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Supplementary Material

A Proof of Theorem 1

In this section, we present the proof of Theorem 1. We first introduce and recall some necessary
notations and assumptions. Then, we present some auxiliary lemmas and their proofs. Finally, we
combine the lemmas to prove the main result.

Notations: Define P(v) as distribution over states such that (s',z') ~ P(v) < (s,z,a) ~
v, s’ ~ P(s|s,a),2’ = g(s,a,s’). In other words, it is the distribution of the next state if
the state action pair follows v. For f : S x X x A — R,v € A(S x X x A), where A(+)
is the probability simplex, and p > 1, define ||f|,. = (E(sua)~0[lf(s,2,a)|P])}/P. Define
7y (s, x) == argminge 4 min{ f (s, z,a), f'(s,z,a)}.
Recall that in Alg. 2, at iteration &,

1

’Cf)k(f;fkfl) :ﬁ Z (f(s,x,a)—r—’nyk_l(S’@'))Q,
k (s,z,a,r,s",x')€Dy,
where
fo:= arg?éig[,bk(f;fk_l) and Vj, (s,z) = flréiﬂfk(s,x,a).
Assumptions:

Assumption A.1. (Realizability) For the optimal policy, Q* € F.
Assumption A.2. (Completeness) For the policy 7 to be evaluated, ¥f € F,Tf € F, where
T : RSXAXA _ RSXXXA g the Bellman update operator, ¥f

(Tf)(s,z,a) = R(s,z,a) + VEgp(js.a)Vi(s 2" = g(s,z,a,5))].

We say a distribution v € A(S x A) is admissible in MDP (S, X, A, P, R, ), if there exist h > 0
and a policy 7 such that v(s,a) = Y ., Pr(s, = s,z = x,an, = also, zo, 7). The following
assumption is imposed to limit the distribution shift. Note that “admissible” is defined on the
stochastic state and action. Later, we will also abuse the notation and call v € A(S x X x A) is
admissible if v(s,a) = )" v(s, z,a) is admissible.

Assumption A.3. For a data distribution p, we assume that there exists C' < oo such that for any
admissible v and any (s,a) € S X A,

v(s,a)

1(s, a)
where v(s,a) = ) v v(s,x,a) and p(s,a) = Y (s, 7, a).

— )

Assumptions A.2-A.3 are standard assumptions in batch reinforcement learning (Chen and Jiang,
2019). However, in assumption A.3, we only require the data coverage of stochastic states which is
the fundamental difference.

Assumption A.4. We assume that there exists a set B of typical pseudo-stochastic states such that the
distributions By, (x), k = 1,..., K used for augmenting virtual samples satisfy () > o1,Vx € B.
We also assume that the marginal distribution over using a reasonable policy 7, that is, dj (s,z):=
00 1 .

(1 =) X720y Pr(se = s, 24 = x|(s0, o) ~ 1o, ) satisfies D oses erx,xgéls d;ro(s,oz) < o9,
where 1 is the initial distribution. Furthermore, if we have for a distribution 1 of the states satisfying
Y oses Za:ex,xels n(s,z) < o9, then under any reasonable policy 7, the marginal distribution
My (8, @) :=Pr(sy = s, xp = x[(s0,20) ~ 1, 7) satisfies Y5 cs D per ven (S, T) < coo2,Vh >
0, for some constant co > 1. In particular, all the policies at each iteration, the optimal policy and
their joint policies are assumed to be reasonable policies.

We remark that in a queuing network, under any stable policy, the queue distribution has an exponential
tail; in other words, large queue lengths occur with a small probability. In such a case, we can use
a uniform distribution for pseudo-stochastic states in set 53 to guarantee that 07 = O (IO;)) .
g(1/o2
Therefore, if we choose o9 = %, then o1 =

logn*

12
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Auxiliary Lemmas

In the following lemma, we will show that when all admissible distributions are not far away from the
data distribution p over stochastic state S and action A, we can have a good coverage of S x X x A
by generating virtual samples.

For a given dataset D of size |D| = n and data distribution 1, let fig denote the expected distribution
of the the state action pair (s, z,a) in the combined datase after using Algorithm 2 with a virtual
sample distribution 3(z).

Lemma A.1. Given a virtual sample generating distribution 3(x) of the pseudo-stochastic state, if
B(xz) > o1,Vx € B. Then given any admissible distribution v, then under Assumptions A.3, we have
forany (s,z,a) € S x X x A,z € B,

v(s,x,a) < (m+1)C

pBa(s,z,a) = moy

b

where

fs(s,x, a) =p(s, z,a) =+ > uls, @, a) (B(x) o ) (8)

m-+n “ nm-+n
TeEX

Proof. Given the data distribution , we know that the real samples are drawn according to p(s, x, a).
Then

V(S’ :L',a) <Z§ceX V(Sviv CL) . Zaﬁe)( V(57i‘7a) Zie)( U(Sai'va)
[w(s,x,a) N /jﬂ(sﬂ‘%a) B Zie){ :u(s?‘%va') ﬁg(&l‘,a)
U5.0) | S ls,i0)
p(s, a) fig(s,x,a)

p(s, a)

oga) 4 omo S (s, &, a)B(x)

(m + (s, a)
=¢ <mzm u(s,f,am(x))
(m + Dy(s,a)
=¢ (mzm (s, 2, a)ﬂm)
c.m+1 i’
m g1

IN

where the inequality (1) holds because of Assumption A.3, the equality (2) holds by substituting
equation (8) and the last inequality is true because the fact that 8(x) > o1, Va € B. O

The next lemma transforms the norm in terms of distribution v to distribution jig (Eq. (8)).

Lemma A.2. Let v be any admissible distribution, [ig denote the new data distribution defined in
Eq. (8) after generating virtual samples with B(x). If 8(z) > 01,Vx € B, then under Assumption

A.3, for any function f : S x X x A — R, we have | f||2,, < /™ £ || f|l2,2,, where

- m o1
1/2

[ fll2, = Z |f(8axva)‘2’/(svxva)

(s,z,a)ESX X XA, xeB

Proof. For any function f, we have
1/2

I/

2,v = Z |f<s>$7a)|2y(87xaa)

(s,z,a)ESXX X A,xeB

13



1/2

_ m+1)C
< S fena)Pas(sz e m D
moq
(s,z,a)ESXX X A,xeB
(m + 1)
< Hf”Q ag
499 where the first inequality is a result of Lemma A.1. O

soo Lemma A.3. Consider two functions f, f' : S x X x A — R and define a policy my (s, x) =
so1  argminge 4 min {f(s,z,a), f'(s,x,a)} . Then we have Vv € A(S x X x A),

Ve = Villz.pey = I1f = Fll2.pewyxa, - ©)

Proof.
Vi = Vi3, pe)

2
= XS Pl (i A0, ).) - i £ (o050, )

a’eA
(s,z,0)ESX X XA s'€ES

< Y Y PEIsa) (f(s gls, v a, ) mr (s g5, 2,0,8)

(s,z,a)ESXX XA s'ES
—f'(s' 95w 0,8, wp 50 (s g (5,20, )
:”f - fI”g,P(v)Xﬂ'f‘f/ :
502 O

sos  Lemma A.4. Under Assumptions A.3 and A.4, for any admissible distribution v € A(S x X x A),
so4 and a data distribution [ng associated with a virtual sample distribution B(x), define P(v) as a
s05  distribution generated as s}, ~ P(v), then for any policy w, and f, f' : § x X x A — R, we have

I = @l </ L2EE

+ 7||f Q ||2 PW)Xmsr g« (10)
Proof.
||f Q2w =f =T +Tf = Q2.
+Tf = Q2
m—|— 1
———f =T ll2ps + |
\/7”]F T l2ms + MV = V2P
m—|— 1
=T ll2,a o

s06  where inequality (1) holds because of triangle inequality, inequality ( ) comes from lemma A.2,
507 inequality (3) holds because

ITF = Q130 = IT"F = TQ I8 = Eseayms [(TF)(5,2,0) = (TQ") (5,2, 0))°]
—E(s 0000 [(vEs/~p<.|s,a> [vff<s’,g<s,x,a,s'>> ~ V(s g(s,0,a,8)]
SYVE (s 2,005/~ P (L) (Vi (8, 9(5,2,a,8) = V(' (5,2, a,5")))?]
AV Eurnp) [Vl (s, 2,0,8)) = V(s (5,20, )]
:72||Vf’ - V*||§,P(u)’
sos and the last inequality holds due to Lemma A.3.
509 O

o
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sto  Lemma A.5. For a given data sample (s,x,a,r,s',a’') generated from a data distribution p,
511 such that (s,x,a) ~ p,s' ~ P(:|s,a),2’ = g(s,x,a,s), for any f, f' € F, define Vi(s,x) =
512 ming f(s,xz,a’), then

E |(f(s,0) =7 =Wy (s, ))’)

=1 = T3 0+ VEs iz Var (Vi (s', 2", 2, )] (1
Proof.
E[(f(s,2,0) =7 = 1Vp(s',2'))]
=E |(f(s,2,0) = (T/')(s.2.) + (Tf)(s,2,0) = (r + Vi (s, 2')))’]
=E |(f(s,2,0) = (Tf)(s,,))°| +E [(TF)(s,2,0) = (r +7Vp(s',2))°]
VOB a> (T)(5:2,0) (TF)(5,2,0) = (r + 1V (s, 2")))]
(1)=0

=E |:(f(8a z, a) - (Tf/)(87 Z, a))2] + ’YQE(S,Z,G.)N/_L [Var(fo(s’, .T/)|8, €, a)]
:Hf - Tf/Hg,;L + 72E(s,w,a)wu[var(vf’ (5/’ $/)|$7 z, CL)L

st3  where the equation (1) = 0 because that condition on (s, z, a), we have f and V}. are independent.
514 O

515 Lemma A.6. Under Algorithm 2, at iteration k, we have
Livg, (Fi ) = Loo (TH L)V =1 = TF 13,5, -
ste where L, (f5 f') =E[Lp (f; )]

(12)

517 Proof. Recall that ﬁk = DU Dy and |1§k| = nm + n. The expectation is w.r.t. the random draw of
518 the dataset D and the random generation of dataset Dy, with virtual sample distribution 3. We know
519 that

EDk(f;f/): } Z (f(s,:v,a)—7’f’ny/(s’,z’))2

|Dk| (s,z,a,r,s’,x’)ED

l;k| Z (f(s,z,a) =1 — V(s 2"))?

(s,z,a,r,s",x")EDy

520 Let ij’x’a’s ) denote the set of virtual samples that are associated with the real sample
521 (s,x,a,s’,2') atiteration k. Then

Ly (£ 1) =E[Lp (f; )]

n .
:nm +n (Hf - Tleg,u + VQE(s,x,a)Nu[Var(Vf’ (Slv I/)|57 x, CL)]) (by using Lemma A5)

! — = — - 2
nm—f—nE Z Z (f(s,7,a) =T =V (5,7"))
(s,x,a,r,s’",x’)ED (S)i’a’F’gl7E/)€Mis,w,a,r,s’,m')

n
:nm +n (Hf - Tf/H%,,u, + WQE(S,m,a)Nu[Var(Vf’ (s',x’)|s,x7a)])
1
¥ E Z E Z (f(87:faa) —f—’ny'(g/,i'/))2 S, T,a,T, s/;ml
nm n
(s,z,a,r,s",x')ED (s,i,a,f,?,i/)EM,(j’Z’a'T’S/’x/)
n
:nm +n (Hf - Tleg,,u + VZE(s,w,a)N,u[Var(Vf’ (5/,$/)|$75L’7a)])
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522
523

524

525

526

527
528

529
530
531

532

533

534

535

m

E SN 8@ (f(s. 7 a) = T — AV (F, 7))

nm-+mn 4
(s,x,a,r,s",x’)ED TEX

n
(1 TN B NV (25, 2,0)
mn _ _ _ NS
p— Z u(s,x,a) Zﬂk(gc) (f(s,z,a) =7 —yVp(5,2))
(5,2,)ESXX XA TEX
n
:nm In (Hf - Tleg,u + V2E(s,w,a)wu[vaf(vf’ (3/, l'/)|5, x, a)])
mn _ _ _ NS
nm4+n Z M(S7a)5k(x) (f(s,:ma) _r_’yvf’(slvxl))
(5,Z,a)ESXX XA
n
:nm n (Hf - Tleg,u + V2E(s,w,a)~u[vaf(vf’ (3/, 1'/)|5, x, a)])
nm .
p——— (If - Tf'H%M + Y E (s,0,0) g [Var (Vi (s, 2') |5, 2, a)]) (by using Lemma A.5)

where 7 = R(s,Z,a), ur(s,z,a) = > cpp(s,2",a)Br(x) = p(s,a)Br(x). Since we have
By (vaﬂ a’) = mil,u(S,iU, a) + #ﬂu(sva)ﬁk(z)

Therefore,

Lis, (F5 1) = Lo (TF5 ) = If =T

2
27ﬁﬁk !

The next lemma shows an upper bound on || fx+1 — T fx|

g)/jﬁk ’

Lemma A.7. Given the MDP M = (S, X, P, R,~), we assume that the QQ—function classes F
satisfies Vf € F,Tf € F. The dataset D is generated as: (s,x,a) ~ u,r = R(s,x,a),s ~
P(|s,a),x" = g(s,x,a,s'), and the new dataset Dy, = D U Dy, is generated by following Alg. 1
with virtual sample generating distribution B (x) at kth iteration. Then with probability at least
1-6,VfeF,andk =0,..., K we hvae

1 1 30V2
_ 2 < - - 2. 1 K 2 max 1
fon = Thl s, <5 (5 + ) Vaclosuk|F2/0) + 2200y

Proof. Using Lemma A.6 we know that
1 = TFNB g, = Loy (1 F) = L, (T ).
Then it is sufficient to bound || f — T f’

||§7ﬁﬁk by bounding

Lo, (fi 1) = Loy, (Tfi f1) =E[Lp, (fs ) — L (Tf £
For any f, f/, recall that

1 2
Lofif) =g D (flema)=r=aVpls'a)
k| (s,z,a,r,s’,x’)ED
Lp(ff")
1
+—— > (flsma)—r V(s
|Dk| (s,z,a,r,s’,x’)EDy,

Lp, (f:f)
For any f, f’ define
Y(f5 1) i=(f (5, 0,0) = 1 = AVp ()2 = (T (5,,0) — 7 — AV (s, a'))?
Then for each (s, z,a,s’,2") € D, we get i.i.d. variables Y1 (f; f'), ..., Y, (f; f).
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540
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542

543
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545
546
547

548

We also define
Xi(fs f1) =(f (50,8, a5) — i — YV (85, 87))2 = (T F (815 84y 05) — 73 — AV (si', 251))3,

where (s;, #;, a;, 74, s}, &;) is an augmented sample based on the ith real sample (s;, z;, a;, 14, S5).
Denote the m i.i.d virtual samples by X, (f; f'), ..., X;,, (f; f). Therefore

nm+n %ZZX” 1 f

Ei)k(f;f')*ﬁﬁk(’ff’;f’) " xfzy ff

nm-+mn

=1 j=1
(14)
Taking the expectations on both sides, we obtain for any f, f' € F,
R e Iopl\ n l
Livg (i) = Ly (TF ) = BV (fi )] 4 e lzx it ]

We need to introduce + Y7, Y;(f; f) and o >0, S0 X (f; f7) to bound the above terms.
For the first term, we know that the variance of Y can be bounded by:

Var(Y (f; f')) <E[Y (f; f')?]
:E[((f(sa T, Cl) -r—= fYVf'(S/a 33/))2 - (Tf/(s’xv a) -r—= ,YVf(S”x’)) )2]
=E {(f(s,;l:,a) - 'Tf’(s,x,a))2 (f(syz,a) +Tf(s,z,a) —2r — 29V (s,

<4Vn?14x [(f(s,m,a) _Tfl(8a$aa>)2
:4Vn21ax||f - Tf/H%,,u
=4V2 . E[Y (f: )], (15)
where the last equality is true because
E[Y (f; )] = E[Lp(f; f)] = E[Lp(T f'5 f)]
:”f - Tf/”%,u + ’72E(s,z,a)~#[var(vf' (3/7 CL'/)‘S, z, a]
—\Tf - ’Tf’H;u — 72IE(371.7G)NH[Var(Vf/ (s',2")|s,x,a (using Lemma A.5)
=[lf = TSI,

)]

Then by applying Bernstein’s inequality, together with a union bound over all f, f' € F, we obtain
with probability 1 — § we have

n 3n

B L L O L L e

n 3n

For the second term, note that for any given ith sample (s;, 2;, a;, s}, x;) all the variables { X, } are

i.i.d. Then following a similar argument, then for all f, f’ € F, we have with probability at least
1-46/n,

B3 /s o] = > X, (1)
j=1

[T BB P s lB(TVE) | AV o712/
- m 3m
Then it is easy to obtain that we have for all f, f’ € F,

—ZE i(f5 1) ——ZX” £ )

17



m 3m

ZW SVan BN (/£ 108(nIFT/8) |, AVdulog(nlF '2/5)> T )

sa9  Combining Eq.(17) and Eq.(16) we can obtain with probability at least 1 — 0, for all f, f' € F,

n , 1 & nm “ o
mXE[Y(f;f)] o E; WX*;E i(fs f) = ;Xij(f;f)
b \/Vn%axE[ (f; f))]og(|F[?/9) 4Vrﬁax10g(|f|2/5)
“14+m n 3n

nm—+n m 3m n

nm (;ZWSVH%M (X (f: )] og(nl FI/3) 4vr3axlog<n|f|2/a>> 5vn%ax>
(18)

i=1

Let f = fry1, f' = f&, then according to Algorithm 2 we know that
fri1 = To 7 fr := argmin Ly, (f5 fr)
feF
s50 According to Eq. (14), we have

Lo, (i 1) = £, (Tfis fi) = —— X = STVilfi fi) + imzz X, (f f):

nm+n  n—

Then it is easy to observe that T 7 fr minimizes £ p, ( fx), it also minimizes

nm—&—nXiZY (5 0) + nm+n %ZZX” (5 7%)

i=1 i=1 j=1

ss1  because the two objectives only differ by a constant L (7 fx; fi). Therefore under assumption A.2
ss2 we know that 7 fi, € F, we are able to obtain that

nm+nZY (Te. 7 s f) + n+n;;Xl7 (Tk. 7 fi; fr)
ZY T frs fr) + ZJ i fk) =0, (19)
nm—i—n e

553 where the last equality holds due to the definitions of ¥; and X, . Therefore plugging the result from
ss4  Eq.(19) into Eq.(18), we can obtain

1 m -
WE[YU’““’ fi)l + ——— ;E[Xi(karla fr)]
1 \/8vmxﬂ*:[ (Frs1s fi)llog(1F12/0) | 4V loa(IF1*/)
“14+m n 3n
nm_ (1 Z \/8Vmax1E[ Xi(frvrs fo)llog(n| FI2/0) AViRax log(n|F|?/0) 5Vflax
nm—+mn \n— m 3m n
555 By solving the quadratic formula, we get
’Cﬂﬁk (frt1; fr) — ‘Cﬂﬁk (T fr; fr) = ||fk+1 - Tfk”%,ﬂﬁk
1
T E[Y (fr+15 fr)] Xi(fre+15 fr)]
1 35V2
<s(5+ )vrﬁmlogmw/a) Ve
ss6  Finally, apply a union bound over allt =0... K, we conclude the proof.
557 O
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A.1 Proof of Theorem 1

Now we are ready to show the main theorem. Given a dataset D. After generating virtual samples

Dj; we get a new combined dataset Dy, = D U Dy, at each iteration k with virtual sample generating
distribution S (x). We first have

1
T oo — - * _*
v 0t =1 77E(87I)~dm{k(sy$) Q" (s,x,mf,) — V*(s,2)]
1
<_ - - * _ *\ _ Y7k
=1 77E(87I)~dngk(8@) @ (S7$77Tfk) fk(87xa77fk) + fe(s,2,7") = V*(s, z)]
1 *
S (CARF T TR [ T
1

= (107 = el 5 197 = Sl oy ) 0)

where the first equahty follows from the performance difference lemma (Kakade and Langford, 2002),
the first inequality holds because 7y, € argmin, fx(s, z,a) and the last inequality is true by using
the fact that for any vector a = (a1, ..., a,) and a valid distribution d = (d1,...,d,), >, d; =1

lall1,a —Z|az|d —ZMZ\\f div/d; (Cauchy—Schwarz inequality)
\/Zd x \/Damd ~ ol

According to Assumption A.4, we know that 35 s > - c v o¢n dpl* (s, ) < o9, which implies that

Z(sxa)ESXXXA x&B{d”gk (S (E) x W*}(s,x,a) < 03, and Z(s,x,a)ESXXXA,xQB{dngk (S,{E) x
7t }(5,,a) < 0. Define & = {dn* (s, ) x 75, }(s, x,a), then we have

1/2
||fk - Q*||275 = Z |fk;($,$,a) - Q*(S7$,G)|2§(S,$,a)
(s,z,a)ESX X x A
1/2
< Z |fk(8,$,(l) - Q*(s,x,a)Pf(s,x,a)
(s,z,a)ESXX X A,xeB
1/2
+ Z |fk(8,$,a) —Q*(s,x,a)|2§(s,x,a)
(s,z,a)ESX X x A,x¢B
<N fe = Q%ll2.e + o2 Vinax
(m+1)C
= TW = T fr-1llz.ms, +WMfe—1 = Q7 ll2,pe)xms, | 0+ T VO2Vimax, 2

where the first inequality holds because v/a + b < v/a + v/b (¢ > 0,b > 0) and the last inequality
comes from Lemma A 4.

By using LemmaA.7 we have with at least probability 1 — ¢

I fe = T fr-all3 ey, < \|fk—7-fk—1||§ g, S €1 (22)
where e; = 5 (1 + L) V2 log(nk|F|?/8) + 2Ymex Therefore, we obtain
" N m+ 1)Ce
1fe = Q%ll2.e <Vl fom1 — Q"2 p(e)xmy,_, o= + % + V02 Vimax.  (23)

Now define ¢’ = P(§) x my,_, 0+ Then based on Assumption A.4, it is easy to obtain
D (sma)esxaxAxgs & (8,2, a) < cooa. Note that the distribution £ = P(¢') x g, _, o still sat-
isfies - . ayesxrxawgn € (8,3,a) < oo according to Assumption A.4, because s, ,, Tp,_,
and Q™ are all assumed to be reasonable policies.
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Repeating the expansion above for k times, we have

7k (m+1)Ce
Yy maoq

* 1-—
Hf/f - Q HQ,S S 1_ + vV COUQVmax +’kamax-

All the above analyses are still applied to the case when & = {d/* (s, z) x ©*}. Therefore, it is
straightforward to obtain

2 (er 1)061

Ty <
v (1—7)2 moy

+ /€002 Vimax + 7 (1 = 7)Vinax | - 24)

Substituting €; completes the proof.

A.2 Extension of Theorem 1
We repeat the assumption for extending our main results to the case when |X'| can be infinite such
that f(s, z, a) may not be bounded by Vi, ax-

Repeat of Assumption 1: For the typical set B of pseudo-stochastic states (defined in Assump-
tion A.4), forany s,a € S x A, f € F,if ¢ € B, then f(s,x,a) < Vinax otherwise if z ¢ B, we
have | f(s,z,a) — Q*(s,x,a)| < Viax. Furthermore, for any given f € F, (s, z),z € B, we have

N7

|Vf(5,7x/) - Vf(sllax”” < Vmaxa where ' = g(sax,ﬂfasl)vx = g(S,lL',’/Tf, SH)'

There are two places we need to pay attention to: (1) : abound on || fo — Q" |l2,p(¢)xn, o> (2) 1@
bound on the variance of Y as shown in Eq. (15). For the first case, it automatically holds due to
assumption 1. For the second term, we first have

Var(Y (f; f') < E[Y (f3 f')?]
=E[((f(s,2,0) =7 = WVp (s, 2')? = (TF (s5,2,0) — 7 = WV (s,2'))?)’)
=B [(f(s,2,0) = T/ (s,2,0))° (f(s,2,0) + TS (5,3,0) = 2r = 29V (,a"))"]
=E [(f(s, z,a) — Tf'(s,2,0)° (f(s,2,a) — Tf(s,2,a) + 2T f'(s,2,a) — 2r — 29V (s, 2'))?
We also know that
(f(s,z,a) = Tf (s,z,a) + 2T f'(s,z,a) — 2r — 29V (s',as’))2
<2(f(s,m,a) — Tf'(s,2,a))* + 22T f'(s,7,a) — 2r — 27V} (s, 2))?
=2(f(s,z,a) + Q" (s,2,a) — Q*(s,,a) — T f'(s,x,a))* + 8y*(E[V}, (3, 2)|s,z, a] = Vy (s',2"))?
<16V’

max-*

Therefore, we have Var(Y (f; ') < 16V,2 E[Y (f; f')]-

max

Then we can obtain a similar result of the same order, which only differs for some constant ¢ such
that

2 (m+1)Ce

* T £, <
v vk

+ V4 COUZVmaX + 'Yk(]- - V)Vmax . (25)

B Additional Simulations

B.1 Combining PSG with Policy Gradient-type algorithms

In this section, we investigate the possibilities of using ASG in policy gradient-type algorithms. In
particular, we use ASG in the phase of policy evaluation. An algorithm (SAC-ASG) that incorporates
ASG into SAC is presented in Alg. 3. We also compare our algorithm SAC-ASG with state-of-art
Dyna-type model-based approaches, i.e., MBPO (Janner et al., 2019) on the phases criss-cross
network environment (Fig. 2b). The simulation results are shown in Fig.4. We can observe that
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Algorithm 3: SAC-ASG

Input: Critic Networks: (g, , Qp,, Target Critic Networks: Qg;, Qgy;
Actor-Network: Ay, Empty sample reply buffer: D, Learning rate: A ;
for each iteration do
for each environment interaction do
Take action a;, ~ Ag(at|s:, 1), observe next state (s,41, %¢+1), and reward 7y ;
Store the transition into replay buffer: D < D U {s¢, x4, as, 7ty St41, Tet1} 3
for each training step do
Sample mini-batch d of n transitions from replay buffer D;
for Each virtual training loop do
Obtain virtual dataset d’ := ASG(d,m) ;
Combine training dataset d Ud' := {s,z,a,r, s, 2’} ;
@<+ Ag(s', "), yr+y(mini=1 2 Qp (s',2',a) — alog(Ag(als’, 2")) ;
Jo(0;) = (nm +n)"1 Y (y — Qo (s,2,a))” fori € {1,2} ;
0; < 0; — AV, Jo(8;) fori € {1,2} // Update Critic networks
Jr(¢) = (nm +n) =1 3= (alog Ag(als) — mini—1,2 Qp, (s, a))) ;
¢ < & —AVyJ(0) // Update Actor network
0, 70, + (1 —1)0; // Update target network weights
Output: Actor Network Ay ;

the performance of our approach is significantly better than the baselines’. We also would like to
emphasize that the training time of our approach is much less than that of MBPO (4 hours v.s. 3
days).
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Figure 4: Performance on the Two Phases Criss-Cross Network

B.2 Details of the Environment in Section 4.4

In this section, we summarize the detailed parameters used in section 4.4 in Table 3.

Setting | Arrival Rates | Service Rates | Job Size Range
(a) {0.6,0.6} {2,1.5,1.5} 2
(a) {0.6,0.6} {7,3.5,7} 5
(c) {0.6,0.6} {2.5,4.5,2.5} 5

Table 3: Detailed Environment Parameters

B.3 Experimental settings

For all the simulations, We used a single NVIDIA GeForce RTX 2080 Super with AMD Ryzen 7

3700 8-Core Processor.
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