
3D Whole-Body Grasp Synthesis with Directional Controllability

Supplementary Material

S.1. Implementation Details
Here we describe details of our methodology. Section S.1.1
discusses details on the steps for building the ReachingField
probabilistic model. Section S.1.2 discusses details for
the CReach model. Section S.1.3 discusses details for
the CGrasp model. Section S.1.4 discusses details of our
CWGrasp framework that employs all above components.

S.1.1. ReachingField

We discuss details for building a ReachingField, and visu-
alize steps in Fig. S.1, where we show examples for varying
object “heights,” namely distances from the ground.

Given an object (see Fig. S.1 A), we first define a spher-
ical grid around the object (see Fig. S.1 B), and cast rays
towards all directions formed between the object centroid
and the spherical-grid points (see Fig. S.1 C). We then fol-
low a filtering process that includes the following steps:
Filter #1. Arm/hand direction: We only keep the casted
rays that do not intersect with the receptacle; see Fig. S.1 D.
Filter #2 - Body orientation: We project the remaining
rays to the horizontal plane and check again for intersec-
tions with the receptacle; see Fig. S.1 E.
Filter #3 - Standing places: We sample points across the
remaining rays and cast vertical rays towards the ground
(see Fig. S.1 F). Then, we detect potential “occluders” that
lie beneath a ray and prevent a human from standing there
and approaching the object along that ray direction.
Filter #4 - Wiggle room for arm volume: Some remaining
rays might still result in body-receptacle penetrations, as ray
casting does not consider the volume of body limbs. To
account for this we “perturb” ray directions while checking
for intersections, to allow for a “wiggle room” that can be
occupied by a body’s arm. To speed up this process, we
empirically observe that we tend to approach an object from
the right to interact with the right hand, and from the left to
interact with the left hand. Thus, we rotate rays clockwise
around the vertical axis (rotating arbitrarily could generalize
better but would be slower) within a range of [0o, 30o] for
right-hand interactions, and counterclockwise for left-hand
ones, while pruning intersecting rays. For a visualization
see the video on our website. The above is a simple speed-
up heuristic that empirically works well for our scenarios.

S.1.2. CReach

Training datasets: To train our CReach model we com-
bine the GRAB [50] and CIRCLE [3] datasets. GRAB cap-
tures dexterous interactions, but is limited mainly to stand-
ing bodies. Instead, CIRCLE captures bodies without fin-

A.

B.

C.

D.

E.

F.

G.

Figure S.1. ReachingField steps for three object “heights.”

gers, but has a wide range of “reaching” body poses, includ-
ing kneeling down and stretching up. To get the best of both
worlds, namely rich body poses with dexterous fingers, we
combine GRAB and CIRCLE.

Figure S.2. Qualitative results of CGrasp, along with the given direction vectors. For the six test objects in the GRAB dataset, we generate
three grasps per object using different direction vectors as conditions. The conditioning direction vectors are shown by gold arrows.

Note that these datasets capture both left- and right-arm
interactions. To train a single network for these, we need to
identify the interaction “handedness” in the data, since rele-
vant annotations are missing. We achieve this by exploiting
the hand-eye coordination taking place for grasping. To this
end, for each body, we compute three vectors: the gaze vec-
tor, gdir, via two pre-annotated vertices at the nose tip and
the back of the head, and two vectors, derw and delw, from
the glabella (point between the two eyes) to the right and
left wrist joints, respectively. We will release the annotated
vertex IDs. Then, interaction “handedness” is defined as:

̂gdirderw ≤ ̂gdirdelw : right-hand interaction
̂gdirderw > ̂gdirdelw : left-hand interaction

(S.1)

Since right-hand interactions are much more frequent than
left-hand ones in GRAB and CIRCLE, we mirror all data
for balancing the “handedness.”

S.1.3. CGrasp

CGrasp is a CVAE that exploits an InterField and a vec-
tor denoting the desired palm direction. Specifically, the
InterField is input to the encoder, while the direction vector
conditions the decoder. Figure S.2 shows grasps generated
by our CGrasp for the 6 test objects of the GRAB dataset,
along with the corresponding direction vectors used as con-
dition. In all cases, the direction of the generated grasp
“agrees” with the conditioning direction vector. Figure S.3
shows a visual example of the InterField. Figure S.4 shows
qualitative results of CGrasp compared to existing methods.

Figure S.3. Visual representation of the InterField. We depict with
blue spheres the 99 sampled “interaction” hand vertices, vinter

h,i , i ∈
{1, . . . , 99}, evenly-distributed across MANO’s inner palm/finger
surface. With olive-color lines we depict the 3D vectors, finter, that
encode the distance and direction from the sampled hand vertices,
vinter
h , to their closest object vertices, v′o.

S.1.4. CWGrasp – Optimization details

Our goal is to optimize over the SMPL-X pose, translation,
and global-orientation parameters, so that the hand of the
body aligns with the “guiding” hand generated by CGrasp,
while contacting the ground without penetrating the recep-
tacle. To this end, we use the objective function of Eq. (5):

Lopt =λpLp + λgrdLgrd + λθLθ+

λgLg + λhmLhm + λregLreg .

Figure S.4. Comparison of hand-only grasp synthesis models: DexGraspNet [58], ContactGen [36], GrabNet [50], and CGrasp (ours).
Each row shows grasps generated by a different model for the same object set (binoculars, camera, frying pan, mug, toothpaste, wineglass).

The term Lp is a penetration loss between the body and the
receptacle, consisting of two terms:

Lp = Lpinter
+ Lpcon

,

Lpinter =
1

NVb

NVb∑
i=1

| min(0, d(Vbi ,M)) | ,

Lpcon
=

1

NVb

Ndisc
Vb∑
i=1

d(Vdisc
bi ,M)),

(S.2)

where d(·) denotes the signed distance function between the
vertices of the body, Vb, and the receptacle mesh, M. The
first term penalizes vertices that penetrate the receptacle M.
The second term penalizes the body vertices that get “dis-
connected” from the rest of the body when the latter gets
“intercepted” by the penetrated receptacle [54].

For the ground loss, Lgrd, we first find the height,
h(Vbi), of body vertices w.r.t. the ground plane. Then we
have two cases. For vertices that penetrate the ground we
use the under-ground term of [55]:

Lgrd = β1tanh

(
h (Vbi)

β2

)2

, for h(Vbi) < 0, (S.3)

where β1 = 1 and β2 = 0.15, as in [55]. For vertices above
the ground (i.e., for missing contacts), we use:

Lgrd =| min(Vbiz) | , for h(Vbi) > 0, (S.4)

where i = 1 · · ·NVb
. Both Eq. (S.3) and Eq. (S.4) are re-

sponsible for keeping bodies on the ground.
To ensure that the generated body has “eye contact” with

the object of interaction we use the gaze loss of GOAL [51].
To this end, we annotate two vertices A and B on the head,

namely vertex A at the back of the head, and vertex B lying
between the eyes. The 3D position of the object O is known.
Thus, we define the vectors

−−→
AO and

−→
BO and specify the

gaze loss as their in-between angle:

Lg = cos−1

(−−→
AO

−→
BO

|
−−→
AO ||

−→
BO |

)
. (S.5)

As we optimize over the SMPL-X pose parameters, we
need to encourage the predicted poses, θ̂, to remain on the
manifold of our CReach, so that we produce realistic human
bodies. To this end, we employ the regularizer:

Lθ = ∥θ − θ̂∥2. (S.6)

Even after incorporating Lθ into our optimization, we
still observe some unrealistic results. In the left part of
Fig. S.5, we illustrate such an example, where the body
“tilts” unrealistically toward the object. To account for this,
we introduce an additional regularization loss term:

Lreg = cos−1(
−−→
FP

−̂−→
FP), (S.7)

where F is the center of the feet, defined as the midpoint be-
tween the right and left ankle joints, and P the pelvis joint.
By minimizing Eq. (S.7), we prevent deviations from the
initial posture of our CReach, eliminating “tilting” effects.

To align the hand of the whole body (produced by
CReach) with the one of the “guiding” hand grasp (pro-
duced by CGrasp) we use:

Lhm = ∥Vhm−V̂hm
b ∥2+λwrist∥Vwrist−V̂wrist

b ∥2, (S.8)

where Vhm are the hand vertices and Vwrist are the wrist
vertices of the output hand mesh of CGrasp, and V̂hm

b and
V̂wrist
b are the corresponding hand and wrist vertices of the

optimized body’s hand.
We use the Adam optimizer with a learning rate of 0.01.

Our optimization has two stages. First, we optimize over
all above losses for 800 iterations. Then, we exclude the
penetration loss, and use the rest of the losses to optimize
over the pose parameters of the shoulder, elbow, and wrist
that correspond to the matching hand. The main goal of the
second optimization step is to refine the hand grasp.

S.2. CWGrasp – Perceptual Study

To evaluate CWGrasp we conduct a perceptual study. Fig-
ure S.7 provides the task description that is shown to partic-
ipants. Figure S.8 shows some samples used in our study.

Figure S.5. Left: Failure case when we do not use our regularizer
term Lreg in our loss function. In some cases, when Lreg is not
used, our model prefers to generate bodies that tilt unrealistically
toward the object to prevent penetrations with the receptacle M,
while reaching the object with the hand. Right: The correspond-
ing output of CWGrasp when we use our Lreg loss term.

Figure S.6. Failure cases of our CWGrasp method for various re-
ceptacles. Our framework can fail for two reasons, namely due to
penetrations between the body and the receptacle, or due to pene-
trations between the grasping hand and the object.

S.3. CWGrasp – Qualitative Evaluation
Here we provide additional qualitative comparisons be-
tween FLEX [54] and our CWGrasp framework; see
Fig. S.9, Fig. S.10, and Fig. S.11.

For each example, we depict both a full-body view and a
close-up view onto the hand and object. Often FLEX bod-
ies miss contacting the object, or approach the object from
unrealistic directions or have unrealistic orientations (e.g.,
they do not “look” at the object). Instead, CWGrasp pro-
duces significantly more realistic bodies and grasps, a find-
ing supported also by our perceptual study.

Note that only CWGrasp generates both right- and left-
hand interactions; for examples of the latter see Fig. S.12.

Figure S.13 shows results before and after optimization;
we observe that optimization enhances realism significantly.

Failure cases: In Fig. S.6 we provide failure cases of our
CWGrasp method. The reaching arm and hand look plausi-
ble, except for the bottom-left case where the arm penetrates
the receptacle. The latter shows that occasionally sampling
our ReachingField might fail, so subsequent optimization
can be trapped in a local minimum, however, empirically,
this doesn’t happen often. In all other cases, the body or
legs get trapped in a local minimum. This could be tackled
with an involved modeling of the full scene, but this is out
of our scope here, so we leave it for future work.

Figure S.7. Perceptual study protocol. We ask 35 participants to observe grasps generated by two methods for 28 object-and-receptacle
configurations, and to specify which grasp is more realistic in terms of natural pose, realistic hand grasp, and overall interaction realism.
This shows the task instructions shown to participants. See also the samples of Fig. S.8.

Figure S.8. Perceptual study samples. The first row shows grasps generated by our CWGrasp method, while the second row ones
generated by FLEX [54]. For each sample, we show a full-body view and a close-up view onto the hand and object.

Figure S.9. Qualitative comparison of our CWGrasp method against FLEX [54]. The first and third rows show results generated by
CWGrasp, while the second and fourth ones show results generated by FLEX, for the same object and receptacle configurations. For
each grasp we depict both the full-body (with gray meshes) and “scene,” as well as a close-up onto the hand and object (with blue and
red meshes, respectively, from a side view). For FLEX, out of all its generated samples, we visualize the “best” one, i.e., the one with the
smallest total loss. In contrast, our CWGrasp generates only one sample.

Figure S.10. Qualitative comparison of our CWGrasp method against FLEX [54]. The first and third rows show results generated by
CWGrasp, while the second and fourth ones show results generated by FLEX, for the same object and receptacle configurations. For
each grasp we depict both the full-body (with gray meshes) and “scene,” as well as a close-up onto the hand and object (with blue and
red meshes, respectively, from a side view). For FLEX, out of all its generated samples, we visualize the “best” one, i.e., the one with the
smallest total loss. In contrast, our CWGrasp generates only one sample.

Figure S.11. Qualitative comparison of our CWGrasp method against FLEX [54]. The first and third rows show results generated by
CWGrasp, while the second and fourth ones show results generated by FLEX, for the same object and receptacle configurations. For
each grasp we depict both the full-body (with gray meshes) and “scene,” as well as a close-up onto the hand and object (with blue and
red meshes, respectively, from a side view). For FLEX, out of all its generated samples, we visualize the “best” one, i.e., the one with the
smallest total loss. In contrast, our CWGrasp generates only one sample.

Figure S.12. Qualitative results of CWGrasp when using the left hand. Note that CWGrasp is unique in generating both right-hand and
left-hand whole-body grasps, while performance is similar for both cases.

Figure S.13. Qualitative evaluation of CWGrasp optimization performance. We show the generated interacting bodies before (left) and
after (right) optimization with CWGrasp. For each example we show both a full-body view and a close-up view on the hand and object.

