbert Space (RKHS). This observation contributes to the tractability of planning.64

2. Algorithm: We propose an algorithm BEF-RLSVI that extends the RLSVI framework to bilinear65

exponential families (see Section 3). BEF-RLSVI a) injects calibrated Gaussian noise in the rewards66

to perform exploration, b) leverages the linearity of the transition model with respect to an underlying67

RKHS to perform tractable planning and c) uses penalized maximum likelihood estimators to68

learn the parameters corresponding to rewards and transitions (see Section 4). To the best of our69

knowledge, BEF-RLSVI is the first algorithm for the bilinear exponential family of MDPs with70

tractable exploration and planning under unknown rewards and transitions.71

1By tractable planning, we mean having a planner with (pseudo-)polynomial complexity in the problem
parameters, i.e. dimension of parameters, dimension of features, horizon, and number of episodes.
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Table 1: A comparison of RL Algorithms for continuous state-actions with functional representations.

Algo Regret Tractable Tractable Free of Model, assumptions
exploration planning clipping

Thompson sampling
√
d2H3K ✗ ✓ N.A Gaussian P

[RZSD21] (Bayesian) Known rewards

LSVI-PHE
√
d3H4K ✓ ✓ ✗ Generalized V approx

[ICN+21] (Freq.) Tabular, anti-concentration

OPT-RLSVI
√
d4H5K ✓ ✓ ✗ Linear V

[ZBB+20] (Freq.)

EXP-UCRL
√
d2H4K ✗ ✗ N.A Bilinear Exp family

[CGM21] (Freq.) known rewards

BEF-RLSVI
√
d3H3K ✓ ✓ ✓ Bilinear Exp family

This work (Freq.)

3. Analysis: We carefully develop an analysis of BEF-RLSVI that yields Õ(
√
d3H3K) regret which72

improves the existing regret bound for bilinear exponential family of MDPs with known reward by73

a factor of
√
H (Section 3.2). Our analysis (Section 5) builds on existing analyses of RLSVI-type74

algorithms [OVRW16], but contrary to them, we remove the need to handcraft a clipping of the75

value functions [ZBB+20]. We also do not need to assume anti-concentration bounds as we can76

explicitly control it by the injected noise. This was not done previously except for the linear MDPs.77

We illustrate this comparison in Table 1. We highlight three technical tools that we used to improve78

the previous analyses: 1) Using transportation inequalities instead of the simulation lemma reduces79

a
√
H factor compared to [RZSD21], 2) Leveraging the observation that true value functions are80

bounded enables using an improved elliptical lemma (compared to [CGM21]), and 3) Noticing that81

the norm of features can only be large for a finite amount of time allows us to forgo clipping and82

reduce a
√
d factor from the regret compared to [ZBB+20].83

2 Bilinear exponential family of MDPs84

In this section, we introduce the bilinear exponential family model coined in [CGM21] and extend it85

to parametric rewards. Then, we state a novel observation about linearity of this representation.86

Bilinear exponential family model. We consider both transition and reward kernels to be unknown87

and modeled with bilinear exponential families. Specifically,88

P (s̃ | s, a) = exp
(
ψ(s̃)⊤Mθpφ(s, a)− Zp

s,a(θ
p)
)
, (1)

P (r | s, a) = exp
(
r B⊤Mθrφ(s, a)− Zr

s,a(θ
r)
)
, (2)

where φ ∈ (Rq
+)

S×A and ψ ∈ (Rp
+)

S are known feature functions, and B ∈ Rp is a known scaling89

factor. The unknown reward and transition parameters are θp, θr ∈ Rd. Mθ·
def
=
∑d

i=1 θ
·
iAi, where90

Ai is a known p× q matrix for each i. Finally, Z denotes the log partition function:91

Zp
s,a(θ

p)
def
= log

∫
S
exp

(
ψ(s̃)⊤Mθpφ(s, a)

)
ds̃,

Zr is defined similarly. We denote V π
θp,θr,h, respectively Qπ

θp,θr,h, the value, respectively state-action92

value function for policy π in the MDP parameterized by (θp, θr) at time h. A policy π⋆ is optimal if93

for all s ∈ S, V π⋆

θ,h(s) = max
π∈Π

V π
θ,h(s). A learning algorithm minimizes the (pseudo-)regret defined94

as:95

R(K) ≜
K∑

k=1

(
V π⋆

θ,1 (s
k
1)− V πt

θ,1(s
k
1)
)
. (3)

Linearity of transitions. Now, we state an observation about the bilinear exponential family96

and discuss how it helps with the challenge of planning in episodic RL. Specifically, the popular97

assumption of linearity of the transition kernel is a direct consequence of our model. Indeed,98

2ψ (s′)
⊤
Mθpφ(s, a) = −∥(ψ(s′)−Mθpφ(s, a)∥2 + ∥ψ(s′)∥2 + ∥Mθpφ(s, a)∥2.
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Notice that the quadratic term resembles the Radial Basis Function (RBF) kernel. More precisely, for99

an RBF kernel with covariance Σ=Ip and k(x, y)def= exp
(
−∥x− y∥2/2

)
, we find100

P (s′ | s, a) = ⟨ϕp(s, a), µp(s′)⟩H, (4)

where H is the RKHS associated with the kernel, µp(s′) = (2π)−p/2 k (ψ(s′), .) exp
(
∥ψ (s′) ∥2/2

)
,101

and ϕp(s, a) = k
(
M⊤

θpφ(s, a), .
)
exp

(
∥Mθpφ(s, a)∥2/2− Zs,a(θ

p)
)
. Equation (4) shows that s′ is102

decoupled from (s, a), we see hereafter why this is crucial to reducing the complexity of planning.103

Remark 1. Up to our knowledge, [RZSD21] is the only work providing an example of linear transition104

kernel for RL with continuous state-action spaces. They consider Gaussian transitions with an105

unknown mean (f⋆(s, a)) and known variance (σ2). Actually, linear f⋆ is a special case of the bilinear106

exponential family model, where ψ(s′) = (s′, ∥s′∥2) and Mθφ(s, a) = (fθ(s, a)/σ
2,−1/σ2).107

Importance of linearity. To understand the planning challenge in RL, recall the Bellman equation:108

Qπ
h(s, a) = r(s, a) +

∫
s̃∈S

P (s′ | s, a)V π
h+1(s̃)ds̃,

We must approximate the integral at the R.H.S.for (s, a) ∈ S ×A. For a tabular MDP with |S| states109

and |A| actions, we need to evaluate (Qπ
h)h∈[H], i.e. to approximate |S| × |A| × H integrals per110

episode, which can be very expensive. However, if the transition model is linear (Equation (4)), then111

Qπ
θ,h(s, a) = r(s, a) +

〈
ϕp(s, a),

∫
S
µp(s̃)V π

θ,h+1(s̃)ds̃

〉
. (5)

When ϕp, µp ∈ Rτ , we can obtain Qθp,θr,h by computing τ integrals per timestep, reducing the112

state-action space complexity to τ only. For our model, although ϕp and µp are infinite dimensional,113

we show in Section 4 (§ planning) that the planning complexity is still significantly reduced.114

3 BEF-RLSVI: algorithm design and frequentist regret bound115

In this section, we formally introduce the Bilinear Exponential Family Randomized Least-Squares116

Value Iteration (BEF-RLSVI) algorithm along with a high probability upper-bound on its regret.117

3.1 BEF-RLSVI: algorithm design118

BEF-RLSVI is based on RLSVI [OVRW16] framework with the distinction that we only perturb the119

reward parameters and not all the parameters of the value function. RLSVI algorithms are reminiscent120

of Thompson Sampling, yet more tractable with better control over the probability to be optimistic.121

Algorithm 1 BEF-RLSVI
1: Input: failure rate δ, constants αp, η and (xk)k∈[K] ∈ R+

2: for episode k = 1, 2, . . . do
3: Observe initial state sk1
4: Sample noise ξk ∼ N

(
0, xk(Ḡ

p
k)

−1
)

such that
Ḡp

k = η
αpA+

∑k−1
τ=1

∑H
h=1(φ(s

τ
h, a

τ
h)

⊤A⊤
i Ajφ(s

τ
h, a

τ
h))i,j∈[d]

5: Perturb reward parameter: θ̃r(k) = θ̂r(k) + ξk
6: Compute (Qk

θ̂p,θ̃r,h
)h∈[H] via Bellman-backtracking, see Algorithm 2

7: for h = 1, . . . ,H do
8: Pull action akh = argmaxaQθ̂p,θ̃r,h(s

k
h, a)

9: Observe reward r(skh, a
k
h) and state skh+1.

10: end for
11: Update the penalized ML estimators θ̂p(k), θ̂r(k), see Equation (6) and Equation (8)
12: end for

We can see that Algorithm 1 performs exploration by a Gaussian perturbation of the reward parameter122

(Line 4). Contrary to optimistic approaches, this method is explicit and also more efficient since it123

does not a involve high-dimensional optimization.124
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Algorithm 2 Bellman Backtracking

1: Input Parameters θ̂p, θ̃r, initialize θ̃ = (θ̃r, θ̂p) and ∀s, VH+1(s) = 0
2: for steps h = H − 1, H − 2, · · · , 0 do
3: Calculate Qθ̃,h(s, a) = Eθ̃r

s,a[r] + ⟨ϕp(s, a),
∫
Vθ̃,h+1(s

′)µp(s′)ds′⟩H.
4: end for

We can approximate Line 3 of Algorithm 2 with O(pH3K log(HK)) complexity and without125

harming the learning process (cf. § planning, Section 4). Therefore, here, planning is tractable.126

3.2 BEF-RLSVI: regret upper-bound127

We state the standard smoothness assumptions on the model [CGM21, JBNW17, LMT21].128

Assumption 1. There exist constants αp, αr, βp, βr > 0, such that the representation model satisfies:129

∀(s, a) ∈ S ×A,∀θ, x ∈ Rd αp ≤ x⊤Cθ
s,a[ψ]x ≤ βp

∀(s, a) ∈ S ×A,∀θ, x ∈ Rd αr ≤ Varθs,a(r) x⊤B⊤Bx ≤ βr

where Cθ
s,a [ψ (s′)] ≜ Es′∼Pθ|s,a

[
ψ (s′)ψ (s′)

⊤
]
− Es′∼Pθ|s,a [ψ (s′)]Es′∼Pθ|s,a

[
ψ (s′)

⊤
]

and130

Varθs,a(r) ≜
(
Eθ
s,a

[
r2
]
− Eθ

s,a [r]
2
)

is the variance of the reward under θ.131

A closer look at the derivatives of the model (see Appendix D.3) tells us that previous inequalities132

directly imply a control over the eigenvalues of the Hessian matrices of the log-normalizers.133

We now state our main result, the regret upper-bound of BEF-RLSVI.134

Theorem 2 (Regret bound). Let A ≜ (tr(AiA
⊤
j ))i,j∈[d] and Gs,a ≜ (φ(s, a)⊤A⊤

i Ajφ(s, a))i,j∈[d].135

Under Assumption 1 and further considering that136

1. max{∥θr∥A, ∥θp∥A} ≤ BA, ∥A−1Gs,a∥ ≤ Bφ,A and Eθr [r(s, a)] ∈ [0, 1] for all (s, a).137

2. noise ξk ∼ N (0, xk(Ḡ
p
k)

−1) satisfies xk ≥
(
H
√

βpβp(K,δ)
αpαr +

√
βrβr(K,δ)min{1,αp

αr }
2αr

)2

∝ dH2,138

then for all δ ∈ (0, 1], with probability at least 1− 7δ,139

R(K) ≤
√
KH

[
2H

(√
2βp

αp β
p(K, δ)γpK+(1+

√
γrK)

√
log(1/δ2)

)
︸ ︷︷ ︸

Transition concentration ≈ dH

+ βr
√
βr(n, δ)γrK

2αr︸ ︷︷ ︸
Reward concentration ≈ d

+ cβr
√
xKdγrK log(dK/δ) +

βr
√
xKdγrK log(e/δ2)

Φ(−1)
(1+

√
log(d/δ))︸ ︷︷ ︸

Noise concentration ≈ d3/2H

]

+
√
HγrK

[
βrCd

(√
βr(K, δ)

2αr + c
√
xKd log(dK/δ)

)
︸ ︷︷ ︸

Estimation error for no clipping ≈ dH

+
βrd

√
xK

Φ(−1)
(1+

√
log(d/δ))

√
Cd

(
1+

αrBφ,AH

η

)
︸ ︷︷ ︸

Learning error for no clipping ≈ (dH)3/2

]
,

where for i ∈ [p, r], βi(K, δ) ≜ η
2B

2
A + γiK + log(1/δ), and γiK ≜ d log(1 + βi

η Bφ,AHK). Also,140

Cd ≜ 3d
log(2) log

(
1 +

αr∥A∥2
2B

2
φ,A

η log(2)

)
, Φ is the Gaussian CDF, and c is a universal constant.141

Theorem 2 entails a regret R(K) = O(
√
d3H3K) for BEF-RLSVI, where d is the number of142

parameters of the bilinear exponential family model, K is the number of episodes, and H is the143

horizon of an episode. We now clarify how this contrasts with related literature.144
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Comparison with other bounds. The closest work to ours is [CGM21] as it considers the same145

model for transitions but with known rewards. They propose a UCRL-type and PSRL-type algorithm,146

which achieve a regret of order Õ(
√
d2H4K). There are two notable algorithmic differences with147

our work. First, they do exploration using intractable-optimistic upper bounds or high-dimensional148

posteriors, while we do it with explicit perturbation. The second difference is in planning. While149

they assume access to a planning oracle, we do it explicitly with pseudo-polynomial complexity150

(Section 4). Moreover, we improve the regret bound by a
√
H factor thanks to an improved analysis,151

(cf. Lemma 18). But similar to all RLSVI-type algorithms, we pick up an extra
√
d (cf. [AL17]).152

[ZBB+20] proposes a variant of RLSVI for continuous state-action spaces, where there are low-rank153

models of transitions and rewards. They show a regret bound R(K) = Õ(
√
d4H5K), which is larger154

than that of BEF-RLSVI by O(
√
dH2). In algorithm design, we improve on their work by removing155

the need to carefully clip the value function. Analytically, our model allows us to use transportation156

inequalities (cf. Lemma 13) instead of the simulation lemma, which saves us a
√
H factor.157

[RZSD21] considers Gaussian transitions, i.e. s′ = f∗(s, a) + ϵ such that ϵ ∼ N
(
0, σ2

)
. This is a158

particular case of our model. They propose to use Thompson Sampling, and have the merit of being159

the first to have observed linearity of the value function from this transition structure. But they do not160

connect it to the finite dimensional approximation of [RR07] unlike us (Section 4). Finally, they show161

a Bayesian regret bound of O(
√
d2H3K). This notion of regret is weaker than frequentist regret,162

hence this result is not directly comparable with Theorem 2.163

Tightness of regret bound. A lower bound for episodic RL with continuous state-action spaces is164

still missing. However, for tabular RL, [DMKV21] proves a lower bound of order Ω(
√
H3SAK).165

If we represent a tabular MDP in our model, we would need d = S2 × A parameters (Section 4.3,166

[CGM21]). In this case, our bound becomes R(K) = O(
√

(S2A)3H3K), which is clearly not tight167

is S and A. This is understandable due to the relative generality of our setting. We are however168

positively surprised that our bound is tight in terms of its dependence on H and K.169

4 Algorithm design: building blocks of BEF-RLSVI170

We present necessary details about BEF-RLSVI and discuss the key algorithm design techniques.171

Estimation of parameters. We estimate transitions and rewards from observations similar to172

EXP-UCRL [CGM21], i.e. by using a penalized maximum likelihood estimator173

θ̂p(k) ∈ argmin
θ∈Rd

k∑
t=1

H∑
h=1

− logPθ

(
sth+1 | sth, ath

)
+ η pen(θ).

Here, pen(θ) is a trace-norm penalty: pen(θ) = 1
2∥θ∥A and A = (tr(AiA

⊤
j ))i,j . By properties of174

the exponential family, the penalized maximum likelihood estimator verifies, for all i ≤ d:175

k∑
t=1

H∑
h=1

(
ψ
(
sth+1

)
− Eθ̂

p
k

sth,a
t
h
[ψ (s′)]

)⊤

Aiφ
(
sth, a

t
h

)
= η∇i pen

(
θ̂pk

)
. (6)

Equation (6) can be solved in closed form for simple distributions, like Gaussian, but it can involve176

integral approximations for other distribution. We estimate the parameter for reward, i.e. θr, similarly177

θ̂r(k) ∈ argmin
θ∈Rd

k∑
t=1

H∑
h=1

− logPθ

(
rt | sth, ath

)
+ η pen(θ), (7)

=⇒
k∑

t=1

H∑
h=1

(
rt − Eθ̂rk

sth,a
t
h
[r]
)
B⊤Aiφ

(
sth, a

t
h

)
= η∇i pen

(
θ̂rk

)
∀i ∈ [d]. (8)

Exploration. A significant challenge in RL is handling exploration in continuous spaces. The majority178

of the literature is split between intractable, upper confidence bound-style optimism or Thompson179

sampling algorithms with high-dimensional posterior and guarantees only in terms of Bayesian180

regret. In BEF-RLSVI, we adopt the approach of reward perturbation motivated by the RLSVI-181

framework [ZBB+20, OVRW16]. We show that perturbing the reward estimation can guarantee182
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optimism with a constant probability, i.e. there exists ν ∈ (0, 1] such that for all k ∈ [K] and sk1 ∈ S ,183

P
(
Ṽ1(s

k
1)− V ⋆

1 (s
k
1) ≥ 0

)
≥ ν.

[ZBB+20] proves that this suffices to bound the learning error. However, their method clashes with184

not clipping the value function, as it modifies the probability of optimism. Thus, [ZBB+20] proposes185

an involved clipping procedure to handle the issue of unstable values. Instead, by careful geometric186

analysis (cf. Lemma 19), we bound the occurrences of the unstable values, and in turn, upper bound187

the regret without clipping. Note that unlike [ICN+21], BEF-RLSVI does not guarantee that the188

estimated value function is optimistic but still is able to control the learning error (cf. Section 5).189

Planning. Recall that with our model assumptions, we can write the state-action value function190

linearly (Equation (5)). Using BEF-RLSVI, we have at step h:191

Qπ
θ̂p,θ̃r,h

(s, a) = Eθ̃r [r(s, a)] +

〈
ϕp(s, a),

∫
S
µp(s̃)V π

θ̂p,θ̃r,h+1
(s̃)ds̃

〉
.

Then, we select the best action greedily using dynamic programming to compute Qh(s, a). Although192

our model yields infinite dimensional ϕp and ψp, approximating them (cf. next paragraph) with193

linear features of dimension O(pH2K log(HK)) is possible without increasing the regret. Thus, the194

planning is done in O(pH3K log(HK)), which is pseudo-polynomial in p, H and K, i.e. tractable.195

For details about the finite-dimensional approximation of our transition kernel, refer to Appendix E.196

Now, we highlight the schematic of a finite-dimensional approximation of ϕp and ψp. We proceed197

in three steps. 1) We have with high probability S(Vθ̂p,θ̃r,h) ≤ dH3/2 (Section 5). 2) If we have a198

uniform ϵ-approximation of Pθp , we show that using it incurs at most an extra O(ϵdH5/2K) regret.199

3) Finally, following [RR07], we approximate uniformly the shift invariant kernels, here the RBF in200

Equation (4), within ϵ error and with features of dimensions O(pϵ−2 log 1
ϵ2 ), where p is dimension of201

ψ. Associating these three elements and choosing ϵ = 1/
√

(H2K), we establish our claim.202

5 Theoretical analysis: proof outline203

To convey the novelties in our analysis, we provide a proof sketch for Theorem 2. We start by204

decomposing the regret into an estimation loss and a learning error, as given below205

R(K) =

K∑
k=1

(V ⋆
θp,θr,1 − V πk

θp,θr,1)(s1k) =

K∑
k=1

(V ⋆
θp,θr,1 − V πk

θ̂p,θ̃r,1︸ ︷︷ ︸
learning

+V πk

θ̂p,θ̃r,1
− V πk

θp,θr,1︸ ︷︷ ︸
Estimation

)(s1k). (9)

For the estimation error, we use smoothness arguments with concentrations of parameters up to206

some novelties. Regarding the learning error, we show that the injected noise ensures a constant207

probability of anti-concentration. Applying Assumption 1 and Lemma 18 leads to the upper-bound.208

5.1 Bounding the estimation error209

We further decompose the estimation error into the errors in estimating transitions and rewards.210

V π
θ̂p,θ̃r

(s1k)− V π
θp,θr(s1k) = V π

θ̂p,θr
(s1k)− V π

θp,θr(s1k)︸ ︷︷ ︸
transition estimation

+V π
θ̂p,θ̃r

(s1k)− V π
θ̂p,θr

(s1k)︸ ︷︷ ︸
reward estimation

(10)

Transition estimation Since the reward parameter is exact, the value function’s span is ≤ H . Then,211

using the transportation of Lemma 13 we obtain the bound H
∑H

h=1

√
2KLshk,ahk (θ

p, θ̂p). We notice212

that since the reward parameter is exact, the bound is actually H min{1,
∑H

h=1

√
2KLshk,ahk (θ

p, θ̂p)}.213

Using Lemma 18 under Assumption 1, we win a
√
H factor compared to the analysis of [CG19].214

Reward estimation Previous work uses clipping to help control this error, but in this case it can215

hinder the optimism probability by biasing the noise. [ZBB+20] proposes an involved clipping216

depending on the norms ∥(Aiφ(s
k
h, a

k
h))i∈[d]∥(Ḡp

k)
−1 , which is somewhat delicate to analyze and217
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deploy. We remedy the situation acting solely in the proof. First let’s define what we call the set218

of “bad rounds”:
{
k ∈ [K],∃h : ∥(Aiφ(s

k
h, a

k
h))i∈[d]∥(Ḡp

k)
−1 ≥ 1

}
, these rounds are why clipping219

is necessary. Thanks to Lemma 19, we know that the number of such rounds is at most O(d).220

Surprisingly, it depends neither on H nor on K. We show that the “bad rounds” incur at most221

O(d3/2H2) regret, independent of K. Therefore, our algorithm can forgo clipping for free.222

Remark 2. If it wasn’t for the episodic nature of our setting, we could have used the forward223

algorithm to eliminate the span control issue. We refer to [Vov01, AW01] for a description of this224

algorithm, [OMP21] for a stochastic analysis, and Section 4 therein for an application to linear225

bandits.226

5.2 Bounding the learning error227

To upper-bound this term of the regret, we first show that the estimated value function is optimistic228

with a constant probability. Then, we show that this is enough to control the learning error.229

Stochastic optimism. The perturbation ensures a constant probability of optimism. Specifically,230

(Vθ̂p,θ̃r,1−V
⋆
θp,θr,1)(s1) ≥ (Q⋆

θ̂p,θ̃r,1
−Q⋆

1)(s1, π
⋆(s1))

≥ V π⋆

θ̂p,θr
(s1)− V π⋆

θp,θr(s1)︸ ︷︷ ︸
first term

+V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θr
(s1)︸ ︷︷ ︸

second term

+V π⋆

θ̂p,θ̃r
(s1)− V π⋆

θ̂p,θ̂r
(s1)︸ ︷︷ ︸

third term

The first and second terms are perturbation free, we handle them similarly to the estimation error, i.e.231

using concentration arguments for θ̂p and θ̂r. For the third term, we use transportation of rewards232

(Lemma 17) and anti-concentration of ξk (Lemma 12). We find that with probability at least 1− 2δ233

(Vθ̂p,θ̃r,1 − V ⋆
θp,θr,1)(s1) ≥ξ⊤k E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθ
r
j (r)

2
(Aiφ(s̃t, π

⋆(s̃t)))i∈[d]

]
B

−Hc(n, δ)

∥∥∥∥∥
H∑

h=1

E(s̃t)t∈[H]∼θ̂p|sk1

[
(Aiφ(s̃h, π

⋆(s̃h)))i∈[d]

]∥∥∥∥∥
(Ḡ

p
k)

−1

,

where c(n, δ) =
(√

βpβp(n, δ)/αp+
√
βrβr(n, δ)min{1, αp/αr}/(2αr)

)
. Since ξk ∼ N (0, xk(Ḡ

p
k)

−1)234

and xk≥H2c(n, δ)2, we get P
(
V π
θ̂p,θ̃r,1

(s1)− V ⋆
θp,θr,1(s1) ≥ 0

)
≥ Φ(−1), where Φ is the normal235

CDF. This is ensured by the anti-concentration property of Gaussian random variables, see Lemma 12.236

From stochastic optimism to error control: Existing algorithms require the value function to be237

optimistic (i.e. negative learning error) with large probability. Contrary to them, BEF-RLSVI only238

requires the estimated value to be optimistic with a constant probability. When it is, the learning239

happens. Otherwise, the policy is still close to a good one thanks to the decreasing estimation error,240

and the learning still happens. This part of the proof is similar in spirit to that of [ZBB+20].241

Upper bound on V ⋆
1 : Draw (ξ̄k)k∈[K] i.i.d copies of (ξk)k∈[K] and define the event where optimism242

holds as Ōk ≜ {Vθ̂p,θ̃rk,1(s
k
1)−V ⋆

1 (s
k
1) ≥ 0}. This implies that V ⋆

1 (s
k
1) ≤ Eξ̄k|Ōk

[Vθ̂p,θ̂r+ξ̄k,1
(sk1)].243

Lower bound on Vθ̂p,θ̃r : Consider V1(s
k
1) to be a solution of the optimization problem244

min
ξk

Vθ̂p,θ̂r+ξk,1
(sk1) subject to: ∥ξk∥Ḡk

≤
√
xkd log(d/δ),

As the injected noise concentrates, we obtain V1(s
k
1) ≤ Vθ̂p,θ̃r(s

k
1).245

Combination: Using these upper and lower bounds, we show that with probability at least 1− δ,246

V ⋆
1 (s

k
1)−Vθ̂p,θ̂r+ξ̄k,1

(sk1) ≤ Eξ̄k|Ōk
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]

≤
(
Eξ̄k [Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]− Eξ̄k|Ōc

k
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]P(Ōc

k)
)
/P(Ōk),

The last step follows from the tower rule. Note that the term inside the expectations is positive247

with high probability but not necessarily in expectation. We follow the lines of the estimation error248

analysis to complete the proof of Theorem 2. We refer to Appendix B.2 for the detailed proof.249
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6 Related works: functional representations with regret and tractability250

Our work extends the endeavor of using functional representations to perform optimal regret mini-251

mization in continuous state-action MDPs. We now provide a few complementary details.252

General functional representation. [DSL+18] provides the first convergence guarantee for general253

nonlinear function representations in the Maximum Entropy RL setting, where entropy of a policy is254

used as a regularizer to induce exploration. Thus, the analysis cannot address episodic RL, where we255

have to explicitly ensure exploration with optimism. [WSY20] proposes a framework that leverages256

the optimism with confidence bound approach for general functional representations with bounded257

Eluder dimensions, which is a complexity measure in RL. However, knowing the Eluder dimension258

is crucial for the optimistic confidence bound in their algorithm. Eluder dimension is not known for259

MDPs except linear and tabular MDPs. To concretize our design, we focus on the general but explicit260

bilinear exponential family of MDPs than any abstract representation.261

Bilinear exponential family of MDPs. Exponential families are studied widely in RL theory, from262

bandits to MDPs [LMT21, KKM13, FCGS10, KH06], as an expressive parametric family to design263

theoretically-grounded model-based algorithms. [CGM21] first studies episodic RL with Bilinear264

Exponential Family (BEF) of transitions, which is linear in both state-action pairs and the next-265

state. It proposes a regularized log-likelihood method to estimate the model parameters, and two266

optimistic algorithms with upper confidence bounds and posterior sampling. Due to its generality267

to unifiedly model tabular MDPs, factored MDPs, linear MDPs, and linearly controlled dynamical268

systems, the BEF-family of MDPs has received increasing attention [LLS+21]. [LLS+21] estimates269

the model parameters based on score matching that enables them to replace regularity assumption270

on the log-partition function with Fisher-information and assumption on the parameters. Both271

[CGM21, LLS+21] achieve a worst-case regret of order Õ(
√
d2H4K) for known reward. On a272

different note, [DKL+21, FKQR21] also introduces a new structural framework for generalization in273

RL, called bilinear classes as it requires the Bellman error to be upper bounded by a bilinear form.274

Instead of using bilinear forms to capture non-linear structures, this class is not identical to BEF class275

of MDPs, and studying the connection is out of the scope of this paper. Specifically, we address the276

shortcomings of the existing works on BEF-family of MDPs that assume known rewards, absence of277

RLSVI-type algorithms, and access to oracle planners.278

Tractable planning and linearity. Planning is a major byproduct of the chosen functional represen-279

tation. In general, planning can incur high computational complexity if done naïvely. Specially,280

[DKWY19] shows that for some settings, even with a linear ϵ-approximation of the Q-function, a281

planning procedure able to produce an ϵ-optimal policy has a complexity at least 2H . Thus, different282

works [SS20, LSW20, VRD19] propose to leverage different low-dimensional representations of283

value functions or transitions to perform efficient planning. Here, we take note from [RZSD21]284

that Gaussian transitions induce an explicit linear value function in an RKHS. And generalize this285

observation with the bilinear exponential. Moreover, using uniformly good features [RR07] to286

approximate transition dynamics from our model enables us to design a tractable planner. We provide287

a detailed discussion of this approximation in Section 4. More practically, [RZSD21, NY21] use288

representations given by random Fourier features [RR07] to approximate the transition dynamics and289

provide experiments validating the benefits of this approach for high-dimensional Atari-games.290

7 Conclusion and future work291

We propose the BEF-RLSVI algorithm for the bilinear exponential family of MDPs in the setting292

of episodic-RL. BEF-RLSVI explores using a Gaussian perturbation of rewards, and plans tractably293

(complexity of O(pH3K log(HK))) thanks to properties of the RBF kernel. Our proof shows294

that clipping can be forwent for similar RLSVI-type algorithms. Moreover, we prove a
√
d3H3K295

frequentist regret bound, which improves over existing work, accommodates unknown rewards, and296

matches the lower bound in terms of H and K. Regarding future work, we believe that our proof297

approach can be extended to rewards with bounded variance. We also believe that the extra
√
d in298

our bound is an artefact of the proof, and specifically, the anti-concentration. We will investigate it299

further. Finally, we plan to study the practical efficiency of BEF-RLSVI through experiments on tasks300

with continuous state-action spaces in an extended version of this work.301
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A Notations480

We dedicate this section to index all the notations used in this paper. Note that every notation is481

defined when it is introduced as well.482

Table 2: Notations

H
def
= number of steps in a given episode

K
def
= number of episodes

T
def
= KH , total number of steps

skh
def
= state at time h of episode k, denoted sh when k is clear from context

akh
def
= action at time h of episode k, denoted ah when k is clear from context

r(s, a)
def
= realization of the reward in state s under action a

θp
def
= parameter of the transition distribution, ∈ Rd

θr
def
= parameter of the reward distribution, ∈ Rd

θ
def
= ∈ Rd denotes either θr or θp, unless stated otherwise

θ̂
def
= θ estimator with Maximum Likelihood unless stated otherwise

θ̃
def
= θ̂ + ξ where ξ is a chosen noise. Perturbed estimation of θ.

[θ1, θ2]
def
= the d-dimensional ℓ∞ hypercube joining θ1 and θ2

Pθp
def
= transition under the exponential family model with parameter θp

ψ
def
= feature function, ∈ (Rp

+)
S

φ
def
= feature function, ∈ (Rq

+)
S×A

B
def
= p-dimensional vector

Mθ
def
=

∑d
i=1 θiAi, where Ai are p× q matrices.

Zr def
= the rewards’ log partition function

Zp def
= the transitions’ log partition function

H def
= Hilbert space where we decompose transitions

µp
def
= feature function after decomposition, ∈ (R+)

S×H

ϕp
def
= feature function after decomposition, ∈ (R+)

S×A×H

Gs,a
def
=

(
φ(s, a)⊤A⊤

i Ajφ(s, a)
)
i,j∈[d]

Ḡr
k

def
= Ḡr

(k−1)h = η
αrA+

∑k−1
τ=1

∑H
h=1Gsτh,a

τ
h

Ḡp
k

def
= Ḡp

(k−1)h = η
αpA+

∑k−1
τ=1

∑H
h=1Gsτh,a

τ
h

Cθ
s,a [ψ (s′)]

def
= Eθ

s,a

[
ψ (s′)ψ (s′)

⊤
]
− Eθ

s,a [ψ (s′)]Eθ
s,a

[
ψ (s′)

⊤
]

βp
def
= supθ,s,a λmax

(
Cθ

s,a [ψ (s′)]
)

linked to the maximum eigenvalue of ∇2Zp

αp def
= infθ,s,a λmax

(
Cθ

s,a [ψ (s′)]
)

linked to the minimum eigenvalue of ∇2Zp

βr
def
= λmax

(
BB⊤) supθ,s,a Varθs,a(r), linked to the maximum eigenvalue of ∇2Zr

αr def
= λmin

(
BB⊤) infθ,s,a Varθs,a(r), linked to the minimum eigenvalue of ∇2Zr
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B Regret analysis483

We provide a high probability analysis of the regret of BEF-RLSVI under standard regularity assump-484

tions of the representation. First we recall the regret definition then we separate the perturbation error485

from the statistical estimation:486

R(K) =

K∑
k=1

(V ⋆
θp,θr,1 − V πk

θp,θr,1)(s
k
1) =

K∑
k=1

(
V ⋆
θp,θr,1 − V πk

θ̂p,θ̃r,1︸ ︷︷ ︸
learning

+V πk

θ̂p,θ̃r,1
− V πk

θp,θr,1︸ ︷︷ ︸
Estimation

)
(sk1)

B.1 Estimation error487

To show that the estimation error
(∑K

k=1 Vθ̂p,θ̃r,1 − V πk

θp,θr,1

)
can be controlled, we decompose it488

to an error that comes from the estimation of the transition parameter and one that comes from the489

estimation of the reward parameter:490

V π
θ̂p,θ̃r

(sk1)− V π
θp,θr(s

k
1) = V π

θ̂p,θr
(sk1)− V π

θp,θr(s
k
1)︸ ︷︷ ︸

transition estimation

+V π
θ̂p,θ̃r

(sk1)− V π
θ̂p,θr

(sk1)︸ ︷︷ ︸
reward estimation

,

we control each term separately in Section B.1.1 and Section B.1.2. Therefore, we obtain the491

following lemma controlling the estimation error.492

Lemma 3. The estimation error satisfies, with probability at least 1− 5δ493

K∑
k=1

Vθ̂p,θ̃r,1(s
k
1)− V π

θp,θr,1(s
k
1) ≤ 2H

√
2βp

αp β
p(N, δ)NγpK + 2H

√
2N log(1/δ)

+

[√
KHd log (1 + αrη−1Bφ,An) + Cd

√
Hd log(1 + αη−1Bφ,AH)

]
×

(√
βr(n, δ)

2αr

+c
√
(max

k
xk)d log(dK/δ)

)
βr +

√
2KHd log (1 + αrη−1Bφ,An) log(1/δ)

where for i ∈ [p, r], βi(K, δ) ≜ η
2B

2
A + γiK + log(1/δ), and γiK ≜ d log(1 + βi

η Bφ,AHK). Also,494

Cd ≜ 3d
log(2) log

(
1 +

αr∥A∥2
2B

2
φ,A

η log(2)

)
, and c is a universal constant.495

Proof. It follows directly by combining Lemma 4 and Lemma 5 using a union bound.496

B.1.1 Transition estimation497

The goal of this section is to prove the following lemma which bounds the regret due to transition498

estimation.499

Lemma 4. We have, with probability at least 1− 2δ500

K∑
k=1

Vθ̂p,θr(s
k
1)− V π

θp,θr(s
k
1) ≤ 2H

√
2βp

αp β
p(N, δ)NγpK + 2H

√
2N log(1/δ)

where γpK := d log
(
1 + βpη−1Bφ,AHK

)
, and βp(K, δ) ≜ η

2B
2
A + γpK + log(1/δ).501

Proof. The proof proceeds in two parts. First, we will reveal a bound in terms of the induced local502

geometry, i.e. a bound in terms of KL-divergence. Second, we explicit the bound by transferring the503

induced local geometry to the euclidean one.504

1) Bound in terms of local geometry. We provide a bound on the estimation error of the transition505

in terms of KL divergences, for that end we show that the estimation error can be decomposed and506

well controlled. We start by writing the one-step decomposition:507
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V π
θ̂p,θr,1

(sk1)−V π
θp,θr,1(s

k
1)

= Eθ̂p

sk1 ,a
k
1

[
V π
θ̂p,θr,2

]
− Eθp

sk1 ,a
k
1

[
V π
θ̂p,θr,2

]
+ Eθp

sk1 ,a
k
1
[V π

θ̂p,θr,2
− V π

θp,θr,2]

= Eθ̂p

sk1 ,a
k
1

[
V π
θ̂p,θr,2

]
− Eθp

sk1 ,a
k
1

[
V π
θ̂p,θr,2

]
+ V π

θ̂p,θr,2
(s2k)− V π

θp,θr,2(s2k) + ζk1

=

H∑
h=1

Eθ̂p

shk,ahk

[
V π
θ̂p,θr,h+1

]
− Eθp

shk,ahk

[
V π
θ̂p,θr,h+1

]
+ ζhk

where ζhk = Eθp

shk,ahk
[V π

θ̂p,θr,h+1
− V π

θp,θr,h+1] −
(
V π
θ̂p,θr,h+1

(sh+1k)− V π
θp,θr,h+1(sh+1k)

)
is a508

martingale sequence, and the last equality comes by induction. Here we consider the true reward509

parameter which verifies |Eθr [r(s, a)]| ≤ 1 by assumption, therefore |ζhk| ≤ 2H . Using the510

Azuma-Hoeffding inequality [BLM13], with probability at least 1− δ511

K∑
k=1

H∑
h=1

ζhk ≤ 2H
√
2KH log(1/δ)

We finish bounding the first term using Lemma 13, indeed512

Eθ̂p

shk,ahk

[
V π
θ̂p,θr,h+1

]
− Eθp

shk,ahk

[
V π
θ̂p,θr,h+1

]
≤ H

√
2KLshk,ahk

(θp, θ̂p)

≤ Hmin

{
1,

√
2KLshk,ahk

(θp, θ̂p)

}
,

the last inequality follows because ∀h, S(Vθ̂p,θr,h+1) ≤ H .513

Remark 3. Traditionally, the expected value difference bound follows from the simulation514

lemma [RZSD21]. The simulation lemma incurs an extra
√
H factor compared to our bound.515

We deduce that with probability at least 1− δ:516

K∑
k=1

Vθ̂p,θr(s
k
1)− V π

θp,θr(s
k
1)

≤ H

K∑
k=1

min

{
1,

H∑
h=1

√
2KLshk,ahk

(θp, θ̂p)

}
+ 2H

√
2KH log(1/δ) (11)

2) Bounding the sum of KL divergences. we explicit the bound of inequality (11) using Assump-517

tion 1 along with properties of the exponential family (cf. Section D.3). We have for all (s, a),518

519

∀θp, θp′, αp

2
∥θp′ − θp∥2Gs,a

≤ KLs,a (θ
p, θp′) ≤ βp

2
∥θp′ − θp∥2Gs,a

. (12)

This implies that520

KLs,a

(
θ̂p(k), θp

)
≤ βp

2

∥∥∥θp − θ̂p(k)
∥∥∥2
Gs,a

≤ βp
∥∥∥(Ḡp

k)
−1/2Gs,a(Ḡ

p
k)

−1/2
∥∥∥ 1

2

∥∥∥θp − θ̂p(k)
∥∥∥2
Ḡ

p
k

,

where Ḡp
k ≡ Ḡp

(k−1)H := Gk + (αp)−1ηA and Gk ≡
∑k−1

τ=1

∑H
h=1Gsτs ,a

τ
h

.521

From Corollary 8, with probability at least 1− δ and for all k ∈ N522 ∥∥∥θp − θ̂p(k)
∥∥∥2
Ḡ

p
k

≤ 2βp(k, δ)/αp.

Also, using Lemma 18, we have523

T∑
t=1

H∑
h=1

min
{
1,
∥∥∥(Ḡp

k)
−1/2Gs,a(Ḡ

p
k)

−1/2
∥∥∥} ≤ 2d log

(
1 + αpη−1Bφ,AHK

)
.

17



Combining these two results we obtain, with probability at least 1− δ:524

T∑
t=1

H∑
h=1

min
{
1,KLsth,a

t
h

(
θ̂p(k), θp

)}
≤ 2βp

αp β
p(K, δ)γpK . (13)

Remark 4. Notice that the minimum with 1 is crucial, indeed, without it the bound deteriorates by a525

factor H as was the case in [CGM21].526

3) Combining the bounds. By applying Cauchy-Schwarz in inequality (11), we obtain, with527

probability at least 1− δ, and for all K ∈ N528

K∑
k=1

Vθ̂p,θr(s
k
1)− V π

θp,θr(s
k
1) ≤ H

√√√√2

K∑
k=1

H∑
h=1

KLshk,ahk
(θp, θ̂p) + 2H

√
2KH log(1/δ).

Injecting inequality (13) proves the desired result with probability at least 1− 2δ.529

B.1.2 Reward estimation530

Now, we provide the bound over the regret due to estimating the reward parameter.531

Lemma 5. With probability at least 1− 3δ, the following result holds true.532

K∑
k=1

V π
θ̂p,θ̃r,1

(sk1)−V π
θ̂p,θr,1

(sk1) ≤

(√
βr(K, δ)

2αr + c
√
(max
k≤K

xk)d log(dK/δ)

)
βr

×

(√
Cd

(
1 +

αrBφ,AH

η

)
+
√
K log(e/δ2)

)√
Hd log (1 + αrη−1Bφ,AHK),

where βp(K, δ) ≜ η
2B

2
A + γpK + log(1/δ), and γpK ≜ d log(1 + βp

η Bφ,AHK). Also, Cd ≜533

3d
log(2) log

(
1 +

αr∥A∥2
2B

2
φ,A

η log(2)

)
, and c is a universal constant.534

Proof. The reward estimation error in Equation (10) can be written explicitly. Indeed, using535

Lemma 17536

V π
θ̂p,θ̃r,1

(sk1)− V π
θ̂p,θr,1

(sk1) = E(s̃h)1≤h≤H∼π|θ̂p,sk1

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

B⊤Mθ̃r−θrφ(s̃h, π(s̃h))

]

≤E

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

∥θ̃r − θr∥Ḡr
k
∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k)
−1

]

≤∥θ̃r − θr∥Ḡr
k
E

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1

]

≤∥θ̃r − θr∥Ḡr
k

βr

2
E

[
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1︸ ︷︷ ︸
def
= t̃rajk

]
,

where trajk
def
=
∑H

h=1 ∥(Aiφ(sh, π(sh)))1≤i≤d∥(Gr
k)

−1 .537

Bad rounds. We separate the analysis of this estimation error into bad and good rounds. Here we538

analyze the bad rounds, which are define by the following set:539

T = {k ∈ N∗,∃h ∈ [H], ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1 ≥ 1}
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1) We know that ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d(Aiφ(s̃h, π(s̃h)))
⊤
1≤i≤d∥22 ≤ ∥A∥22B2

φ,A. Consequently,540

according to Lemma 19541

|T | ≤ 3d

log(2)
log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)
.

2) Since Gk is positive semi-definite, we have Ḡr
k ⪰ (αr)−1ηA, and in turn, for all state-action542

couples (s, a),
∥∥(Ḡr

k)
−1Gs,a

∥∥ ≤ αr

η

∥∥A−1Gs,a

∥∥ ≤ αrBφ,A
η .543

This further yields544 ∥∥∥∥∥I + (Ḡr
k)

−1
H∑

h=1

Gsth,a
t
h

∥∥∥∥∥ ≤ 1 +

H∑
h=1

∥∥∥(Ḡr
k)

−1Gsth,a
t
h

∥∥∥ ≤ 1 +
αrBφ,AH

η
.

Let us define Ḡr
k+H := Ḡr

k +
∑H

h=1Gskh,a
k
h

. Then,545

Ḡ−1
k+HGs,a =

(
I + (Ḡr

k)
−1

H∑
h=1

Gsth,a
t
h

)−1

(Ḡr
k)

−1Gs,a.

Therefore, for all pairs (s, a),546

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1 =
√
tr((Aiφ(s̃h, π(s̃h)))⊤1≤i≤d(Ḡ

r
k)

−1(Aiφ(s̃h, π(s̃h)))1≤i≤d)

=

√
tr(

(
1 +

αrBφ,AH

η

)
(Ḡr

k+H)−1Gs,a)

≤

√(
1 +

αrBφ,AH

η

)
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k+H)−1

Since ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k+H)−1 ≤ 1, we have ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k+H)−1 ≤547

min
{
1, ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k)
−1

}
. Consequently548

H∑
h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k+H)−1 ≤

√
Hd log(1 + αrη−1Bφ,AH).

3) From 1) and 2), we deduce that the total regret induced by rounds from T is bounded.549 ∑
k∈T

∑
h∈[H]

V π
θ̂p,θ̃r,1

(sk1)− V π
θ̂p,θr,1

(sk1) ≤ ∥θ̃r − θr∥Ḡr
k

βr

2√√√√ 3d

log(2)
log

(
1 +

αr∥A∥22B2
φ,A

η log(2)

)(
1 +

αrBφ,AH

η

)
Hd log(1 + αrη−1Bφ,AH) (14)

Remark 5. The bad rounds analysis is one of our most important contributions as it enables us to550

forgo clipping without consequences. Consequently, this is a novel method to control the reward551

estimation error that improves on existing work for whom clipping was essential.552

Good rounds. Going forward we consider rounds from T̄ . Let us define553

ζ ′k
def
= trajk −E(s̃h)1≤h≤H∼π|θ̂p,sk1

[
t̃rajk

]
.

where t̃rajk is the same quantity as traj but with a random realization of state transitions.554

Since all feature norms are smaller than one, (ζ ′k)k is a martingale sequence with |ζ ′k| ≤555 √
Hd log (1 + αrη−1Bφ,AHK). We deduce that with probability at least 1− δ:556

K∑
k=1

ζ ′k ≤
√
2KHd log (1 + αrη−1Bφ,AHK) log(1/δ)
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Therefore, we have with probability at least 1− 3δ:557 ∑
k∈T c

V π
θ̂p,θ̃r,1

(sk1)− V π
θ̂p,θr,1

(sk1) ≤

(√
βr(K, δ)

2αr + c
√

(max
k

xk)d log(dK/δ)

)

× βr
√
KHd log (1 + αrη−1Bφ,AKH) log(e/δ2).

The last inequality follows from controlling the concentration of the reward parameter. First we ob-558

serve that (Corollary 10) with probability at least 1− δ, uniformly over k ∈ N,
∥∥∥θr − θ̂r(k)

∥∥∥2
Ḡr

k

≤559

2
αr β

r(k, δ). Second, we also have that for all k ≥ 1, with probability at least 1 − δ, ∥ξk∥Gr
k
≤560

c
√
xkd log(d/δ), we then use a union bound. Combining with Equation (14) we find561

K∑
k=1

V π
θ̂p,θ̃r,1

(sk1)− V π
θ̂p,θr,1

(sk1) ≤

(√
βr(K, δ)

2αr + c
√

(max
k

xk)d log(dK/δ)

)

× βr
√
KHd log (1 + αrη−1Bφ,AHK) log(e/δ2).

This concludes the proof.562

Remark 6. If we use Lemma 17 without the martingale difference sequence, it will lead to a linear563

regret. Indeed, the span of the sum of norms over an episode is of order
√
H . Using the martingale564

technique instead allows us to retrieve a telescopic sum controlled using the elliptical lemma, this is565

essential to obtaining a sub-linear regret bound.566

B.2 Learning error567

We now start the control of an important regret term, due to the distance between the estimated value568

function and the optimal value function.569

Lemma 6. If the variance parameter of the injected noise (ξk)k satisfies570

xk ≥

H√βpβp(k, δ)

αpαr +

√
βrβr(k, δ)min{1, αp

αr }
2αr

 ,

then the learning error is controlled with probability at least 1− 2δ as571

K∑
k=1

V ⋆
1 (s

k
1)− V π

θ̂p,θ̂r+ξ̄k,1
(sk1) ≤

dβr
√
xk

(
1 +

√
log(d/δ)

)
Φ(−1)

√
H log (1 + αrη−1Bφ,AHK)

×

(√
Cd

(
1 +

αrBφ,AH

η

)
+
√
K log(e/δ2)

)
,

where for i ∈ [p, r], βi(K, δ) ≜ η
2B

2
A + γiK + log(1/δ), and γiK ≜ d log(1 + βi

η Bφ,AHK). Also572

Cd
def
= 3d

log(2) log
(
1 +

αr∥A∥2
2B

2
φ,A

η log(2)

)
, and Φ is the normal CDF.573

This result basically means that we are no longer obliged to follow optimistic value functions, the574

perturbed estimation is enough to have a tight bound on the learning error.575

B.2.1 Stochastic optimism576

The goal here is to show that by injecting our carefully designed noise in the rewards we can ensure577

optimism with a constant probability. Consider the optimal policy π⋆, we have:578

(Vθ̂p,θ̃r,1 − V ⋆
θp,θr,1)(s1) ≥ (Q⋆

θ̂p,θ̃r,1
−Q⋆

1)(s1, π
⋆(s1))

≥ V π⋆

θ̂p,θr
(s1)− V π⋆

θp,θr(s1)︸ ︷︷ ︸
first term

+V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θr
(s1)︸ ︷︷ ︸

second term

+V π⋆

θ̂p,θ̃r
(s1)− V π⋆

θ̂p,θ̂r
(s1)︸ ︷︷ ︸

third term
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First term. By assumption, the expected reward under the true parameter satisfies Eθr [r(s, a)] ∈579

[0, 1], then S
(∑H

t=1 Eθr [r(st, π(st))]
)
≤ H . Consequently, the first term can be controlled using580

Lemma 13581

V π⋆

θp,θr(s1)− V π⋆

θ̂p,θr
(s1) ≤ H

√
KL(Pθ̂p(s2, . . . , sH), Pθp(s2, . . . , sH))

≤ H

√√√√E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

ψ(s̃t+1)⊤Mθ̂p−θpφ(s̃t, π
⋆(s̃t)) + Zp

θp(s̃t, π
⋆(s̃t))− Zp

θ̂p
(s̃t, π⋆(s̃t))

]

Using Taylor’s expansion, for all h ∈ [H],∃θh ∈ [θp, θ̂p] such that:582

E(s̃t)t∈[H]∼θ̂p|sk1

[
ψ(s̃t+1)

⊤Mθ̂p−θpφ(s̃t, π
⋆(s̃t)) + Zp

θp(s̃t, π
⋆(s̃t))− Zp

θ̂p
(s̃t, π

⋆(s̃t))
]

=
1

2
(θ̂p − θp)⊤E(s̃t)t∈[H]∼θ̂p|sk1

[
∇2

sh,π⋆(sh)
Zp(θh)

]
(θ̂p − θp)

≤ βp

2
E(s̃t)t∈[H]∼θ̂p|sk1

[
∥θ̂p − θp∥2Gs̃h,π⋆(s̃h)

]
.

Define uk
def
=
∑H

h=1 E(s̃t)t∈[H]∼θ̂p|sk1

[
(Aiφ(s̃h, π

⋆(s̃h)))i∈[d]

]
, then583

V π⋆

θp,θr(s1)− V π⋆

θ̂p,θr
(s1) ≤ H

√√√√βp

2

H∑
h=1

E(s̃t)t∈[H]∼θ̂p|sk1

[
∥θ̂p − θp∥2Gs̃h,π⋆(s̃h)

]
≤ H

√
βp

2

∥∥∥θ̂p − θp
∥∥∥∑H

h=1 E
(s̃t)t∈[H]∼θ̂p|sk1

[Gs̃h,π⋆(s̃h)]

≤ H

√
βp

2

∥∥∥θ̂p − θp
∥∥∥
uku⊤

k

≤ H

√
βp

2

∥∥(Ḡp
k)

−1/2uku⊤k (Ḡ
p
k)

−1/2
∥∥∥θ̂p − θp∥Ḡp

k

≤ H

√
βp

2
∥uk∥(Ḡp

k)
−1∥θ̂p − θp∥Ḡp

k

The third line follows because ∀x ∈ Rd, ∥x∥∑
i=1 aia⊤

i
≤ ∥x∥(∑i=1 ai)(

∑
i=1 ai)⊤ , and the last one584

follows because tr(AB) ≤ tr(A) tr(B) for any two real positive semi-definite matrices A and B.585

We deduce, with probability at least 1− δ:586

V π⋆

θp,θr(s1)− V π⋆

θ̂p,θr
(s1) ≤ H

√
βpβp(k, δ)

αp

∥∥∥∥∥
H∑

h=1

E(s̃t)t∈[H]∼θ̂p|sk1

[
(Aiφ(s̃h, π

⋆(s̃h)))i∈[d]

]∥∥∥∥∥
(Ḡ

p
k)

−1

Second term. We have587

V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θr
(s1) = E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθrt(r)
2

B⊤Mθ̂r−θrφ(s̃t, π
⋆(s̃t))

]

= (θ̂r − θr)⊤E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθrt(r)
2

(Aiφ(s̃t, π
⋆(s̃t)))i∈[d]

]
B

≤
√
βr

2
∥θ̂r − θr∥Ḡr

k

∥∥∥∥∥E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

(Aiφ(s̃t, π
⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡr

k)
−1

The last inequality comes from Cauchy-Schwarz. Applying that the norm (sum) makes appear only588

symmetric matrices times the variances so that we can bound the latter by βr.589

We conclude that with probability at least 1− δ,590

V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θ̃r
(s1) ≤

βr
√
βr(k, δ)√
2αr

∥∥∥∥∥E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

(Aiφ(s̃t, π
⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡr

k)
−1
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We want to write all the norms in the same matrix. Therefore, with probability at least 1− δ,591

V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θ̃r
(s1) ≤

√
βrβr(k, δ)min{1, αp

αr }
2αr

×

∥∥∥∥∥E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

(Aiφ(s̃t, π
⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡ

p
k)

−1

Third term. We have592

V π⋆

θ̂p,θ̂r,1
(s1)− V π⋆

θ̂p,θ̃r,1
(s1) = E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθ
r
j (r)

2
B⊤Mθ̂r−θ̃rφ(s̃t, π

⋆(s̃t))

]

= ξ⊤k E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθ
r
j (r)

2
(Aiφ(s̃t, π

⋆(s̃t)))i∈[d]

]
B

Given the normal CDF Φ, we obtain that with probability at least Φ(−1)593

V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θ̃r
(s1) ≥

√
xkαr

∥∥∥∥∥
[

H∑
t=1

Varθ
r
j (r)

2
(Aiφ(s̃t, π

⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡ

p
k)

−1

Choosing xk ≥
(
H
√

βpβp(k,δ)
αpαr +

√
βrβr(k,δ)min{1,αp

αr }
2αr

)
and using Lemma 12, we find that the594

perturbed value function is optimistic with probability at least Φ(−1).595

B.2.2 Controlling the learning error596

In this section we see the core difference with optimistic algorithms. On the one hand, optimistic597

approaches require the value function generating the agent’s policy to be larger than the optimal one598

with large probability, and can therefore ensure that the learning error is negative. On the other hand,599

BEF-RLSVI only ensures that the value function is optimistic with a constant probability: intuitively600

when this event holds the learning happens, and if it does not then the policy is still close to a good601

one thanks to the decreasing estimation error.602

Upper bound on V ⋆
1 . Let us draw (ξ̄k)k∈[K] i.i.d copies of (ξk)k∈[K]. Define the optimism event603

at episode k:604

Ōk = {Vθ̂p,θ̂r+ξ̄k,1
(sk1)− V ⋆

1 (s
k
1) ≥ 0} (15)

we know that P(Ōk) ≥ Φ(−1). This event provides the upper bound:605

V ⋆
1 (s

k
1) ≤ Eξ̄k|Ōk

[Vθ̂p,θ̂r+ξ̄k,1
(sk1)] (16)

Lower bound on Vθ̂p,θ̃r . We define this bound with an optimization problem under concentration606

of the noise. Consider V1(s
k
1) is the solution of607

min
ξk

Vθ̂p,θ̂r+ξk,1
(s1k) (17)

∥ξk∥Ḡp
k
≤
√
xkd log(d/δ), ∀t ∈ [H]

Under the concentration of our injected noise, we obtain608

V1(s
k
1) ≤ Vθ̂p,θ̃r(s

k
1) (18)

Combining the error bounds. Combining the upper bound of Equation (16) with the lower bound609

of Equation (18), we get, with probability at least 1− δ:610

V ⋆
1 (s

k
1)− Vθ̂p,θ̂r+ξ̄k,1

(sk1) ≤ Eξ̄k|Ōk
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]

22



Also, using the tower rule,611

Eξ̄k [Vθ̂p,θ̂r+ξ̄k,1
(sk1)− V1(s

k
1)]

= Eξ̄k|Ōk
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]P(Ōk) + Eξ̄k|Ōc

k
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]P(Ōc

k)

Therefore,612

V ⋆
1 (s

k
1)−Vθ̂p,θ̂r+ξ̄k,1

(sk1)

≤
(
Eξ̄k [Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]− Eξ̄k|Ōc

k
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]P(Ōc

k)
)
/P(Ōk)

=
(
Eξk [V

π
θ̂p,θ̂r+ξk,1

(sk1)− Vπ
1 (s

k
1)]− Eξk|Ōc

k
[Vθ̂p,θ̂r+ξk,1

(sk1)− V1(s
k
1)]P(Ōc

k)
)
/P(Ōk).

The last line follows since ξk and ξ̄k are i.i.d.613

The rest of the analysis proceeds similarly to the proof of the reward estimation.614

Let us call the argument of the minimum in Equation (17) as ξ
k
. Using Lemma 17, we find615

V π
θ̂p,θ̃r,1

(sk1)−V π
θ̂p,θ̂r+ξ

k
,1
(sk1)

= E(s̃h)1≤h≤H∼π|θ̂p,sk1

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

B⊤Mθ̃r−θ̂r−ξ
k

φ(s̃h, π(s̃h))

]

≤ E

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

∥θ̃r − θ̂r − ξ
k
∥Ḡp

k
∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp

k)
−1

]

≤ ∥θ̃r − θ̂r − ξ
k
∥Ḡp

k
E

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp
k)

−1

]

≤ ∥ξ̃k − ξ
k
∥Ḡp

k

βr

2
E

[
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp
k)

−1

]
Then,616

Eξ̃k

[
V π
θ̂p,θ̃r,1

(sk1)−V π
θ̂p,θ̂r+ξ

k
,1
(sk1)

]
≤ βr

2
Eξ̃k

[∥ξ̃k − ξ
k
∥Ḡp

k
]E(s̃h)∼π|θ̂p

[
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp
k)

−1

]
.

Also,617 ∣∣∣Eξk|Ōc
k
[Vθ̂p,θ̂r+ξk,1

(sk1)−V 1(s
k
1)]
∣∣∣

≤ βr

2
Eξ̃k|Ōc

k
[∥ξ̃k − ξ

k
∥Ḡp

k
]E(s̃h)∼π|θ̂p

[
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp
k)

−1

]

≤ βr

2
Eξ̃k

[∥ξ̃k − ξ
k
∥Ḡp

k
]E(s̃h)∼π|θ̂p

[
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp
k)

−1

]
.

We have a bound on the expected value of the sum of feature norms in the proof of Lemma 5. Also,618

Eξ̃k
[∥ξ̃k − ξ

k
∥Ḡp

k
] ≤ Eξ̃k

[∥ξ̃k∥Ḡp
k
] + Eξ̃k

[∥ξ
k
∥Ḡp

k
]

≤
√
Eξ̃k

[∥ξ̃k∥2Ḡp
k

] +
√
xkd log(d/δ)

≤
√
xkd+

√
xkd log(d/δ)

The second line follows from Cauchy-Schwarz and by definition of ξ
k
. The last line is due to the619

fact that xk(Ḡ
p
k)

−1 ∼ N (0, xkId), which implies ∥ξ̃k∥2Ḡp
k
∼ N (0, dxk). We conclude the proof by620

taking the sum of feature norms from the proof of Lemma 5.621
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We conclude that with probability at least 1− 2δ:622

K∑
k=1

V ⋆
1 (s

k
1)− Vθ̂p,θ̂r+ξ̄k,1

(sk1) ≤
βr

Φ(−1)
(
√
xkd+

√
xkd log(d/δ))

[√√√√ 3d

log(2)
log

(
1 +

αr∥A∥22B2
φ,A

η log(2)

)(
1 +

αrBφ,AH

η

)
Hd log(1 + αrη−1Bφ,AH)

+
√
KHd log (1 + αrη−1Bφ,AHK) log(e/δ2)

]

C Concentrations623

C.1 Concentration of the transition parameter624

We recall the important concentration of the maximum likelihood estimator for general bilinear625

exponential families (cf. Theorem 1 of [CGM21]).626

Theorem 7. Suppose {Ft}∞t=0 is a filtration such that for each t, (i) st+1 is Ft-measurable, (ii) (st, at)627

is Ft−1 measurable, and (iii) given (st, at) , st+1 ∼ P p
θp (· | st, at) according to the exponential628

family defined by Equation (1). Let θ̂p(k) be the penalized MLE defined by Equation (6), and let629

Zp
s,a(θ) be strictly convex in θ for all (s, a). Then, for any δ ∈ (0, 1], with probability at least 1− δ,630

the following holds uniformly over all n ∈ N :631

k∑
t=1

KLst,at

(
θ̂p(k), θp

)
+
η

2

∥∥∥θp − θ̂p(k)
∥∥∥2
A
− η

2
∥θp∥2A ≤ log

(
Cp

A,k

δ

)
,

where Cp
A,k =

(∫
Rd exp

(
−η

2 ∥θ
′∥2A
)
dθ′
)
/
(∫

Rd exp
(
−
∑k

t=1 KLst,at
(θk, θ

′)− η
2 ∥θ

′ − θk∥2A
)
dθ′
)

.632

Define Gs,a
def
=
(
φ(s, a)⊤A⊤

i Ajφ(s, a)
)
i,j∈[d]

, we have633

Cp
A,k ≤ det

(
I + βpη−1A−1

k∑
t=1

Gst,at

)
,

where βp = supθ,s,a λmax

(
Cθ

s,a [ψ (s′)]
)
.634

A proof of this result can be found in the work [CGM21]. We provide an almost similar proof for the635

concentration of rewards in the next section.636

Corollary 8. The previous theorem implies a simple euclidean confidence region. Indeed, with637

probability at least 1− δ, for all k ∈ N638 ∥∥∥θp − θ̂p(k)
∥∥∥2
Ḡ

p
n

≤ 2

αp β
p(k, δ),

where βp(k, δ) def
= βp(k−1)H(δ) = 2

2B
2
A + log

(
2Cp

A,k/δ
)

.639

Proof. The result follows from the following simple calculations:640

1

2

∥∥∥θp − θ̂p(k)
∥∥∥2
Ḡk

=
(αp)−1η

2

∥∥∥θp − θ̂p(k)
∥∥∥2
A
+

k−1∑
τ=1

H∑
h=1

1

2

∥∥∥θp − θ̂p(k)
∥∥∥2
Gsτ

h
,aτ

h

≤ (αp)−1

(
η

2

∥∥∥θp − θ̂p(k)
∥∥∥2
A
+

k−1∑
τ=1

H∑
h=1

KLsτh,a
τ
h
(θk, θ)

)
.

641
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C.2 Concentration of the reward parameter (contribution)642

Theorem 9. Suppose {Ft}∞t=0 is a filtration such that for each t, (i) r(st, at) is Ft-measurable,643

(ii) (st, at) is Ft−1 measurable, and (iii) given (st, at) , r(st, at) ∼ P r
θr (· | st, at) according to the644

exponential family defined by (2). Let θ̂r(k) be the penalized MLE defined by Equation (8), and let645

Zr
s,a(θ) be strictly convex in θ for all (s, a). Then, for any δ ∈ (0, 1], with probability at least 1− δ,646

the following holds uniformly over all k ∈ N :647

k∑
t=1

KLst,at

(
θ̂r(k), θr

)
+
η

2

∥∥∥θr − θ̂r(k)
∥∥∥2
A
− η

2
∥θr∥2A ≤ log

(
Cr

A,k

δ

)
,

where Cr
A,k =

(∫
Rd exp

(
−η

2 ∥θ
′∥2A
)
dθ′
)
/
(∫

Rd exp
(
−
∑k

t=1 KLst,at
(θk, θ

′)− η
2 ∥θ

′ − θk∥2A
)
dθ′
)

.648

Define Gs,a
def
=
(
φ(s, a)⊤A⊤

i Ajφ(s, a)
)
i,j∈[d]

, we have649

CA,k ≤ det

(
I + βrη−1A−1

k∑
t=1

Gst,at

)
,

where βr := ∥B∥22 supθ,s,a Varθs,a(r).650

Proof. We proceed similar to the proof of Theorem 1 in [CG19].651

Step 1: Martingale construction. First, observe that by assuming strict convexity, the log-partition652

function Zr
s,a becomes a Legendre function. Now for the conditional exponential family model, the653

KL divergence between Pr
θr (· | s, a) and Pr

θ′r (· | s, a) can be expressed as a Bregman divergence654

associated to Zr
s,a with the parameters reversed, i.e.655

KLs,a (θ
r, θr′) := KL (Pθr(· | s, a), Pθr′(· | s, a)) = BZs,a

(θr′, θr) .

Now, for any λ ∈ Rd, we introduce the function BZn,α,θr(λ) = BZn,α
(θr + λ, λ) and define656

Mλ
n = exp

(
λ⊤Sn −

n∑
t=1

BZnt,at ,θ
r(λ)

)

where ∀i ≤ d, we denote (Sn)i =
∑n

t=1

(
r (st, at)− Eθr

st,at
[r]
)
B⊤Aiφ (st, at) .Note thatMλ

n > 0657

and it is Fn− measurable. Furthermore, we have for all (s, a),658

Eθr

s,a

[
exp

(
d∑

i=1

λi

(
r (st, at)− Eθr

st,at
[r]
)
B⊤Aiφ (st, at)

)]

= exp
(
−λ⊤∇Zr

s,a (θ
r)
) ∫

S
exp

(
d∑

i=1

(θri + λi)B
⊤Aiφ(s, a)− Zr

s,a(θ
r)

)
dr

= exp
(
Zr
s,a(θ

r + λ)− Zr
s,a(θ

r)− λ⊤∇Zr
s,a(θ

r)
)
= exp

(
BZr

s,a
(θr)

)
This implies E

[
exp

(
λ⊤Sn

)
| Fn−1

]
= exp

(
λ⊤Sn−1 +BZnn,an,θr (λ)

)
thus E

[
Mλ

n | Fn−1

]
=659

Mλ
n−1. Therefore

{
Mλ

n

}∞
n=0

is a non-negative martingale adapted to the filtration {Fn}∞n=0 and660

actually satisfies E
[
Mλ

n

]
= 1. For any prior density q(θ) for θ, we now define a mixture of661

martingales662

Mn =

∫
Rd

Mλ
n q (θ

r + λ) dλ (19)

Then {Mn}∞n=0 is also a non-negative martingale adapted to {Fn}∞n=0 and in fact, E [Mn] = 1.663

25



Step 2: Method of mixtures. Considering the prior density N (0, (ηA)−1), we obtain from (19)664

that665

Mn = c0

∫
Rd

exp

(
λ⊤Sn −

n∑
t=1

BZr
xt,at

,θr(λ)−
η

2
∥θr + λ∥2A

)
dλ, (20)

where c0 = 1∫
Rd exp(− η

2 ∥θ′∥2
Λ)dθ′ . We now introduce the function Zr

n(θ) =
∑n

t=1 Z
r
st,at

(θ). Note that666

Zr
n is a also Legendre function and its associated Bregman divergence satisfies667

BZr
n
(θ′, θ) =

n∑
t=1

(
Zr
st,at

(θ′)− Zr
st,at

(θ)− (θ′ − θ)
⊤ ∇Zr

St,at
(θ)
)
=

n∑
t=1

BZr
st,αt

(θ′, θ)

Furthermore, we have
∑n

t=1BZr
st,αt

,θr(λ) = BZr
n,θ

r(λ). From the penalized likelihood formula (8),668

recall that669

∀i ≤ d,

n∑
t=1

∇iZ
r
st,at

(
θ̂r(k)

)
+
η

2
∇i∥θ̂r(k)∥2A =

k∑
t=1

rtB
⊤Aiφ (st, at) .

This yields670

Sk =

k∑
t=1

(
∇Zr

st,at

(
θ̂r(k)

)
−∇Zr

st,at
(θr)

)
+ ηAθ̂r(k) = ∇Zr

k

(
θ̂r(k)

)
−∇Zr

k (θ
r) + ηAθ̂r(k)

(21)
We now obtain from (20) and (21) that671

Mk = c0 · exp
(
−η
2
∥θr∥2A

)∫
Rd

exp
(
λ⊤xk −BZk,θ∗(λ) + gk(λ)

)
dλ, (22)

where we introduced gk(λ) = η
2

(
2λ⊤Aθ̂r(k) + ∥θr∥2A − ∥θr + λ∥2A

)
and xk = ∇Zr

k

(
θ̂r(k)

)
−672

∇Zr
k (θ

r).673

Now, note that supλ∈Rd gk(λ) =
η
2

∥∥∥θr − θ̂r(k)
∥∥∥2
A

, where the supremum is attained at λ⋆ = θ̂r(k)−674

θr. We then have675

gk(λ) = gn(λ) + sup
λ∈R⋆

gk(λ)− gk (λ
⋆)

=
η

2

∥∥∥θ̂r(k)− θr
∥∥∥2
A
+ η (λ− λ⋆)

⊤ A (θr + λ⋆) +
η

2
∥θr + λ⋆∥2A − η

2
∥θr + λ∥2A

= BZr
0

(
θr, θ̂r(k)

)
+ (λ− λ⋆)

⊤ ∇Zr
0 (θ

r + λ⋆) + Zr
0 (θ

r + λ⋆)− Zr
0 (θ

r + λ) (23)

where we have introduced the Legendre function Zr
0(θ) =

η
2∥θ∥

2
A. We now have from (27) that676

sup
λ∈Rd

(
λ⊤xn −BZr

n,θ
r(λ)

)
= B⋆

Zr
n,θ

r (xn) = B⋆
Zr

n,θ
r

(
∇Zr

n

(
θ̂r(n)

)
−∇Zr

n (θ
r)
)
= BZrn

(
θr, θ̂r(n)

)
.

Further, any optimal λ must satisfy677

∇Zr
n (θ

r + λ)−∇Zr
n (θ

r) = xn =⇒ ∇Zr
n (θ

r + λ) = ∇Zr
n

(
θ̂r(n)

)
.

One possible solution is λ = λ⋆. Now, since Zr
n is strictly convex, the supremum is indeed attained678

at λ = λ⋆. We then have679

λ⊤xn −BZr
n,θ

r(λ)

= λ⊤xn −BZr
n,θ

r(λ) +BZr
n

(
θr, θ̂r(n)

)
−
(
λ⋆xn −BZr

n,θ
r (λ⋆)

)
= BZr

n

(
θr, θ̂r(n)

)
+ (λ− λ⋆)

⊤ ∇Zr
n (θ

r + λ⋆) +BZr
n,θ

∗ (λ⋆)−BZr
n,θ

∗(λ)

− (λ− λ⋆)
⊤ ∇Zr

n (θ
r)

= BZr
n

(
θr, θ̂r(n)

)
+ (λ− λ⋆)

⊤ ∇Zr
n (θ

r + λ⋆) + Zr
n (θ

r + λ⋆)− Zr
n (θ

r + λ) (24)
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Plugging Equation (23) and Equation (24) in Equation (22), we obtain680

Mn = c0 · exp

 ∑
j∈{0,n}

BZr
j
(θr, θj)−

η

2
∥θr∥2A


×
∫
Rd

exp

 ∑
j∈{0,n}

(
(λ− λ⋆)

⊤ ∇Zr
j (θ

r + λ⋆) + Zr
j (θ

r + λ⋆)− Zr
j (θ

r + λ)
) dλ

= c0 · exp

 ∑
j∈{0,n}

BZr
j

(
θr, θ̂r(n)

)
− η

2
∥θr∥2


× exp

−
∑

j∈{0,n}

(
(θr + λ⋆)

⊤ ∇Zr
j (θ

r + λ⋆)− Zr
j (θ

r + λ⋆)
)

×
∫
Rd

exp

 ∑
j∈{0,n}

(
(θr + λ)

⊤ ∇Zr
j (θ

r + λ⋆)− Zr
j (θ

r + λ)
) dλ

=
c0
cn

exp

 ∑
j∈{0,n}

BZr
j

(
θr, θ̂r(n)

)
− η

2
∥θr∥2A


×

∫
Rd exp

(∑
j∈{0,n}

(
(θr + λ)

⊤ ∇Zr
j (θ

r + λ⋆)− Zr
j (θ

r + λ)
))

dλ∫
Rd exp

(∑
j∈{0,n}

(
(θ′)

⊤ ∇Zr
j (θ

r + λ⋆)− Zr
j (θ

′)
))

dθ′

=
c0
cn

· exp
(
BZn

(
θr, θ̂r(n)

)
+BZ0

(
θr, θ̂r(n)

)
− η

2
∥θr∥2A

)
,

where we introduced cn =
exp(

∑
j∈{0,n}((θ

r+λ∗)⊤∇Zr
j(θ

r+λ∗)−Zr
j(θ

r+λ∗)))∫
Rd exp(

∑
j∈{0,n}((θ′)⊤∇Zr

j(θ
r+λ∗)−Zr

j(θ
′)))dθ′ . Since λ⋆ = θ̂r(n)− θr,

we have

cn =
1∫

Rd exp
(
−
∑

j∈{0,n}BZr
j
(θ′, θr + λ⋆)

)
dθ′

=
1∫

Rd exp

(
−
∑n

t=1BZst,at

(
θ′, θ̂r(n)

)
− η

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2
A′

)
dθ′

Therefore, we have from (5) that

CA,n :=
cn
c0

=

∫
Rd exp

(
−η

2 ∥θ
′∥2A
)
dθ′∫

Rd exp

(
−
∑n

t=1 KLst,at

(
θ̂r(n), θ′

)
− η

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2
A

)
dθ′

An application of Markov’s inequality now yields681

P

[
n∑

t=1

KLst,at

(
θ̂r(n), θr

)
+
η

2

∥∥∥θr − θ̂r(n)
∥∥∥2
A
− η

2
∥θr∥2A ≥ log

(
CA,n

δ

)]
=P

[
Mn ≥ 1

δ

]
≤ δE [Mn]=δ

Step 3: A stopped martingale and its control. Let N be a stopping time with respect to the
filtration {Fn}∞n=0. Now, by the martingale convergence theorem, M∞ = limn→∞Mn is almost
surely well-defined, and thus MN is well-defined as well irrespective of whether N <∞ or not. Let
Qn =Mmin{N,n} be a stopped version of {Mn}n. Then an application of Fatou’s lemma yields

E [MN ] = E
[
lim inf
n→∞

Qn

]
≤ lim inf

n→∞
E [Qn] = lim inf

n→∞
E
[
Mmin{N,n}

]
≤ 1,

since the stopped martingale
{
Mmin{N,n}

}
n≥1

is also a martingale. Therefore, by the properties of682

Mn, (12) also holds for any random stopping time N <∞. To complete the proof, we now employ683

a random stopping time construction as in Abbasi-Yadkori et al. (2011)684
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We define a random stopping time N by

N = min

{
n ≥ 1 :

n∑
t=1

KLst,at

(
θ̂r(n), θr

)
+
η

2

∥∥∥θr − θ̂r(n)
∥∥∥2
A
− η

2
∥θr∥2A ≥ log

(
CA, n

δ

)}
with min{∅} := ∞ by convention. We then have

P

[
∃n ≥ 1,

n∑
t=1

KLst,at

(
θ̂r(n), θr

)
+
η

2

∥∥∥θr − θ̂r(n)
∥∥∥2
A
− η

2
∥θr∥2A ≥ log

(
CA,n

δ

)]
= P[N <∞] ≤ δ,

which concludes the proof of the first part.685

686

Proof of second part: upper bound on CA,n. First, we have for some θ̃ ∈
[
θ̂r(n), θ′

]
∞

that687

KLs,a

(
θ̂r(n), θ′

)
=

1

2

d∑
i,j=1

(
θ′ − θ̂r(n)

)
i
Varθs,a(r)×φ(s, a)⊤A⊤

i BB
⊤Ajφ(s, a)

(
θ′ − θ̂r(n)

)
j

(25)
Now (25) implies that688

n∑
t=1

KLst,at

(
θ̂r(n), θ′

)
≤ β

2

n∑
t=1

d∑
i,j=1

(
θ′ − θ̂r(n)

)
i
φ (st, at)

⊤
A⊤

i Ajφ (st, at)
(
θ′ − θ̂r(n)

)
j

=
βr

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2∑n

t=1

Gst,at
,

where βr := λmax

(
BB⊤)× supθ,s,a Varθs,a(r) and ∀i, j ≤ d, (Gs,a)i,j := φ(s, a)⊤A⊤

i Ajφ(s, a).

Therefore, we obtain

CA,n ≤

∫
Rd exp

(
−η

2 ∥θ
′∥2A
)
dθ′∫

Rd exp

(
− 1

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2
(βr

∑n
t=1 Gst,at+ηA)

)
dθ′

=
(2π)d/2

det(ηA)1/2
×

det (βr
∑n

t=1Gst,at + ηA)1/2

(2π)d/2
= det

(
I + βrη−1A−1

n∑
t=1

Gst,at

)
,

which completes the proof of the second part.689

690

Corollary 10. Here also, the theorem implies a euclidean control. With probability at least 1− δ691

uniformly over k ∈ N692 ∥∥∥θr − θ̂r(k)
∥∥∥2
Ḡr

k

≤ 2

αr β
r(k, δ),

where βr(k, δ) def
= βr(k−1)H(δ) = 2

2B
2
A + log

(
2Cr

A,k/δ
)

.693

C.3 Gaussian concentration and anti-concentration694

Lemma 11 (Gaussian concentration, ref. Appendix A in [AL17]). Let ξtk ∼ N (0, Hνk(δ)Σ
−1
tk ).695

For any δ > 0, with probability 1− δ696

∥ξtk∥Σtk
≤ c
√
Hdνk(δ) log(d/δ) (26)

for some absolute constant c.697

Lemma 12 (Gaussian anti-concentration, ref. Appendix A in [AL17]). Let ξ ∼ N (0, Id), for any698

u ∈ Rd with ∥u∥ = 1, we have:699

P(u⊤ξ ≥ 1) ≥ Φ(−1),

where Φ is the normal CDF.700

Thanks to lower bounds on the error function, we have the following bound on the probability of701

anti-concentration Φ(−1) ≥ 1/(4
√
eπ).702
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D Technical results703

D.1 A transportation lemma704

For any function f : X → R, we define its span as S(f) := maxx∈X f(x) − minx∈X f(x).705

For a probability distribution P supported on the set X , let EP [f ] := EP [f(X)] and VP [f ] :=706

VP [f(X)] = EP

[
f(X)2

]
− EP [f(X)]2 denote the mean and variance of the random variable707

f(X), respectively. We now state the following transportation inequalities, which can be adapted708

from [BLM13] (Lemma 4.18).709

Lemma 13. (Transportation inequalities) Assume f is such that S(f) and VP [f ] are finite. Then it710

holds711

∀Q≪ P, EQ[f ]− EP [f ] ≤
√
2VP [f ]KL(Q,P ) +

2S(f)

3
KL(Q,P )

∀Q≪ P, EP [f ]− EQ[f ] ≤
√
2VP [f ]KL(Q,P )

D.2 Bregman divergence712

For a Legendre function F : Rd → R, the Bregman divergence between θ′, θ ∈ Rd associated with
F is defined as BF (θ′, θ) := F (θ′) − F (θ) − (θ′ − θ)

⊤ ∇F (θ). Now, for any fixed θ ∈ Rd, we
introduce the function

BF,θ(λ) := BF (θ + λ, λ) = F (θ + λ)− F (θ)− λ⊤∇F (θ).
It then follows that BF,θ is a convex function, and we define its dual as

B⋆
F,θ(x) = sup

λ∈Rd

(
λ⊤x−BF,θ(λ)

)
We have for any θ, θ′ ∈ Rd:713

BF (θ′, θ) = B⋆
F,θ′ (∇F (θ)−∇F (θ′)) (27)

To see this, we observe that714

B⋆
F,θ′ (∇F (θ)−∇F (θ′))

= sup
λ∈Rd

λ⊤ (∇F (θ)−∇F (θ′))−
[
F (θ′ + λ)− F (θ′)− λ⊤∇F (θ′)

]
= sup

λ∈Rd

λ⊤∇F (θ)− F (θ′ + λ) + F (θ′) .

Now an optimal λ must satisfy ∇F (θ) = ∇F (θ′ + λ). One possible choice is λ = θ− θ′. Since, by
definition, F is strictly convex, the supremum will indeed be attained at λ = θ − θ′. Plugin-in this
value, we obtain

B⋆
F,θ′ (∇F (θ)−∇F (θ′)) = (θ − θ′)

⊤ ∇F (θ)− F (θ) + F (θ′) = BF (θ′, θ) .

Note that (27) holds for any convex function F . Only difference is that, in this case, BF (·, ·) will not715

correspond to the Bregman divergence.716

D.3 Properties of the bilinear exponential family717

In this section, we detail some useful results related to exponential families in our model.718

D.3.1 Derivatives719

Lemma 14. (Gradients) We provide the derivatives of the log-partitions in closed form. As usual720

with exponential families, these are intimately linked to moments of the random variable. We have:721 (
∇iZ

p
s,a

)
(θ) = Eθ

s,a [ψ (s′)]
⊤
Aiφ(s, a).

And722 (
∇iZ

r
s,a

)
(θ) = Eθ

s,a [r] B
⊤Aiφ(s, a).
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Proof. We prove the lemma as follows723

(
∇iZ

p
s,a

)
(θ) =

∫
S
ψ (s′)

⊤
Aiφ(s, a)

exp
(∑d

i=1 θiψ (s′)
⊤
Aiφ(s, a)

)
∫
S exp

(∑d
i=1 θtψ (s′)

⊤
Aiφ(s, a)

)
ds′

ds′

= Eθ
s,a [ψ (s′)]

⊤
Aiφ(s, a)

(
∇iZ

r
s,a

)
(θ) =

∫
S
rB⊤Aiφ(s, a)

exp
(
r
∑d

i=1 θiB
⊤Aiφ(s, a)

)
∫
S exp

(
r
∑d

i=1 θiB
⊤Aiφ(s, a)

)
dr
dr

= Eθ
s,a [r] B

⊤Aiφ(s, a)

724

Lemma 15. (Hessians) The entries of the Hessians of the log partition functions are given by725 (
∇2

i,jZ
p
s,a

)
(θ) = φ(s, a)⊤A⊤

i Cθ
s,a [ψ (s′)]Ajφ(s, a),

where Cθ
s,a [ψ (s′)]

def
= Eθ

s,a

[
ψ (s′)ψ (s′)

⊤
]
− Eθ

s,a [ψ (s′)]Eθ
s,a

[
ψ (s′)

⊤
]
.726

Similarly,727 (
∇2

i,jZ
r
s,a

)
(θ) = Varθs,a(r)× φ(s, a)⊤A⊤

i BB
⊤Ajφ(s, a),

where Varθs,a(r)
def
=
(
Eθ
s,a

[
r2
]
− Eθ

s,a [r]
2
)

is the variance of the reward under θ.728

Proof. We prove these formulas by differentiating under the integral sign.729

(
∇2

i,jZ
p
s,a

)
(θ) =

∫
S
ψ (s′)

⊤
Aiφ(s, a)ψ (s′)

⊤
Ajφ(s, a)

exp
(∑d

i=1 θiψ (s′)
⊤
Aiφ(s, a)

)
∫
S exp

(∑d
i=1 θiψ (s′)

⊤
Aiφ(s, a)

)
ds′

ds′

−
∫
S
ψ (s′)

⊤
Aiφ(s, a)

exp
(∑d

i=1 θiψ (s′)
⊤
Aiφ(s, a)

)
∫
S exp

(∑d
i=1 θiψ (s′)

⊤
Aiφ(s, a)

)
ds′

ds′ (∇jZs,a) (θ)

= Eθ
s,a

[
ψ (s′)

⊤
Aiφ(s, a)ψ (s′)

⊤
Ajφ(s, a)

]
− Eθ

s,a

[
ψ (s′)

⊤
Aiφ(s, a)

]
Eθ
s,a

[
ψ (s′)

⊤
Ajφ(s, a)

]
=φ(s, a)⊤A⊤

i

(
Eθ
s,a

[
ψ (s′)ψ (s′)

⊤
]
− Eθ

s,a [ψ (s′)]Eθ
s,a

[
ψ (s′)

⊤
])
Ajφ(s, a)

=φ(s, a)⊤A⊤
i Cθ

s,a [ψ (s′)]Ajφ(s, a),

where we introduce in the last line the p× p covariance matrix given by

Cθ
s,a [ψ (s′)] = Eθ

s,a

[
ψ (s′)ψ (s′)

⊤
]
− Eθ

s,a [ψ (s′)]Eθ
s,a

[
ψ (s′)

⊤
]

The proof of the form of the Hessian for the reward partition function follows the same steps as730

above.731

Lemma 16. (KL Divergences) For any two θ, θ′ and for some pair (s, a),732

∃θ̃ ∈ [θ, θ′]∞ , KL (P p
θ (· | s, a), P

p
θ′(· | s, a)) =

1

2
(θ − θ′)

⊤ (∇2Zp
s,a

)
(θ̃) (θ − θ′) ,

where [θ, θ′]∞ denotes the d-dimensional hypercube joining θ to θ′.733

Similarly734

∃θ̃ ∈ [θ, θ′]∞ , KL (P r
θ (· | s, a), P r

θ′(· | s, a)) =
1

2
(θ − θ′)

⊤ (∇2Zr
s,a

)
(θ̃) (θ − θ′) .
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Proof. We start by writing:735

log

(
P p
θ (s′ | s, a)

P p
θ′ (s′ | s, a)

)
=

d∑
i=1

(θi − θ′i)ψ (s′)
⊤
Aiφ(s, a)− Zp

s,a(θ) + Zp
s,a (θ

′) ,

then736

KL (P p
θ (· | s, a), P

p
θ′(· | s, a)) =

d∑
i=1

(θi − θ′i)Eθ
s,a [ψ (s′)]

⊤
Aiφ(s, a)− Zp

s,a(θ) + Zp
s,a (θ

′)

=
1

2
(θ − θ′)

⊤ (∇2Zp
s,a

)
(θ̃) (θ − θ′) ,

where in the last line, we used, by a Taylor expansion, that Zs,a (θ
′) = Zs,a(θ) +737

(∇Zs,a(θ))
⊤
(θ′ − θ) + 1

2 (θ− θ′)
⊤
(
∇2Zs,a(θ̃)

)
(θ − θ′) for some θ̃ ∈ [θ, θ′]∞.738

The proof of the form of the KL divergence for the reward follows the same steps as above.739

D.3.2 A transportation lemma for rewards740

Lemma 17. We provide a closed-form formula for the difference of expected rewards under two741

distinct parameters:742

∃θ3 ∈ [θ1, θ2], Eθ1
s,a [r] = Eθ2

s,a [r] +
Varθ3s,a(r)

2
B⊤Mθ1−θ2φ(s, a)

Proof. Let’s recall the gradient of the reward log partition function:743 (
∇iZ

r
s,a

)
(θr) = Eθr

s,a [r] B
⊤Aiφ(s, a)

then for all θr′ we have:744

Eθr

s,a [r] =
1

B⊤Mθr′φ(s, a)
∇iZ

r
s,a(θ

r)⊤θr′

Let θ1, θ2 ∈ Rd, using Taylor-Cauchy’s formula there exists θ3 ∈ [θ1, θ2] such that:745

Eθ1
s,a [r] = Eθ2

s,a [r] +
1

2B⊤Mθr′φ(s, a)
(θ1 − θ2)

⊤∇2Zr
s,a(θ3)

⊤θr′

We know that
(
∇2

i,jZ
r
s,a

)
(θ) = Varθs,a(r)× φ(s, a)⊤A⊤

i BB
⊤Ajφ(s, a), choosing θr′ = θ1 − θ2746

we find:747

Eθ1
s,a [r] = Eθ2

s,a [r] +
Varθ3s,a(r)

2
B⊤Mθ1−θ2φ(s, a).

748

D.4 Elliptical potentials and elliptical lemma749

D.4.1 Elliptical lemma750

Here we show a lemma that is popular for regret control in linear MDPs and linear Bandits.751

First, consider the notations: Gs,a := (φ(s, a)⊤A⊤
i Ajφ(s, a))1≤i,j≤d , Ḡe

n ≡ Ḡe
(k−1)H :=752

Gn + (αe)−1ηA , and Gn ≡ G(k−1)H :=
∑k−1

τ=1

∑H
h=1Gsτs ,a

τ
h

. Where e represents either r or p,753

we omit the superscript e w.l.o.g in the rest of this section.754

Lemma 18. (Elliptical lemma and variant for bounded potentials) Let c ∈ R+, we can bound the755

sum of feature norms as follows756

T∑
t=1

min{c,
H∑

h=1

∥∥∥Ḡ−1/2
n Gs,aḠ

−1/2
n

∥∥∥} ≤ c

log(1 + c)
d log

(
1 + αη−1Bφ,An

)
.

where Bφ,A := sups,a
∥∥A−1Gs,a

∥∥.757

Further, we have758

T∑
t=1

H∑
h=1

∥∥∥Ḡ−1/2
n Gs,aḠ

−1/2
n

∥∥∥ ≤ 2d log
(
1 + αη−1Bφ,An

)
+

3dH

log(2)
log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)
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Proof. First we have759

∥Ḡ−1/2
n Gs,aḠ

−1/2
n ∥ =

√
tr(Ḡ

−1/2
n Gs,aḠ

−1/2
n Ḡ

−1/2
n Gs,aḠ

−1/2
n )

≤ tr(Ḡ−1/2
n Gs,aḠ

−1/2
n ) = tr(Ḡ−1

n Gs,a) = tr(a⊤
h Ḡ

−1
n ah)

the last line is because Gs,a = aha
⊤
h , where ah = (Aiφ(sh, ah))i∈[d].760

First result. Consider h ∈ [H], denote (λh,i)i ∈ [d] the eigenvalues of a⊤
h Ḡ

−1
n ah. Ḡn is positive761

definite hence λh,i > 0,∀h, i, then762

min{c,
H∑

h=1

tr(a⊤
h Ḡ

−1
n ah)} = min{c,

H∑
h=1

d∑
i=1

λh,i}

≤ c

log(1 + c)

H∑
h=1

d∑
i=1

log(1 + λh,i) (log is concave)

≤ c

log(1 + c)

H∑
h=1

log(

d∏
i=1

1 + λh,i) =
c

log(1 + c)

H∑
h=1

log det(I + a⊤
h Ḡ

−1
n ah)

≤ c

log(1 + c)
log

(
det(Ḡn +

∑H
h=1Gsh,ah

)

det(Ḡn)

)
where the last line follows from the matrix determinant lemma:763

det
(
Ḡn + aha

⊤
h

)
= det(I + a⊤

h Ḡ
−1
n ah) det(Ḡn)

Therefore:764
T∑

t=1

min{c,
H∑

h=1

∥∥∥Ḡ−1
n Gsth,a

t
h

∥∥∥} ≤ c

log(1 + c)

T∑
t=1

log
det
(
Ḡn+H

)
det
(
Ḡn

) ,

We can now control the R.H.S. of the above equation, as765

T∑
t=1

log
det
(
Ḡn+H

)
det
(
Ḡn

) =

T∑
t=1

log
det
(
ḠtH

)
det
(
Ḡ(t−1)H

) = log
det
(
ḠTH

)
det
(
Ḡ0

)
= log

det
(
ḠN

)
det ((αp)−1ηA)

= log det
(
I + αη−1 A−1GN

)
≤ d log

(
1 +

αpη−1

d
tr
(
A−1Gn

))
(Trace-determinant (or AM-GM) inequality)

≤ d log
(
1 + αpη−1Bφ,An

)
This concludes the proof of the first result.766

Second result. First, we have sups,a ∥Gs,a∥2 ≤ ∥A∥2Bφ,A.767

Fix an episode k ∈ [K], n = (k − 1)H , using Lemma 19, we know that the number of times768

h ∈ [h] such that
∥∥Ḡ−1

n Gsh,ah

∥∥ ≥ 1 is smaller than 3d
log(2) log

(
1 +

α(∥A∥2Bφ,A)
2

η log(2)

)
. Let us call769

Tk := {h ∈ [H]
∥∥∥Ḡ−1

(k−1)hGsh,ah

∥∥∥ ≤ 1}, then770

T∑
t=1

H∑
h=1

∥∥∥Ḡ−1
n Gsth,a

t
h

∥∥∥ ≤ 3d

log(2)
log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)
+
∑
h∈Tk

min{1,
∥∥∥Ḡ−1

n Gsth,a
t
h

∥∥∥}
the sum of the right hand side is similar to the first result. Although the sum is not contiguous, the771

previous bound holds since if h1 < h2,det(Ḡn+h1
) ≤ det(Ḡn+h2

), this concludes the proof.772

Remark 7. We can also write from the lemma in terms of ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1 by773

skipping the norm upper bound at the beginning of the proof:774

T∑
t=1

min{c,
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1} ≤ c

log(1 + c)
d log

(
1 + αη−1Bφ,An

)
.
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and775

T∑
t=1

H∑
h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1 ≤2d log
(
1 + αη−1Bφ,An

)
+

3dH

log(2)
log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)

D.4.2 Elliptical potentials: finite number of large feature norms (contribution)776

Lemma 19. (Worst case elliptical potentials, adaptation of Exercise 19.3 [LS20] for matrices) Let777

V0 = λI and a1, . . . , an ∈ Rd×p be a sequence of matrices with ∥at∥2 ≤ L for all t ∈ [n]. Let778

Vt = V0 +
∑t

s=1 asa
⊤
s , then779 ∣∣∣{t ∈ N∗, ∥at∥V −1

t−1
≥ 1}

∣∣∣ ≤ 3d

log(2)
log

(
1 +

L2

λ log(2)

)

Proof. Let T be the set of rounds t when ∥at∥V −1
t−1

≥ 1 and Gt = V0 +
∑t

s=1 IT (s)asa⊤s . Then780 (
dλ+ |T |L2

d

)d

≥
(
trace (Gn)

d

)d

≥ det (Gn) (Trace-determinant inequality)

= det (V0)
∏
t∈T

(
1 + ∥at∥2G−1

t−1

)
≥ det (V0)

∏
t∈T

(
1 + ∥at∥2V −1

t−1

)
≥ λd2|T |

where the third line follows from the matrix determinant lemma:781

det
(
Ḡn + aha

⊤
h

)
= det(I + a⊤

h Ḡ
−1
n ah) det(Ḡn).

Rearranging and taking the logarithm shows that

|T | ≤ d

log(2)
log

(
1 +

|T |L2

dλ

)
Abbreviate x = d/ log(2) and y = L2/dλ, which are both positive. Then

x log(1 + y(3x log(1 + xy))) ≤ x log
(
1 + 3x2y2

)
≤ x log(1 + xy)3 = 3x log(1 + xy).

Since z − x log(1 + yz) is decreasing for z ≥ 3x log(1 + xy) it follows that

|T | ≤ 3x log(1 + xy) =
3d

log(2)
log

(
1 +

L2

λ log(2)

)
.

782

E Tractable planning with random Fourier transform783

A Primer on random Fourier transforms. We start by defining the Random Fourier Transform and784

its most relevant property. Let us consider the transition model of Equation (1), we have785

P(s′ | s, a, θ) = exp (ψ(s′)Mθφ(s, a)− Zθ(s, a)) = Ep(w,b) [f (ψ(s
′), w, b) f (Mθφ(s, a), w, b)] ,

where f (x,w, b) =
√
2 cos(w⊤x + b) are the random Fourier bases. p(w, b) = N (0, σ−2I) ×786

U([0, 2π]), such that N is the Gaussian distribution, U is the Uniform distribution, and p(w, b) is a787

coupling among them.788
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Notice that this provides an alternative approach to decompose the transition kernel and obtain789

linearity of the value function. Moreover, since ∀x,w ∈ Rd, b ∈ R, |f(x,w, b)| ≤
√
2, we can790

use Hoeffding’s inequality to prove that a Monte-Carlo approximation of P(s′ | s, a, θ) using N791

sample pairs of (w, b) guarantees an error smaller than ϵ with probability at least 1−2 exp(−Nϵ2/4).792

[RR07] proves a stronger result: it provides an algorithm approximating the Gaussian kernel for793

which the following uniform convergence bound holds.794

Lemma 20. Let M be a compact subset of Rp with diameter diam(M). Then, using the explicit795

mapping z defined in Algorithm 1 in [RR07] with N samples, we have796

Pr

[
sup

x,y∈M
|z(x)′z(y)− k(y,x)| ≥ ϵ

]
≤ 28

(
σp diam(M)

ϵ

)2

exp

(
− Nϵ2

4(p+ 2)

)
where σ2

p ≡ Ep [ω
′ω] is the second moment of the Fourier transform of k.797

Further, it implies that if N = Ω
(

p
ϵ2 log

σp diam(M)
ϵ

)
, then supx,y∈M |z(x)′z(y)− k(y,x)| ≤ ϵ798

with constant probability.799

Application to planning in BEF-RLSVI. Since our regret analysis is done under the high probability800

event of bounded estimation parameters, we know that the spaces of ψ(s′) andMθφ(s, a) are bounded801

and the diameter depends on the dimensions. We abstain from explicating the exact diameter as it802

only influences the number of samples logarithmically. Using N ≈ p/ϵ2 samples, we can construct a803

uniform ϵ-approximation of P(s′ | s, a, θ).804

Let’s call V̂h the estimated value function using Algorithm 3 with the above approximation of805

transition. Here, we elucidate the span of this estimation of value function. First we have:806

V̂ π
H − V π

H =

∫
s′
(P̂ − P )(s′ | s, a)r(s′, π(s′)) ds′ ≤ ϵdH3/2

Here, we use the facts that S
(
Vθ̂,θ̃x,h

)
≤ dH3/2 (cf. Section B.2) and the error in approximating P807

is bounded by ϵ, i.e. sups′,s,a |(P̂ − P )(s′|s, a)| ≤ ϵ.808

Assume that at step h+ 1, we have V̂ π
h+1 − V π

h+1 ≤
∑h+1

j=1 ϵ
jαh+1,j . Then, we obtain809

V̂ π
h − V π

h ≤
∫
s′
(P̂ − P )(s′ | s, a)V̂ π

h+1(s
′) ds′ +

∫
s′
P (s′ | s, a)(V̂ π

h+1 − V π
h+1)(s

′) ds′

=

∫
s′
(P̂ − P )(s′ | s, a)(V π

h+1 + V̂ π
h+1 − V π

h+1) ds
′ +

∫
s′
P (s′ | s, a)(V̂ π

h+1 − V π
h+1)(s

′) ds′

≤ ϵ(dH3/2 +

h+1∑
j=1

ϵjαh+1,j) +

h+1∑
j=1

ϵjαh+1,j

≤ ϵ(dH3/2 + αh+1,1) +

h+1∑
j=2

ϵj(αh+1,j−1 + αh+1,j) + ϵh+2αh+1,h+1

Using the fact that α1,1 = dH3/2 and with a proper induction, we find that:810

V̂ π
1 − V π

1 ≤ ϵdH5/2 1− ϵH−h

1− ϵ
≤

H→∞
ϵdH5/2

This concludes the proof of the arguments provided in § Planning of Section 4. This means that811

the extra regret due to planning with the approximation by RFT features is of order O(ϵdH5/2K).812

By choosing an ϵ of order 1/(H
√
K), we deduce that approximating the probability kernel with813

O(pH2K) samples induces a tractable planning procedure without harming the regret.814

Remark 8. The reader might be tempted to combine the finite approximation using RFT with815

algorithms from the linear reinforcement learning literature [JYWJ20]. However, note that the816

dimensionality of the linear space induced by RFT is polynomial in H and K. Consequently,817

applying algorithms designed with the assumption of linear value function would incur a linear818

regret.819
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