
Supplementary Material449

A Proof of Theorem 1450

In this section, we present the proof of Theorem 1. We first introduce and recall some necessary451

notations and assumptions. Then, we present some auxiliary lemmas and their proofs. Finally, we452

combine the lemmas to prove the main result.453

Notations: Define P (ν) as distribution over states such that (s′, x′) ∼ P (ν) ⇔ (s, x, a) ∼454

ν, s′ ∼ P (s′|s, a), x′ = g(s, a, s′). In other words, it is the distribution of the next state if455

the state action pair follows ν. For f : S × X × A → R, ν ∈ ∆(S × X × A), where ∆(·)456

is the probability simplex, and p > 1, define ‖f‖p,ν = (E(s,x,a)∼ν [|f(s, x, a)|p])1/p. Define457

πf,f ′(s, x) := arg mina∈Amin{f(s, x, a), f ′(s, x, a)}.458

Recall that in Alg. 2, at iteration k,459

LD̂k(f ; fk−1) =
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈D̂k

(f(s, x, a)− r − γVfk−1
(s′, x′))2,

where460

fk : = arg min
f∈F
LD̂k(f ; fk−1) and Vfk(s, x) := min

a∈A
fk(s, x, a).

Assumptions:461

Assumption A.1. (Realizability) For the optimal policy, Q∗ ∈ F .462

Assumption A.2. (Completeness) For the policy π to be evaluated, ∀f ∈ F , T f ∈ F , where
T : RS×X×A → RS×X×A is the Bellman update operator, ∀f :

(T f)(s, x, a) := R(s, x, a) + γEs′∼P (·|s,a)[Vf (s′, x′ = g(s, x, a, s′))].

We say a distribution ν ∈ ∆(S ×A) is admissible in MDP (S,X ,A, P,R, γ), if there exist h ≥ 0463

and a policy π such that ν(s, a) =
∑
x∈X Pr(sh = s, xh = x, ah = a|s0, x0, π). The following464

assumption is imposed to limit the distribution shift. Note that “admissible” is defined on the465

stochastic state and action. Later, we will also abuse the notation and call ν ∈ ∆(S × X × A) is466

admissible if ν(s, a) =
∑
x ν(s, x, a) is admissible.467

Assumption A.3. For a data distribution µ, we assume that there exists C <∞ such that for any
admissible v and any (s, a) ∈ S ×A,

ν(s, a)

µ(s, a)
≤ C,

where ν(s, a) =
∑
x∈X ν(s, x, a) and µ(s, a) =

∑
x∈X µ(s, x, a).468

Assumptions A.2-A.3 are standard assumptions in batch reinforcement learning (Chen and Jiang,469

2019). However, in assumption A.3, we only require the data coverage of stochastic states which is470

the fundamental difference.471

Assumption A.4. We assume that there exists a set B of typical pseudo-stochastic states such that the472

distributions βk(x), k = 1, . . . ,K used for augmenting virtual samples satisfy βk(x) ≥ σ1,∀x ∈ B.473

We also assume that the marginal distribution over using a reasonable policy π, that is, dπη0(s, x) :=474

(1− γ)
∑∞
t=0 γ

t−1 Pr(st = s, xt = x|(s0, x0) ∼ η0, π) satisfies
∑
s∈S

∑
x∈X ,x/∈B d

π
η0(s, x) ≤ σ2,475

where η0 is the initial distribution. Furthermore, if we have for a distribution η of the states satisfying476 ∑
s∈S

∑
x∈X ,x/∈B η(s, x) ≤ σ2, then under any reasonable policy π, the marginal distribution477

ηπh(s, x) := Pr(sh = s, xh = x|(s0, x0) ∼ η, π) satisfies
∑
s∈S

∑
x∈X ,x/∈B η

π
h(s, x) ≤ c0σ2,∀h >478

0, for some constant c0 ≥ 1. In particular, all the policies at each iteration, the optimal policy and479

their joint policies are assumed to be reasonable policies.480

We remark that in a queuing network, under any stable policy, the queue distribution has an exponential481

tail; in other words, large queue lengths occur with a small probability. In such a case, we can use482

a uniform distribution for pseudo-stochastic states in set B to guarantee that σ1 = Θ
(

1
log(1/σ2

)
)
.483

Therefore, if we choose σ2 = 1
n , then σ1 = 1

logn .484
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Auxiliary Lemmas485

In the following lemma, we will show that when all admissible distributions are not far away from the486

data distribution µ over stochastic state S and action A, we can have a good coverage of S × X ×A487

by generating virtual samples.488

For a given dataset D of size |D| = n and data distribution µ, let µ̄β denote the expected distribution489

of the the state action pair (s, x, a) in the combined datase after using Algorithm 2 with a virtual490

sample distribution β(x).491

Lemma A.1. Given a virtual sample generating distribution β(x) of the pseudo-stochastic state, if
β(x) ≥ σ1,∀x ∈ B. Then given any admissible distribution ν, then under Assumptions A.3, we have
for any (s, x, a) ∈ S × X ×A, x ∈ B,

ν(s, x, a)

µ̄β(s, x, a)
≤ (m+ 1)C

mσ1
,

where492

µ̄β(s, x, a) =µ(s, x, a)
n

nm+ n
+
∑
x̂∈X

µ(s, x̂, a)

(
β(x)

nm

nm+ n

)
(8)

Proof. Given the data distribution µ, we know that the real samples are drawn according to µ(s, x, a).493

Then494

ν(s, x, a)

µ̄β(s, x, a)
≤
∑
x̂∈X ν(s, x̂, a)

µ̄β(s, x, a)
=

∑
x̂∈X ν(s, x̂, a)∑
x̂∈X µ(s, x̂, a)

×
∑
x̂∈X µ(s, x̂, a)

µ̄β(s, x, a)

=
ν(s, a)

µ(s, a)
×
∑
x̂∈X µ(s, x̂, a)

µ̄β(s, x, a)

≤(1)C ×
µ(s, a)

µ̄β(s, x, a)

=(2)C

(
µ(s, a)

µ(s,x,a)
m+1 + m

m+1 ·
∑
x̂∈X µ(s, x̂, a)β(x)

)

≤C
(

(m+ 1)µ(s, a)

m
∑
x̂∈X µ(s, x̂, a)β(x)

)
≤C

(
(m+ 1)µ(s, a)

m
∑
x̂∈B µ(s, x̂, a)β(x)

)
≤C · m+ 1

m
· 1

σ1
,

where the inequality (1) holds because of Assumption A.3, the equality (2) holds by substituting495

equation (8) and the last inequality is true because the fact that β(x) ≥ σ1,∀x ∈ B.496

The next lemma transforms the norm in terms of distribution ν to distribution µ̄β (Eq. (8)).497

Lemma A.2. Let ν be any admissible distribution, µ̄β denote the new data distribution defined in
Eq. (8) after generating virtual samples with β(x). If β(x) ≥ σ1,∀x ∈ B, then under Assumption

A.3, for any function f : S × X ×A → R, we have ‖f‖2,ν ≤
√

m+1
m

C
σ1
‖f‖2,µ̄β , where

‖f‖2,ν =

 ∑
(s,x,a)∈S×X×A,x∈B

|f(s, x, a)|2ν(s, x, a)

1/2

.

Proof. For any function f, we have498

‖f‖2,ν =

 ∑
(s,x,a)∈S×X×A,x∈B

|f(s, x, a)|2ν(s, x, a)

1/2
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≤

 ∑
(s,x,a)∈S×X×A,x∈B

|f(x, x, a)|2µ̄β(s, x, a)
(m+ 1)C

mσ1

1/2

≤

√
(m+ 1)C

mσ1
‖f‖2,µ̄β ,

where the first inequality is a result of Lemma A.1.499

Lemma A.3. Consider two functions f, f ′ : S × X × A → R and define a policy πf,f ′(s, x) :=500

arg mina∈Amin {f(s, x, a), f ′(s, x, a)} . Then we have ∀ν ∈ ∆(S × X ×A),501

‖Vf − Vf ′‖2,P (ν) = ‖f − f ′‖2,P (ν)×πf,f′ . (9)

Proof.

‖Vf − Vf ′‖22,P (ν)

=
∑

(s,x,a)∈S×X×A

∑
s′∈S

P (s′|s, a)

(
min
a′∈A

f(s′, g(s, x, a, s′), a′)− min
a′∈A

f ′(s′, g(s, x, a, s′), a′)

)2

≤
∑

(s,x,a)∈S×X×A

∑
s′∈S

P (s′|s, a) (f(s′, g(s, x, a, s′), πf,f ′(s
′, g(s, x, a, s′)))

−f ′(s′, g(s, x, a, s′), πf,f ′(s
′, g(s, x, a, s′))))

2

=‖f − f ′‖22,P (v)×πf,f′ .

502

Lemma A.4. Under Assumptions A.3 and A.4, for any admissible distribution ν ∈ ∆(S × X ×A),503

and a data distribution µ̄β associated with a virtual sample distribution β(x), define P (ν) as a504

distribution generated as s′i ∼ P (ν), then for any policy π, and f, f ′ : S × X ×A → R, we have505

‖f −Q∗‖2,ν ≤
√

(m+ 1)C

mσ
‖f − T f ′‖2,µ̄β + γ‖f ′ −Q∗‖2,P (ν)×πf′,Q∗ (10)

Proof.

‖f −Q∗‖2,ν = ‖f − T f ′ + T f ′ −Q∗‖2,ν
≤(1)‖f − T f ′‖2,ν + ‖T f ′ −Q∗‖2,ν

≤(2)

√
(m+ 1)C

mσ
‖f − T f ′‖2,µ̄β + ‖T f ′ −Q∗‖2,ν

≤(3)

√
(m+ 1)C

mσ
‖f − T f ′‖2,µ̄β + γ‖Vf ′ − V ∗‖2,P (ν)

≤
√

(m+ 1)C

mσ
‖f − T f ′‖2,µ̄β + γ‖f ′ −Q∗‖2,P (ν)×πf′,Q∗ ,

where inequality (1) holds because of triangle inequality, inequality (2) comes from lemma A.2,506

inequality (3) holds because507

‖T f ′ −Q∗‖22,ν = ‖T ∗f ′ − T Q∗‖22,ν = E(s,x,a)∼ν

[
((T f ′)(s, x, a)− (T Q∗)(s, x, a))

2
]

=E(s,x,a)∼ν

[(
γEs′∼P (·|s,a) [Vf ′(s

′, g(s, x, a, s′))− V ∗(s′, g(s, x, a, s′))]
)2]

≤γ2E(s,x,a)∼ν,s′∼P (·|s,a)

[
(Vf ′(s

′, g(s, x, a, s′))− V ∗(s′, g(s, x, a, s′)))2
]

=γ2Es′∼P (ν)

[
(Vf ′(s

′, g(s, x, a, s′))− V ∗(s′, g(s, x, a, s′)))2
]

=γ2‖Vf ′ − V ∗‖22,P (ν),

and the last inequality holds due to Lemma A.3.508

509
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Lemma A.5. For a given data sample (s, x, a, r, s′, a′) generated from a data distribution µ,510

such that (s, x, a) ∼ µ, s′ ∼ P (·|s, a), x′ = g(s, x, a, s′), for any f, f ′ ∈ F , define Vf (s, x) =511

mina′ f(s, x, a′), then512

E
[
(f(s, x, a)− r − γVf ′(s′, x′))

2
]

=‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)] (11)

Proof.

E
[
(f(s, x, a)− r − γVf ′(s′, x′))

2
]

=E
[
(f(s, x, a)− (T f ′)(s, x, a) + (T f ′)(s, x, a)− (r + γVf ′(s

′, x′)))
2
]

=E
[
(f(s, x, a)− (T f ′)(s, x, a))

2
]

+ E
[
((T f ′)(s, x, a)− (r + γVf ′(s

′, x′)))
2
]

+ 2E [(f(s, x, a)− (T f ′)(s, x, a)) ((T f ′)(s, x, a)− (r + γVf ′(s
′, x′)))]︸ ︷︷ ︸

(1)=0

=E
[
(f(s, x, a)− (T f ′)(s, x, a))

2
]

+ γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

=‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)],

where the equation (1) = 0 because that condition on (s, x, a), we have f and Vf ′ are independent.513

514

Lemma A.6. Under Algorithm 2, at iteration k, we have515

Lµ̂βk (f ; f ′)− Lµ̂βk (T f ; f ′) = ‖f − T f ′‖22,µ̄βk , (12)

where Lµ̂βk (f ; f ′) = E[LD̂k(f ; f ′)].516

Proof. Recall that D̂k = D ∪Dk and |D̂k| = nm+ n. The expectation is w.r.t. the random draw of517

the dataset D and the random generation of dataset Dk with virtual sample distribution βk. We know518

that519

LD̂k(f ; f ′) =
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈D

(f(s, x, a)− r − γVf ′(s′, x′))2

+
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈Dk

(f(s, x, a)− r − γVf ′(s′, x′))2

Let M(s,x,a,s′,x′)
k denote the set of virtual samples that are associated with the real sample520

(s, x, a, s′, x′) at iteration k. Then521

Lµ̂βk (f ; f ′) := E[LD̂k(f ; f ′)]

=
n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
(by using Lemma A.5)

+
1

nm+ n
E

 ∑
(s,x,a,r,s′,x′)∈D

∑
(s,x̄,a,r̄,s̄′,x̄′)∈M(s,x,a,r,s′,x′)

k

(f(s, x̄, a)− r̄ − γVf ′(s̄′, x̄′))
2


=

n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
+

1

nm+ n
E

 ∑
(s,x,a,r,s′,x′)∈D

E

 ∑
(s,x̄,a,r̄,s̄′,x̄′)∈M(s,x,a,r,s′,x′)

k

(f(s, x̄, a)− r̄ − γVf ′(s̄′, x̄′))
2

∣∣∣∣∣∣∣ s, x, a, r, s′, x′



=
n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
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+
m

nm+ n
E

 ∑
(s,x,a,r,s′,x′)∈D

∑
x̄∈X

βk(x̄) (f(s, x̄, a)− r̄ − γVf ′(s̄′, x̄′))
2


=

n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
+

mn

nm+ n

∑
(s,x,a)∈S×X×A

µ(s, x, a)
∑
x̄∈X

βk(x̄) (f(s, x̄, a)− r̄ − γVf ′(s̄′, x̄′))
2

=
n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
+

mn

nm+ n

∑
(s,x̄,a)∈S×X×A

µ(s, a)βk(x̄) (f(s, x̄, a)− r̄ − γVf ′(s̄′, x̄′))
2

=
n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
+

nm

nm+ n

(
‖f − T f ′‖22,µk + γ2E(s,x,a)∼µk [Var(Vf ′(s′, x′)|s, x, a)]

)
, (by using Lemma A.5)

where r̄ = R(s, x̄, a), µk(s, x, a) =
∑
x′∈X µ(s, x′, a)βk(x) = µ(s, a)βk(x). Since we have522

µ̄βk(s, x, a) = 1
m+1µ(s, x, a) + m

m+1µ(s, a)βk(x).523

Therefore,524

Lµ̂βk (f ; f ′)− Lµ̂βk (T f ′; f ′) = ‖f − T f ′‖22,µ̄βk .

525

The next lemma shows an upper bound on ‖fk+1 − T fk‖22,µ̄βk .526

Lemma A.7. Given the MDP M = (S,X , P,R, γ), we assume that the Q−function classes F527

satisfies ∀f ∈ F , T f ∈ F . The dataset D is generated as: (s, x, a) ∼ µ, r = R(s, x, a), s′ ∼528

P (·|s, a), x′ = g(s, x, a, s′), and the new dataset D̂k = D ∪Dk is generated by following Alg. 1529

with virtual sample generating distribution βk(x) at kth iteration. Then with probability at least530

1− δ, ∀f ∈ F , and k = 0, . . . ,K we hvae531

‖fk+1 − T fk‖22,µ̄βk ≤ 5

(
1

n
+

1

m

)
V 2

max log(nK|F|2/δ) +
3δV 2

max

n
(13)

Proof. Using Lemma A.6 we know that532

‖f − T f ′‖22,µ̄βk = Lµ̂βk (f ; f ′)− Lµ̂βk (T f ; f ′).

Then it is sufficient to bound ‖f − T f ′‖22,µ̄βk by bounding

Lµ̂βk (f ; f ′)− Lµ̂βk (T f ; f ′) = E[LD̂k(f ; f ′)− LD̂k(T f ; f ′)].

For any f, f ′, recall that533

LD̂k(f ; f ′) =
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈D

(f(s, x, a)− r − γVf ′(s′, x′))
2

︸ ︷︷ ︸
LD(f ;f ′)

+
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈Dk

(f(s, x, a)− r − γVf ′(s′, x′))
2

︸ ︷︷ ︸
LDk (f ;f ′)

.

For any f, f ′ define534

Y (f ; f ′) :=(f(s, x, a)− r − γVf ′(s′, x′))2 − (T f ′(s, x, a)− r − γVf ′(s′, x′))2

Then for each (s, x, a, s′, x′) ∈ D, we get i.i.d. variables Y1(f ; f ′), . . . , Yn(f ; f ′).535
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We also define536

Xi(f ; f ′) :=(f(si, x̂i, ai)− r̂i − γVf ′(si′, x̂i′))2 − (T f ′(si, x̂i, ai)− r̂i − γVf ′(si′, x̂i′))2,

where (si, x̂i, ai, r̂i, s
′
i, x̂
′
i) is an augmented sample based on the ith real sample (si, xi, ai, ri, s

′
i).537

Denote the m i.i.d virtual samples by Xi1(f ; f ′), . . . , Xim(f ; f ′). Therefore538

LD̂k(f ; f ′)− LD̂k(T f ′; f ′) =
n

nm+ n
× 1

n

n∑
i=1

Yi(f ; f ′) +
nm

nm+ n
× 1

nm

n∑
i=1

m∑
j=1

Xij (f ; f ′).

(14)

Taking the expectations on both sides, we obtain for any f, f ′ ∈ F ,539

Lµ̂βk (f ; f ′)− Lµ̂βk (T f ′; f ′) =
n

nm+ n
E [Y (f ; f ′)] +

nm

nm+ n
× 1

n
E

[
n∑
i=1

Xi(f ; f ′)

]
We need to introduce 1

n

∑n
i=1 Yi(f ; f ′) and 1

m

∑n
i=1

∑m
j=1Xij (f ; f ′) to bound the above terms.540

For the first term, we know that the variance of Y can be bounded by:541

Var(Y (f ; f ′)) ≤E[Y (f ; f ′)2]

=E[
(
(f(s, x, a)− r − γVf ′(s′, x′))2 − (T f ′(s, x, a)− r − γVf (s′, x′))2

)2
]

=E
[
(f(s, x, a)− T f ′(s, x, a))

2
(f(s, x, a) + T f ′(s, x, a)− 2r − 2γVf ′(s

′, x′))
2
]

≤4V 2
maxE

[
(f(s, x, a)− T f ′(s, x, a))

2
]

=4V 2
max‖f − T f ′‖22,µ

=4V 2
maxE[Y (f ; f ′)], (15)

where the last equality is true because542

E[Y (f ; f ′)] = E[LD(f ; f ′)]− E[LD(T f ′; f ′)]
=‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a]

− ‖T f ′ − T f ′‖22,µ − γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a] (using Lemma A.5)

=‖f − T f ′‖22,µ.

Then by applying Bernstein’s inequality, together with a union bound over all f, f ′ ∈ F , we obtain543

with probability 1− δ we have544

E [Y (f ; f ′)]− 1

n

n∑
i=1

Yi(f ; f ′) ≤
√

2Var(Y (f ; f ′)) log(|F|2/δ)
n

+
4V 2

max log(|F|2/δ)
3n

≤
√

8V 2
maxE[Y (f ; f ′)] log(|F|2/δ)

n
+

4V 2
max log(|F|2/δ)

3n
(16)

For the second term, note that for any given ith sample (si, xi, ai, s
′
i, x
′
i) all the variables {Xij} are545

i.i.d. Then following a similar argument, then for all f, f ′ ∈ F , we have with probability at least546

1− δ/n,547

E[Xi(f ; f ′)|si, xi, ai]−
1

m

m∑
j=1

Xij (f ; f ′)

≤
√

8V 2
maxE[Xi(f ; f ′)|si, xi, ai] log(n|F|/δ)

m
+

4V 2
max log(n|F|2/δ)

3m

Then it is easy to obtain that we have for all f, f ′ ∈ F ,548

1

n

n∑
i=1

E

Xi(f ; f ′)− 1

m

m∑
j=1

Xij (f ; f ′)
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≤ 1

n

n∑
i=1

(√
8V 2

maxE[Xi(f ; f ′)] log(n|F|/δ)
m

+
4V 2

max log(n|F|2/δ)
3m

)
+
δV 2

max

n
(17)

Combining Eq.(17) and Eq.(16) we can obtain with probability at least 1− δ, for all f, f ′ ∈ F ,549

n

n+ nm
× E [Y (f ; f ′)]− n

n+ nm
× 1

n

n∑
i=1

Yi(f ; f ′) +
nm

nm+ n
× 1

n

n∑
i=1

E

Xi(f ; f ′)− 1

m

m∑
j=1

Xij (f ; f ′)


≤ 1

1 +m
×

(√
8V 2

maxE[Y (f ; f ′)] log(|F|2/δ)
n

+
4V 2

max log(|F|2/δ)
3n

)

+
nm

nm+ n

(
1

n

n∑
i=1

(√
8V 2

maxE[Xi(f ; f ′)] log(n|F|/δ)
m

+
4V 2

max log(n|F|2/δ)
3m

)
+
δV 2

max

n

)
(18)

Let f = fk+1, f
′ = fk, then according to Algorithm 2 we know that

fk+1 = T̂k,Ffk := arg minLD̂k
f∈F

(f ; fk).

According to Eq. (14), we have550

LD̂k(f ; fk)− LD̂k(T fk; fk) =
n

nm+ n
× 1

n

n∑
i=1

Yi(f ; fk) +
nm

nm+ n
× 1

nm

n∑
i=1

m∑
j=1

Xij (f ; fk).

Then it is easy to observe that T̂k,Ffk minimizes LD̂k(·; fk), it also minimizes

n

nm+ n
× 1

n

n∑
i=1

Yi(·; fk) +
nm

nm+ n
× 1

nm

n∑
i=1

m∑
j=1

Xij (·; fk)

because the two objectives only differ by a constant LD̂k(T fk; fk). Therefore under assumption A.2551

we know that T fk ∈ F , we are able to obtain that552

1

nm+ n

n∑
i=1

Yi(T̂k,Ffk; fk) +
1

mn+ n

n∑
i=1

m∑
j=1

Xij (T̂k,Ffk; fk)

≤ 1

nm+ n

n∑
i=1

Yi(T fk; fk) +
1

nm+ n

n∑
i=1

m∑
j=1

Xij (T fk; fk) = 0, (19)

where the last equality holds due to the definitions of Yi and Xij . Therefore plugging the result from553

Eq.(19) into Eq.(18), we can obtain554

1

m+ 1
E[Y (fk+1; fk)] +

m

mn+ n

n∑
i=1

E[Xi(fk+1; fk)]

≤ 1

1 +m

(√
8V 2

maxE[Y (fk+1; fk)] log(|F|2/δ)
n

+
4V 2

max log(|F|2/δ)
3n

)

+
nm

nm+ n

(
1

n

n∑
i=1

(√
8V 2

maxE[Xi(fk+1; fk)] log(n|F|2/δ)
m

+
4V 2

max log(n|F|2/δ)
3m

)
+
δV 2

max

n

)
By solving the quadratic formula, we get555

Lµ̂βk (fk+1; fk)− Lµ̂βk (T fk; fk) = ‖fk+1 − T fk‖22,µ̄βk

=
1

m+ 1
E[Y (fk+1; fk)] +

m

nm+ n

n∑
j=1

E[Xi(fk+1; fk)]

≤5

(
1

n
+

1

m

)
V 2

max log(n|F|2/δ) +
3δV 2

max

n

Finally, apply a union bound over all t = 0 . . .K, we conclude the proof.556

557
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A.1 Proof of Theorem 1558

Now we are ready to show the main theorem. Given a dataset D. After generating virtual samples559

Dk we get a new combined dataset D̂k = D ∪Dk at each iteration k with virtual sample generating560

distribution βk(x). We first have561

vπfk − v∗ =
1

1− γ
E

(s,x)∼d
πfk
η0

(s,x)
[Q∗(s, x, πfk)− V ∗(s, x)]

≤ 1

1− γ
E

(s,x)∼d
πfk
η0

(s,x)
[Q∗(s, x, πfk)− fk(s, x, πfk) + fk(s, x, π∗)− V ∗(s, x)]

≤ 1

1− γ

(
‖Q∗ − fk‖1,dπfkη0

(s,x)×πfk
+ ‖Q∗ − fk‖1,dπfkη0

(s,x)×π∗

)
≤ 1

1− γ

(
‖Q∗ − fk‖2,dπfkη0

(s,x)×πfk
+ ‖Q∗ − fk‖2,dπfkη0

(s,x)×π∗

)
, (20)

where the first equality follows from the performance difference lemma (Kakade and Langford, 2002),562

the first inequality holds because πfk ∈ arg mina fk(s, x, a) and the last inequality is true by using563

the fact that for any vector a = (a1, . . . , an) and a valid distribution d = (d1, . . . , dn),
∑
i di = 1564

‖a‖1,d =
∑
i

|ai|di =
∑
i

|ai|
√
di
√
di (Cauchy–Schwarz inequality)

≤
√∑

i

di ×
√∑

i

|ai|2di = ‖a‖2,d.

According to Assumption A.4, we know that
∑
s∈S

∑
x∈X ,x/∈B d

πfk
η0 (s, x) ≤ σ2, which implies that565 ∑

(s,x,a)∈S×X×A,x/∈B{d
πfk
η0 (s, x) × π∗}(s, x, a) ≤ σ2, and

∑
(s,x,a)∈S×X×A,x/∈B{d

πfk
η0 (s, x) ×566

πfk}(s, x, a) ≤ σ2. Define ξ = {dπfkη0 (s, x)× πfk}(s, x, a), then we have567

‖fk −Q∗‖2,ξ =

 ∑
(s,x,a)∈S×X×A

|fk(s, x, a)−Q∗(s, x, a)|2ξ(s, x, a)

1/2

≤

 ∑
(s,x,a)∈S×X×A,x∈B

|fk(s, x, a)−Q∗(s, x, a)|2ξ(s, x, a)

1/2

+

 ∑
(s,x,a)∈S×X×A,x/∈B

|fk(s, x, a)−Q∗(s, x, a)|2ξ(s, x, a)

1/2

≤‖fk −Q∗‖2,ξ +
√
σ2Vmax

≤

√
(m+ 1)C

mσ1
‖fk − T fk−1‖2,µ̄βk + γ‖fk−1 −Q∗‖2,P (ξ)×πfk−1,Q

∗ +
√
σ2Vmax, (21)

where the first inequality holds because
√
a+ b ≤

√
a+
√
b (a ≥ 0, b ≥ 0) and the last inequality568

comes from Lemma A.4.569

By using LemmaA.7 we have with at least probability 1− δ570

‖fk − T fk−1‖22,µ̄βk ≤ ‖fk − T fk−1‖22,µ̄βk ≤ ε1 (22)

where ε1 = 5
(

1
n + 1

m

)
V 2

max log(nK|F|2/δ) +
3δV 2

max

n . Therefore, we obtain571

‖fk −Q∗‖2,ξ ≤ γ‖fk−1 −Q∗‖2,P (ξ)×πfk−1,Q
∗ +

√
(m+ 1)Cε1

mσ1
+
√
σ2Vmax. (23)

Now define ξ′ = P (ξ) × πfk−1,Q∗ . Then based on Assumption A.4, it is easy to obtain572 ∑
(s,x,a)∈S×X×A,x/∈B ξ

′(s, x, a) ≤ c0σ2. Note that the distribution ξ′′ = P (ξ′)× πfk−2,Q∗ still sat-573

isfies
∑

(s,x,a)∈S×X×A,x/∈B ξ
′′(s, x, a) ≤ c0σ2 according to Assumption A.4, because πfk−1

, πfk−2
574

and Q∗ are all assumed to be reasonable policies.575
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Repeating the expansion above for k times, we have576

‖fk −Q∗‖2,ξ ≤
1− γk

1− γ

√ (m+ 1)Cε1
mσ1

+
√
c0σ2Vmax

+ γkVmax.

All the above analyses are still applied to the case when ξ = {dπfkη0 (s, x) × π∗}. Therefore, it is577

straightforward to obtain578

v∗ − vπfk ≤ 2

(1− γ)2

√ (m+ 1)Cε1
mσ1

+
√
c0σ2Vmax + γk(1− γ)Vmax

 . (24)

Substituting ε1 completes the proof.579

A.2 Extension of Theorem 1580

We repeat the assumption for extending our main results to the case when |X | can be infinite such581

that f(s, x, a) may not be bounded by Vmax.582

Repeat of Assumption 1: For the typical set B of pseudo-stochastic states (defined in Assump-583

tion A.4), for any s, a ∈ S × A, f ∈ F , if x ∈ B, then f(s, x, a) ≤ Vmax otherwise if x /∈ B, we584

have |f(s, x, a)−Q∗(s, x, a)| ≤ Vmax. Furthermore, for any given f ∈ F , (s, x), x ∈ B, we have585

|Vf (s′, x′)− Vf (s′′, x′′)| ≤ Vmax, where x′ = g(s, x, πf , s
′), x′′ = g(s, x, πf , s

′′).586

There are two places we need to pay attention to: (1) : a bound on ‖f0 −Q∗‖2,P (ξ)×πf0,Q∗ , (2) : a587

bound on the variance of Y as shown in Eq. (15). For the first case, it automatically holds due to588

assumption 1. For the second term, we first have589

Var(Y (f ; f ′)) ≤ E[Y (f ; f ′)2]

=E[
(
(f(s, x, a)− r − γVf ′(s′, x′))2 − (T f ′(s, x, a)− r − γVf (s′, x′))2

)2
]

=E
[
(f(s, x, a)− T f ′(s, x, a))

2
(f(s, x, a) + T f ′(s, x, a)− 2r − 2γVf ′(s

′, x′))
2
]

=E
[
(f(s, x, a)− T f ′(s, x, a))

2
(f(s, x, a)− T f ′(s, x, a) + 2T f ′(s, x, a)− 2r − 2γVf ′(s

′, x′))
2
]
.

We also know that590

(f(s, x, a)− T f ′(s, x, a) + 2T f ′(s, x, a)− 2r − 2γVf ′(s
′, x′))

2

≤2(f(s, x, a)− T f ′(s, x, a))2 + 2(2T f ′(s, x, a)− 2r − 2γVf ′(s
′, x′))2

=2(f(s, x, a) +Q∗(s, x, a)−Q∗(s, x, a)− T f ′(s, x, a))2 + 8γ2(E[V ′f ′(ŝ, x̂)|s, x, a]− Vf ′(s′, x′))2

≤16V 2
max.

Therefore, we have Var(Y (f ; f ′)) ≤ 16V 2
maxE[Y (f ; f ′)].591

Then we can obtain a similar result of the same order, which only differs for some constant c̃ such592

that593

v∗ − vπfk ≤ 2c̃

(1− γ)2

√ (m+ 1)Cε1
mσ1

+
√
c0σ2Vmax + γk(1− γ)Vmax

 . (25)

B Additional Simulations594

B.1 Combining PSG with Policy Gradient-type algorithms595

In this section, we investigate the possibilities of using ASG in policy gradient-type algorithms. In596

particular, we use ASG in the phase of policy evaluation. An algorithm (SAC-ASG) that incorporates597

ASG into SAC is presented in Alg. 3. We also compare our algorithm SAC-ASG with state-of-art598

Dyna-type model-based approaches, i.e., MBPO (Janner et al., 2019) on the phases criss-cross599

network environment (Fig. 2b). The simulation results are shown in Fig.4. We can observe that600
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Algorithm 3: SAC-ASG
1 Input: Critic Networks: Qθ1 , Qθ2 , Target Critic Networks: Qθ′1 , Qθ′2 ;
2 Actor-Network: Aφ, Empty sample reply buffer: D, Learning rate: λ ;
3 for each iteration do
4 for each environment interaction do
5 Take action at ∼ Aφ(at|st, xt), observe next state (st+1, xt+1), and reward rt ;
6 Store the transition into replay buffer: D ← D ∪ {st, xt, at, rt, st+1, xt+1} ;
7 for each training step do
8 Sample mini-batch d of n transitions from replay buffer D;
9 for Each virtual training loop do

10 Obtain virtual dataset d′ := ASG(d,m) ;
11 Combine training dataset d ∪ d′ := {s, x, a, r, s′, x′} ;
12 ã← Aφ(s′, x′), y ← r + γ(mini=1,2Qθ′i(s

′, x′, ã)− α log(Aφ(ã|s′, x′)) ;
13 JQ(θi) = (nm+ n)−1

∑
(y −Qθi(s, x, a))

2 for i ∈ {1, 2} ;
14 θi ← θi − λ∇θiJQ(θi) for i ∈ {1, 2} // Update Critic networks
15 Jπ(φ) = (nm+ n)−1

∑
(α logAφ(a|s)−mini=1,2Qθi(s, a))) ;

16 φ← φ− λ∇φJπ(φ) // Update Actor network
17 θ′i ← τθi + (1− τ)θ′i // Update target network weights
18 Output: Actor Network Aφ ;

the performance of our approach is significantly better than the baselines’. We also would like to601

emphasize that the training time of our approach is much less than that of MBPO (4 hours v.s. 3602

days).603

Figure 4: Performance on the Two Phases Criss-Cross Network

B.2 Details of the Environment in Section 4.4604

In this section, we summarize the detailed parameters used in section 4.4 in Table 3.605

Setting Arrival Rates Service Rates Job Size Range
(a) {0.6, 0.6} {2, 1.5, 1.5} 2
(a) {0.6, 0.6} {7, 3.5, 7} 5
(c) {0.6, 0.6} {2.5, 4.5, 2.5} 5

Table 3: Detailed Environment Parameters

B.3 Experimental settings606

For all the simulations, We used a single NVIDIA GeForce RTX 2080 Super with AMD Ryzen 7607

3700 8-Core Processor.608
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