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ABSTRACT

Transformer architecture search (TAS) has achieved remarkable progress in au-
tomating the neural architecture design process of vision transformers. Recent
TAS advancements have discovered outstanding transformer architectures while
saving tremendous labor from human experts. However, it is still cumbersome to
deploy these methods in real-world applications due to the expensive costs of data
labeling under the supervised learning paradigm. To this end, this paper proposes a
masked image modelling (MIM) based self-supervised neural architecture search
method specifically designed for vision transformers, termed as MaskTAS, which
completely avoids the expensive costs of data labeling inherited from supervised
learning. Based on the one-shot NAS framework, MaskTAS requires to train vari-
ous weight-sharing subnets, which can easily diverged without strong supervision
in MIM-based self-supervised learning. For this issue, we design the search space
of MaskTAS as a siamesed teacher-student architecture to distill knowledge from
pre-trained networks, allowing for efficient training of the transformer supernet.
To achieve self-supervised transformer architecture search, we further design a
novel unsupervised evaluation metric for the evolutionary search algorithm, where
each candidate of the student branch is rated by measuring its consistency with
the larger teacher network. Extensive experiments demonstrate that the searched
architectures can achieve state-of-the-art accuracy on CIFAR-10, CIFAR-100, and
ImageNet datasets even without using manual labels. Moreover, the proposed
MaskTAS can generalize well to various data domains and tasks by searching
specialized transformer architectures in self-supervised manner.

1 INTRODUCTION

Vision transformer (ViT), as a self-attention characterized neural network, has recently emerged as an
alternative to convolutional neural networks (CNNs) in computer vision community. In an attempt
to progress this field, a surge of advanced ViT networks have been developed over a wide range
of vision tasks, such as image recognition Dosovitskiy et al. (2020); Han et al. (2021); Liu et al.
(2021b), object detection Liu et al. (2021b); Zhu et al. (2020) and semantic segmentation Strudel
et al. (2021); Xie et al. (2021). However, despite the empirical success of these approaches, they all
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Figure 1: The pipeline of the proposed self-supervised transformer architecture search framework,
including a) self-supervised supernet training, b) self-supervised architecture search, and c) supervised
re-training of searched architecture.

rely heavily on hand-crafted ViT architectures designed by human experts, meaning that laborious
trial-and-error testing is required. In particular, a large number of design choices needs to be analyzed
and determined in ViT architecture, such as patch size of input, number of self-attention heads,
query/key/value dimension, MLP ratio and network depth, significantly increasing the difficulty of
architecture design. Moreover, these manually designed architectures are fixed once obtained, which
cannot necessarily ensure the optimality for diversified data domains and task scenarios.

Neural Architecture Search (NAS) Ren et al. (2021); Liu et al. (2021a); Elsken et al. (2019); Yan
et al. (2021) has become an effective way for automating the design of neural networks. Inspired by
its remarkable success in CNNs, NAS techniques have also been investigated for searching standard
transformer architectures recently. Existing studies on Transformer Architecture Search (TAS) mainly
focus on refining search space (e.g., S3 Chen et al. (2021c), GLiT Chen et al. (2021a) and AutoFormer
Chen et al. (2021b)) and/or improving search algorithms (e.g., AutoFormer Chen et al. (2021b) and
ViTAS Su et al. (2021)). Benefiting from the automated network design process, these methods can
discover customized architectures that can achieve comparable or better performance, compared with
manually designed vision transformers. However, despite their empirical success, the training and
architecture search stage of these approaches are both performed in a fully-supervised paradigm,
meaning that the optimal transformer architectures are typically searched based on both images and
their associated labels. This dependency would inevitably lead to expensive costs of data labelling,
limiting the scalability and transferability of the transformer architecture search approaches. As a
viable alternative, self-supervised learning obtains supervisory signals from the data itself and has
recently been shown to address the appetite for data successfully Chen et al. (2020); Grill et al. (2020);
Wang et al. (2021). A few recent works have explored how to discover desirable network architectures
based on self-supervised search strategy. However, they are concentrated on convolutional modules
in CNNs, which are quite different from vision transformers.

In this paper, we firstly explore self-supervised neural architecture search specifically for vision
transformers, dedicated to search promising vision transformer architectures in a self-supervised
manner. Concretely, we take advantage of the efficacy of Masked Image Modeling (MIM) Wei et al.
(2022); He et al. (2022); Feichtenhofer et al. (2022); Assran et al. (2022) in developing scalable
ViT models, and propose a MIM based self-supervised ViT architecture search method, termed as
MaskTAS. Following the standard one-shot NAS pipeline, the overall framework of MaskTAS can be
decomposed into two stages, i.e., supernet training and subnet search. The overall pipeline of the
proposed MaskTAS has been demonstrated in Figure 1.

To enable self-supervised supernet training, the proposed MaskTAS adapts the standard one-shot
NAS framework to the regime of MIM based self-supervised learning. During supernet training,
millions of weight-sharing subnets in the supernet need to be trained by masking and recovering
random image patches. However, due to the lack of strong and stable supervision, the co-training
of various subnets is prone to diverging, leading to suboptimal results. To this end, we build the
MaskTAS supernet as a teacher-student based siamese architecture, where the pre-trained larger
teacher network can provide strong supervision to facilitate the efficient training of student branch.
During supernet training stage, each sampled architecture of the student network can be updated by
1) reconstructing the original image from the masked signals, and 2) predicting the feature of the
teacher branch, in a self-supervised manner.
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After the supernet training is complete, the architecture search stage can be performed by rating
the candidates sampled from the well-optimized supernet. To avoid the dependency on image
labels, we design an unsupervised evaluation metric for the evolutionary search algorithm, where
the performance of each candidate architecture of the student is measured by computing its feature
similarity with the teacher network. In this way, the teacher with stabilized behavior can act as the
evaluation target for the sampled architectures of the student branch. Once the optimal architecture
has been found, it can be retrained on the target dataset after inheriting the weights from the well-
optimized supernet. The contributions of the present work can be summarized as follows:

• We establish a MIM-based self-supevised learning framework, called MaskTAS, to pursue
scalable and transferable ViT architecture search. To the best of our knowledge, this is the
earliest effort to develop self-supervised architecture search paradigm for ViTs.

• We reveal the key challenge in self-supervised supernet training, i.e., the diverging of
diverse subnets co-training. A siamesed teacher-student supernet is designed to address this
challenge by introducing extra supervision from a pre-trained teacher network.

• To allow for self-supervised architecture search, we further design a self-supervised evalua-
tion metric based evolutionary search algorithm, where each candidate of the student branch
is rated by measuring its consistency with the teacher network.

2 THE PROPOSED METHODOLOGY

In this section, we first briefly review existing one-shot NAS on vision Transformers as preliminary
and further point out the dilemma of those methods on producing scalable transformer architectures.
Then we present the proposed MaskTAS to address this issue, along with its two key components: i)
self-supervised supernet training with masked feature distillation, and ii) evolutionary architecture
search based on unsupervised metric.

2.1 REVISITING ONE-SHOT NAS TOWARDS TRANSFORMERS

Given a pre-defined transformer search space S, one-shot NAS typically encodes S into a weight-
sharing supernet N (S,WS) with weights WS . The supernet includes various weight-sharing subnet
architectures as candidates, denoted as {αi}Ni=1, where N refers to the total number of candidates
with αi being the i-th candidate. Without loss of generality, the search of optimal architecture α∗

can be formulated as a two-stage optimization problem. The first stage aims to optimize the supernet
weights WS by solving the following problem:

W ∗
S = argmin

WS
Ltrain(N (S,WS),Dtrain), (1)

where Ltrain(·) refers to the loss on the training dataset Dtrain; W ∗
S represents the optimal weights after

optimization. Following the weight-sharing strategy Li et al. (2021); Chen et al. (2021b), existing
one-shot NAS methods sample and train different subnet architecture paths in each training iteration,
so as to avoid exhausted memory usage.

In the second stage, the supernet N (S,WS) with learned optimal weights W ∗
S is directly utilized for

subnet architecture search. The optimal architecture α∗ can be searched by ranking the performance
of subnets with the weights inherited from W ∗

S , i.e.,

α∗ =argmax
α∈S

Accval(N (α,W ∗
α),Dval),

s.t. g(N (α,W ∗
α)) ≤ C,

(2)

where Accval(·) denotes the top-1 accuracy of the subnet α over the validation datasetDval; W ∗
α refers

to the weights of α inherited fromN (S,WS). The function g(·) calculates the resource consumption
of each model architecture with C being the given resource constraint.

A few recent works have explored the one-shot NAS framework for vision transformer architecture
search, including AutoFormer Chen et al. (2021b), ViTAS Su et al. (2022) and NASformer Ni et al.
(2022). Despite their empirical success, these methods are limited to perform training and searching in
the regime of supervised learning, which require tremendous labeled images for training to guarantee
the searching of desirable architectures. Moreover, they rely heavily on the domain and quality of
data annotation, resulting in insufficient generalization ability of the searched architectures.

3



Published as a conference paper at ICLR 2024

. . .

. . .

B
lock 1 

B
lock 2

B
lock N

. . .

loss

loss

�

�����

Stop Gradient

MLP

…

. . .

B
lock 1 

B
lock 2

B
lock N . . .

B
lock 1

B
lock 2

B
lock L

... loss

Stage I: Teacher Pre-training

� �����

Stage II: Student Training
Teacher Encoder

Student Encoder Student Decoder

�����

Figure 2: The self-supervised supernet training of the proposed MaskTAS, which performs: (a)
teacher pre-training with masked pixel regression and (b) student training with masked feature
distillation, in a self-supervised manner.

2.2 OVERVIEW OF THE PROPOSED MASKTAS
In order to avoid the dependency on manual annotation, we develop a self-supervised neural archi-
tecture search method for transformers by replacing the supervised signal with a self-supervised
counterpart. The overview of MaskTAS is presented in Figure 2.

Algorithm 1 Self-supervised Supernet Training in MaskTAS.
Require: Search space A; Teacher network T ; Student network S; Training set Dtr; Loop number

in an epoch Niter; Loss Lt
train and Ls

train; max epochs Ne.
1: Initialize student N (S,ΘS) with weights ΘS ;
2: Initialize teacher N (T ,Ω∗

T ): Pre-Train the teacher network T with Lt
train to get optimal

weights Ω∗
T ;

3: for epoch = 1 to Ne do
4: for i = 1, 2, · · · , Niter do
5: Sample a mini-batch of image data Ii from Dtr;
6: Random masking on Ii to get the masked data Xi

v;
7: Sample a subnet architecture A(i) with weights ΘA(i) from the student branch of supernet;
8: Feed Xi

v into the teacher-student supernet and compute gradients by∇ΘA(i)
Ls
train;

9: Update subnet weights ΘA(i) while freezing the rest parameters of supernet: ΘA(i) ←
Adam(∇ΘA(i)

Ls
train,ΘA(i));

10: end for
11: end for
Ensure: Supernet architecture with optimal weights N (S,Θ∗

S) and N (T ,Ω∗
T ).

Model Overview The proposed MaskTAS is designed as a siamesed network architecture, which
consists of two neural networks that interact with each other, i.e., teacher and student network. As
shown in Figure 2, the teacher network parameterized by Ω is implemented as a transformer encoder
EΩ and decoderRΩ, while the student network equipped with parameters Θ includes a transformer
encoder EΘ and a decoder RΘ. Besides, a feature predictorM is further introduced to align the
output dimension of the teacher and student network.

To explore the possibility of optimal ViT in architecture-level, the architecture of student encoder
EΘ is designed as a transformer supernet N (A,ΘA). The search space A contains all possible
architectures that can be searched for transformers. For the purpose of flexible architecture search,
we incorporate all the essential factors in ViTs to formulate the model search space, including patch
embedding dimension, number of heads, MLP ratio and depth of architecture. The supernet contains
various weight-sharing subnet architectures, which can be formulated as

N (A,ΘA) = {N (A(i),ΘA(i))}Ki=1, (3)
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where ΘA(i) refers to the weights of the i-th subnet A(i); K denotes the total number of subnets.
We introduce three types of supernets for the student branch, i.e., supernet-tiny, supernet-small and
supernet-base, each of which corresponds to different range of parameters to satisfy different resource
constraints.

Based on the siamesed supernet architecture defined above, the proposed MaskTAS performs architec-
ture search through a two-step pipeline, including self-supervised supernet training and architecture
search.

2.3 SELF-SUPERVISED SUPERNET TRAINING

In this section, we formulate the training of supernet N (A,ΘA) as a process of masked distillation
based self-supervised learning. As illustrated in Figure 2, our supernet training process is accom-
plished by two stages, i.e., teacher pre-training and student training. Specifically, we present the
overall procedure for self-supervised supernet training in Algorithm 1.

Teacher Pre-training Driven by the success of the masked auto-encoder in self-supervised pre-
training, we perform masked image modelling to optimize the teacher network parameters Θ under-
pinned by pixel reconstruction loss. The objective of pixel reconstruction is to recover the original
image from the masked one with an encoder-decoder scheme.

Given an input image I ∈ RH×W×C , we first divide it into N non-overlapping patches of size P 2C
pixels, where H , W , C refer to the height, width, channel of the image respectively. Thus, each
image can be represented by a set of flatted patch vectors X = {x1, x2, · · · , xN}. Following MAE
He et al. (2022), we uniformly sample a subset of patches from X and mask the remaining ones. This
results in two non-overlapping patch sets Xv = {xv

1, x
v
2, · · · , xv

Nv
} and Xm = {xm

1 , xm
2 , · · · , xm

Nm
},

where Xv and Xm contain Nv visible and Nm masked patches respectively. The masked signal Xv

is fed into the encoder of teacher network to generate the latent representation:

Zv = EΩ(Xv|Te,ΩTe
), (4)

where Zv refers to the latent representation of the masked image and Te denotes the architecture of
teacher encoder with parameters ΩTe

. Then, Zv is integrated with the masked tokens to generate a
full set of signals Z ′

v , which is further fed into the teacher decoder, i.e.,

P = RΩ(Z
′
v|Td,ΩTd

), (5)

where Td and ΩTd
correspond to the architecture and parameters of the decoder. Finally, the teacher

network can be optimized by minimizing the pixel-level MSE loss between the predicted targets P
and the original image I over the masked patches.

Student Training Under the one-shot NAS framework, the training of student supernet involves the
co-training of diverse subnets, which trains one subnet architecture A(i) from A in each training
iteration. Each subnet A(i) is uniformly sampled from K candidates, i.e.,{

A(i) ∈ {A(1),A(2), · · · ,A(k), · · · ,A(K)},
ΘA(i) ∈ {ΘA(1) ,Θ∈(i) , · · · ,ΘA(k) , · · · ,ΘA(K)}, (6)

where A(i) and ΘA(i) denote the architecture and weights of the i-th candidate respectively. The
architecture of the encoder is dynamically changing during the self-supervised training process.
However, without strong supervision signals, the joint training of various weight-sharing networks is
prone to diverging, leading to thousands of epochs for pre-training.

To enable efficient training of diverse subnets, MaskTAS further employs knowledge distillation
technology Ren et al. (2023); Hinton et al. (2015) to transfer the knowledge of larger MIM pre-trained
teacher models to smaller students. First, the masked signal Xv is fed into the encoder of both the
teacher and student branch to output the latent representation:{

Zt = EΩ(Xv|Te,Ω∗
Te
),

Zs = EΘ(Xv|A(i),ΘA(i)),
(7)

where Ω∗
Te

is the pre-trained weights of teacher encoder; Zt and Zs refer to the latent representation
generated by the teacher and student network respectively. The objective is to train the randomly
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sampled student subnets efficiently by mimicking the target produced by the teacher in a knowledge
distillation manner.

In general, the feature dimensions of the teacher network and the student network are mismatched.
To tackle this problem, we adopt an extra projection networkM on the output of the student network
to match the feature dimension of the teacher’s target. Thus, the latent representation produced by the
student encoder is forwarded to predict: 1) the high-level feature of the teacher branch, and 2) the
original image in pixel-level: {

Z̃s =M(Zs|σ,Wσ),

P̃ = RΘ(Z
′
s|Sd,ΘSd

),
(8)

where Sd denotes the student decoder; σ is the architecture of projection networkM with weights
Wσ; Z ′

s denotes the full signal derived from Zs; Z̃s and P̃ refer to the predicted feature-level and
pixel-level information respectively. During training, the architecture of the student branch varies
by uniformly sampling, while the teacher branch is fixed to the pre-trained weights for stabilized
behavior. After pre-training, the well-optimized supernet can be transferred to various downstream
tasks.

Self-Supervised Training Objective The supernet is trained in a self-supervised manner by 1)
reconstructing the original image after the masking operation, and 2) predicting the high-level feature
produced by the teacher network. Given an image I as input, the overall objective function for
supernet training can be derived as{

Lt
train = Lreg(P, I),

Ls
train = Lreg(P̃ ,Xm) + βLpre(Z̃s, Zt),

(9)

where Lt
train and Ls

train correspond to the loss for teacher pre-training and student training respec-
tively; Lreg and Lpre denote the loss for pixel regression and feature prediction respectively with
trade-off parameter β. More specifically, Lreg computes the ℓ2-based reconstruction loss between
the original image and the reconstructed image over masked patches, i.e.,

Lreg(P̃ ,Xm) =
1

Nm

Nm∑
k=1

1

P 2C
∥p̃k − xm

k ∥22, (10)

where xm
k refers to the normalized patch of xm

k ∈ Xm based on the mean and standard deviation; p̃k
is the k-th element of P̃ ; Nm stands for the number of masked patches. Besides, Lpre is the feature
prediction loss used for knowledge distillation, which can be formulated as:

Lpre(Z̃s, Zt) = Smoothℓ1(LN(Z̃s), LN(Zt)), (11)

where LN(·) refers to the layer normalization operation and Smoothℓ1(·) denotes the smooth ℓ1 loss.

2.4 SELF-SUPERVISED ARCHITECTURE SEARCH

Once the supernet is trained to converge, we can perform architecture search to find the optimal
subnets from the well-optimized student encoderN (A,Θ∗

A). To allow for self-supervised architecture
search, we design a teacher-student consistency based evaluation metric, thus adapting the standard
evolutionary search algorithm Guo et al. (2020) to an unsupervised paradigm.

Evolutionary Search Without loss of generality, the evolutionary search process begins with the
generation of Nr random architectures as initialized population. In each iteration, the architectures
with top-k performance are selected as parents in each generation, which are further utilized to
generate the next generation through crossover and mutation. For a crossover, two randomly selected
candidates are picked and crossed to produce a new one during each generation. For mutation, a
candidate mutates its depth with probability Pd first. Then it mutates each block with a probability of
Pm to produce a new architecture. The optimal subnet architecture can be discovered after a sufficient
number of iterations:

α∗ =argmax
α∈A

Acc(N (α,Θ∗
α),Dtar), s.t. g(N (α,Θ∗

α)) ≤ C, (12)

where Dtar stands for the target dataset; α is the sampled subnet architecture from A; Θ∗
α refers to

the weights of subnet α inherited from Θ∗; Acc(·) is the performance evaluation metric for candidate
architectures.
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Self-supervised Architecture Evaluation Driven by the universally acknowledged principle that
the larger the better works for deep neural networks, we believe the large teacher network with
pre-trained weights can provide a fair rating for each sampled architecture of the student branch.
Each candidate architecture of the student-branch can be rated by computing its feature similarity
with the teacher-branch, i.e.,

Acc(N (α,Θ∗
α),Dtar) =

|Dtar|∑
i=1

H(Zi
t , Z

i
s), (13)

where {
Zi
t = EΩ∗(Xi

v|Te,Ω∗
Te
),

Zi
s = EΘ∗(Xi

v|α,Θ∗
α),

(14)

whereH(·) is the similarity function; Xi
v refers to the visible patch set after random masking of the

i-th image; Zi
t and Zi

s refer to the output feature of the teacher and student encoder respectively.

The similarity of two feature maps, i.e., Zi
t and Zi

s, cannot be directly measured, since the output
dimensions are different for the teacher and student encoder. Thus, we propose to evaluate the
similarity of two feature maps by computing the relative relation of features, i.e.,

H(Zi
t , Z

i
s) = −

Nv∑
j=1

Nv∑
k=1

ht
jk log h

s
jk, (15)

where  ht
jk = − log

exp(Zi,j
t Zi,k

t /τ)∑Nm
k=1 exp(Zi,j

t Zi,k
t /τ)

,

hs
jk = − log

exp(Zi,j
s Zi,k

s /τ)∑Nm
k=1 exp(Zi,j

s Zi,k
s /τ)

,
(16)

where Zi,j
t and Zi,j

s are the j-th row of Zi
t and Zi

s respectively; ht
jk and hs

jk denote the relative
relation between the j-th and k-th row of Zi

t and Zi
s respectively.

3 EXPERIMENTS

In this section, we first provide the implementation details of the proposed MaskTAS. Then we
present the performance of MaskTAS with comparisons to other state-of-the-art models designed
manually or automatically. Finally, we conduct ablation studies to further evaluate the effectiveness
of MaskTAS.

3.1 EXPERIMENTAL SETUP

Dataset Description. We evaluate the effectiveness of the proposed method over the large-scale
ImageNet Russakovsky et al. (2015) dataset, which contains 1.28 million images in 1000 categories
collected for the image classification task. We also experiment on other classification tasks, including
CIFAR-10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), PETS Parkhi et al. (2012)
and Flowers Nilsback & Zisserman (2008), to evaluate the transferability of the self-supervised
architecture search method. More specifically, the CIFAR-10 dataset consists of 60000 images in 10
classes, with 6000 images per class. The CIFAR-100 dataset has 100 classes containing 600 images
each. PETS is a 37 category pet dataset with roughly 200 images for each class. The Flowers dataset
consists of 102 flower categories, where each class consists of between 40 and 258 images. Moreover,
the transferability of the searched architectures is verified by ADE20K Zhou et al. (2019) semantic
segmentation task. The ADE20K dataset contains more than 20K scene-centric images annotated
with pixel-level objects and object parts labels. The transferability experiment results are presented in
Appendix A.

Implementation Details. We experiment with the standard ViT supernet architecture in Tiny,
Small and Base setting, i.e., supernet-tiny, supernet-small and supernet-base. The decoders of the
teacher and student are both implemented as a lightweight network with 2 transformer blocks. The
projection network is implemented as a two-layer MLP network. The decoder networks are only
used during supernet training process. After training, only the encoder is used to generate the image
representation for architecture search. During supernet training, each supernet is pre-trained under a
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Table 1: Performance comparison between MaskTAS and other state-of-the-art methods on ImageNet
dataset, which includes three groups of models with respect to different parameter sizes, i.e., tiny,
small and base. Our results are highlighted in bold.

Models Top-1 Acc. Top-5 Acc. #Parameters FLOPs Resolution Model Type Design Type
MobileNetV3 Howard et al. (2019) 75.2% - 5.4 M 0.22 G 2242 CNN Auto
EfficietNet-B0 Tan & Le (2019) 77.1% 93.3% 5.4 M 0.39 G 2242 CNN Auto
DeiT-T Touvron et al. (2021) 72.2% 91.1% 5.7 M 1.2 G 2242 Transformer Manual
AutoFormer-tiny Chen et al. (2021b) 74.7% 92.6% 5.7 M 1.3 G 2242 Transformer Auto
ViTAS-Twins-T Su et al. (2022) 79.4% 94.8% 13.8 M 1.4 G 2242 Transformer Auto
MaskTAS-tiny 75.6% 93.1% 5.8 M 1.3 G 2242 Transformer Auto

ResNet50 He et al. (2016) 79.1% - 25.5 M 4.1 G 2242 CNN Manual
RegNetY-4GF Radosavovic et al. (2020) 80.0% - 21.4 M 4.0 G 2242 CNN Auto
EfficietNet-B4 Tan & Le (2019) 82.9% 95.7% 19.3 M 4.2 G 3802 CNN Auto
BoTNet-S1-59 Srinivas et al. (2021) 81.7% 95.8% 33.5 M 7.3 G 2242 CNN + Trans Manual
T2T-ViT-14 Yuan et al. (2021) 81.7% - 21.5 M 6.1 G 2242 Transformer Manual
DeiT-S Touvron et al. (2021) 79.9% 95.0% 22.1 M 4.7 G 2242 Transformer Manual
ViT-S/16 Dosovitskiy et al. (2020) 78.8% - 22.1 M 4.7 G 3842 Transformer Manual
AutoFormer-small Chen et al. (2021b) 81.7% 95.7% 22.9 M 5.1 G 2242 Transformer Auto
ViTAS-Twins-S Su et al. (2022) 82.0% 95.7% 30.5 M 3.0 G 2242 Transformer Auto
MaskTAS-small 82.5% 95.9% 22.1 M 4.9 G 2242 Transformer Auto

ResNet152 He et al. (2016) 80.8% - 60 M 11 G 2242 CNN Manual
EfficietNet-B7 Tan & Le (2019) 84.3% 97.0% 66 M 37 G 6002 CNN Auto
ViT-B/16 Dosovitskiy et al. (2020) 79.7% - 86 M 18 G 3842 Transformer Manual
DeiT-B Touvron et al. (2021) 81.8% 95.6% 86 M 18 G 2242 Transformer Manual
AutoFormer-base Chen et al. (2021b) 82.4% 95.7% 54 M 11 G 2242 Transformer Auto
ViTAS-Twins-B Su et al. (2022) 83.5% 96.5% 124.8 M 16.1 G 2242 Transformer Auto
MaskTAS-base 83.8% 96.4% 53.7 M 11 G 2242 Transformer Auto

100-epoch schedule on ImageNet-1K training set. To avoid the high overhead of teacher pre-training,
we directly employ the MIM pre-trained models released from the official MAE implementations as
our teacher model. We adopt a cosine decay schedule with a warm-up for 20 epochs. We adopt Adam
optimizer with a weight decay of 0.05. The size of input image is set to 224×224 and the masking
ratio is set to 90% by default. During architecture search, we employ the ImageNet validation set for
model testing. We perform evolutionary search for 20 epochs to get the optimal architecture, where
the population size Np is set to 50. For model fine-tuning, we also use Adam optimizer with weight
decay of 0.05. We fine-tune the searched architecture for 100 epochs with a batch size of 2048, a
learning rate of 5e-3, and a drop path rate of 0.1. For ADE20K semantic segmentation, we follow the
same settings in MAE and adopt UperNet as our framework.

3.2 MAIN RESULTS ON IMAGENET

We first conduct experiments on the widely used ImageNet-1K dataset. The self-supervised ar-
chitecture search process is performed over each supernet configuration, including supernet-tiny,
supernet-small and supernet-base. For each configuration, we compare MaskTAS with both super-
vised counterparts and handcrafted architectures. As shown in Table 1, MaskTAS model families
can achieve 75.6%, 82.5% and 83.8% top-1 accuracy, significantly outperforming the handcrafted
CNN and transformer architectures, e.g., ResNet, ViT and DeiT. This phenomenon indicates the
effectiveness of automatic neural architecture search in designing superior architectures. In addition
to the handcrafted architectures, we can observe from Table 1 that MaskTAS can consistently out-
perform the supervised transformer architecture search counterpart AutoFormer. This indicates the
effectiveness of masked image modeling in self-supervised architecture search. When pre-trained
for 100 epochs, MaskTAS-base outperforms AutoFormer-base pre-trained for 800 epochs by 1.4%
and 0.7% on top-1 and top-5 accuracy respectively. When compared with another TAS method
ViTAS-Twins, our method can achieve comparable or better results without the need for data labelling
in most cases. Moreover, both the parameter size and FLOPs of MaskTAS are much less than ViTAS-
Twins. The efficiency and effectiveness of MaskTAS mainly lie in two facts: 1) the MIM-based pixel
reconstruction objective helps each subnet architecture to learn better local image features; 2) the
distillation objective facilitates the efficient training of diverse subnet architectures.
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3.3 ABLATION STUDIES

In this subsection, we conduct ablation studies to explore the effect of masking ratio and compare the
training efficiency between MaskTAS and AutoFormer.
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Figure 3: Top-1 accuracy performance
of MaskTAS-small with respect to differ-
ent masking ratios.

Effect of Masking Ratio. The architecture training
and searching are both performed in MIM-based self-
supervised paradigm, which learns to reason about the
missing patches masked by a specific ratio. In order to
study the effect of masking ratio on performance, we
present the top-1 accuracy of MaskTAS-small with re-
spect to different masking ratios in Figure 3. Recall that
the best masking ratio of the original MAE method can be
surprisingly high as 75%. From Figure 3, we can observe
that the proposed MaskTAS can maintain stable perfor-
mance over a wide range of masking ratios, thus allowing
for a much higher ratio than MAE. In particular, compared
with the 75% masking ratio of MAE, it’s interesting to
note that MaskTAS can raise the masking ratio to 90% without performance drop. We believe this is
because the integration of knowledge distillation strategy into the masked image modelling process.
With the assistance of distilled knowledge from the teacher model, the student model can make better
use of visible patches, even at a very limited amount.

Comparison of Supernet Training. To demonstrate the training efficiency of the proposed method,
we compare the supernet training process between AutoFormer and MaskTAS in Figure 4. As shown
in Figure 4(a), even with the supervision of labelled data, the supernet training loss of AutoFormer
converges slowly, which can’t reach convergence even after 500 epochs of training. This is because
the supernet contains various candidates that need to be fully optimized. In contrast, MaskTAS
performs self-supervised architecture search through Masked image modeling (MIM). MIM has
shown great promise for self-supervised learning yet been criticized for learning inefficiency, which
further increases the difficulty of supernet training. Even with this challenge, the proposed MaskTAS
can still converge to a stable value in only 100 epochs as indicated in 4(b), which significantly exceeds
AutoFormer in training efficiency. We believe this is benefiting from the knowledge distillation
strategy, which can provide strong supervision to allow for efficient supernet training.
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Figure 4: Comparison of supernet training between AutoFormer and MaskTAS.

4 CONCLUSION

In conclusion, this paper has proposed a novel self-supervised neural architecture search method,
MaskTAS, that uses masked image modelling to search for efficient transformer architectures. By
eliminating the need for data labeling, MaskTAS greatly reduces the expensive costs of supervised
learning and enables efficient training of transformer supernet. The siamesed teacher-student archi-
tecture and the unsupervised evaluation metric based evolutionary search algorithm further enhance
the learning efficiency and accuracy of the search process. The experimental results on CIFAR-10,
CIFAR-100, and ImageNet datasets demonstrate that MaskTAS can achieve state-of-the-art accuracy
without using manual labels. Furthermore, MaskTAS can generalize well to various data domains by
searching specialized transformer architectures in a self-supervised manner. The proposed method
has great potential in automating the neural architecture design process for real-world applications,
saving tremendous labor from human experts, and reducing the costs of data labeling.
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A TRANSFER LEARNING EXPERIMENTS

To further evaluate the searched transformer architectures of our method, we present transfer learning
experiments on other popular downstream tasks.

Transfer to Other Classification Tasks In addition to ImageNet-1k, we also perform architecture
search on other classification tasks, including CIFAR-10 Krizhevsky et al. (2009), CIFAR-100
Krizhevsky et al. (2009), PETS Parkhi et al. (2012) and Flowers Nilsback & Zisserman (2008).
Based on the MaskTAS supernet pre-trained on ImageNet, we perform architecture search on each
data domain to obtain the optimal architecture respectively. Then we inherit the parameter weights
of each architecture from the well-optimized supernet, and fine-tune them on the corresponding
dataset. The classification results of MaskTAS-small are reported in Table 2. For the purpose of
fair comparison, we also present the results achieved by ViT-B and AutoFormer-S pre-trained on
ImageNet-1k simultaneously. It can be easily observed from Table 2 that the proposed MaskTAS
gets consistent improvement on the four datasets compared with the other two methods. We believe
this improvement benefits from the self-supervised architecture search framework. Compared with
the supervised counterparts, the searched architectures of MaskTAS are not limited by the range
and quality of data annotation. Thus, the proposed MaskTAS is capable of producing transformer
architectures that can better transfer to other data domains.

Results on Semantic Segmentation Task We also evaluate the generalization ability of MaskTAS
by transferring the searched architectures to semantic segmentation task. Each searched architecture
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Table 2: Transferability comparison on different data domains.

Method CIFAR-10 CIFAR-100 PETS Flowers

ViT-B 98.1% 87.1% 93.8% 89.5%

AutoFormer-S 98.3% 88.1% 94.1% 97.8%

MaskTAS-small 99.2% 90.3% 94.8% 98.6%

Table 3: Performance comparison (mIoU) on ADE20K semantic segmentation.

Method Pre-train data Small Base

Naive supervised IN1K w/ labels - 47.4%

Twins-PCPVT IN1K w/ labels 46.2% 47.1%

Twin-SVT IN1K w/ labels 45.9% 47.7%

ViTAS-Twins IN1K w/ labels 47.9% 50.2%

MaskTAS IN1K w/o labels 48.3% 51.6%

inherits the weights from the ImageNet-pre-trained supernet, and then fine-tuned on ADE20K for
semantic segmentation. The experimental results of different transformer models in small and base
size are reported in Table 3. More specifically, we compare five methods in Table 3: Naive supervised,
Twins-PCPVT Chu et al. (2021), Twin-SVT Chu et al. (2021), ViTAS-Twins Su et al. (2022) and
the proposed MaskTAS. Naive supervised indicates the supervised pre-training method done from
scratch, in which we directly use the reported mIoU from He et al. (2022). Twins-PCPVT Chu et al.
(2021), Twin-SVT Chu et al. (2021) and ViTAS-Twins Su et al. (2022) are the other three supervised
counterparts. Without the access of manual labels, the proposed MaskTAS is at a disadvantage in
classification than the supervised counterparts. Even so, it is noteworthy that MaskTAS can still
achieve better performance than the other methods. In particular, the small and base model of
MaskTAS can outperform the second best model by 0.4% and 1.4% respectively, showing that the
self-supervised pre-training can benefit dense downstream tasks as well.
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