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1 MORE DETAILS OF WEAKSAM PROPOSALS
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Figure 1: The cosine similarity among the features of pro-
posals, i.e., Left for Selective Search proposals and Right for
WeakSAM proposals. For a single image from PASCAL VOC
2007, we randomly sampled 200 proposal features to calcu-
late their similarity.

We further analyze the proposal similarity in the differentweakly-
supervised object detection (WSOD) proposals, as shown in Fig. 1.
We randomly sample 200 proposal features each from Selective
Search [15] proposals and WeakSAM proposals, and then com-
pute their cosine similarity, respectively. Please note that all the
features are output by the RoI pooling layer. It can be seen that
the features from Selective Search tend to have higher similarity
with other ones. In contrast, the features fromWeakSAM proposals
show lower similarity, which usually means it has less overlap and
redundancy.

2 MORE DETAILS OF ROI DROP
REGULARIZATION
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Figure 2: The relationship between the normalized regression
loss, the corresponding number of RoIs, and the correspond-
ing error rate. The results are obtained from training the
Faster-RCNN [10] using PASCAL VOC 2007 pseudo ground
truth (PGT) in the preliminary training stage.

We further present the relationship between the normalized
regression loss, the corresponding number of RoIs, and the corre-
sponding error rate in Fig. 2. It shows that the regression losses
of RoIs have different number distributions compared to the clas-
sification losses. However, they exhibit similar error rate curves.
This observation further demonstrates the necessity of RoI drop
regularization with a regression threshold 𝜏𝑟𝑒𝑔 .

3 MORE DETAILS OF QUERY DROP
REGULARIZATION

Because DINO [21] employs Focal loss [7] as the classification loss,
queries associated with background classes tend to have higher
predicted probabilities and lower losses. This results in the inadver-
tent omission of most foreground category queries when directly
dropping queries. To mitigate this issue, our first step involves
normalizing the unweighted Focal loss, which is essentially the
binary cross-entropy loss, for both foreground and background
queries within each training batch. Normalizing at the batch level
broadens the sampling scope from a single image to the size of
the batch. In the second step, queries are dropped based on their
loss ranking post-normalization. This approach avoids making the
model converge slowly due to the dropping of the most foreground
queries.

3.1 Ablation Studies for RoI Drop
Regularization

Table 1: Ablation study for the regression threshold and clas-
sification threshold in RoI drop regularization in terms of
AP50 on the PASCAL VOC 2007 𝑡𝑒𝑠𝑡 set.

(a) Ablation study for the re-
gression threshold.

𝜏𝑟𝑒𝑔 0.8 1.0 1.2
AP50 71.0 71.8 71.3

(b) Ablation study for the clas-
sification threshold.

𝜏𝑐𝑙𝑠 3.0 4.0 5.0
AP50 71.2 71.8 71.1

To further analyze the impact of the regression threshold and
classification threshold in RoI drop regularization, we conduct ex-
periments as shown in Table 1. It is observed that the best regression
threshold 𝜏𝑟𝑒𝑔 and classification threshold 𝜏𝑐𝑙𝑠 for RoI drop regular-
ization is 1.0 and 4.0, respectively.

3.2 Ablation Studies for Query Drop
Regularization

To analyze the impact of dropping queries corresponding to fore-
ground categories Querythings and background categories Querybkg,
we conduct ablations as shown in Table 2. Experimental results
indicate that dropping only the foreground queries (Querythings)
leads to the best performance, whereas dropping both types of
queries results in a slight decrease in performance. We maintain
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Figure 3: Visualization of the proposals boxes on the PASCAL VOC 2007 𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙 set.

Ad
ap

tiv
e 

PG
T

Ps
eu

do
 In

st
.

To
p-

1 
PG

T

Figure 4: Visualization of the pseudo ground truth boxes and pseudo instance labels on the PASCAL VOC 2012 𝑡𝑟𝑎𝑖𝑛𝑎𝑢𝑔 set.

Table 2: Ablation studies for query drop regularization on
the PASCAL VOC 2007 𝑡𝑒𝑠𝑡 set.

Baseline Querythings Querybkg AP50

! 72.8

! 73.4+0.6
! ! 73.3+0.5

the viewpoint that dropping more background queries may also
lead to slower convergence. Consequently, we choose to drop only
Querythings to achieve better performance.

We further analyze the impact of classification threshold 𝜏 in
query drop regularization, as shown in Table 3. Quantitative results
demonstrate that 90 is the best percentile classification threshold.

4 ADDITIONAL QUANTITATIVE RESULTS
We present the comparison on PASCAL VOC 2007 𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙 set
in terms of CorLoc, as shown in Table 4. It can be seen that the
WeakSAM achieves the 13.9% and 14.1% CorLoc improvements on
OICR and MIST, respectively. The WeakSAM (OICR) outperforms

Table 3: Ablation study for the classification threshold in
query drop regularization in terms of AP50 on the PASCAL
VOC 2007 𝑡𝑒𝑠𝑡 set.

𝜏 (%) 100 90 80
AP50 72.8 73.4 71.8

the WSOD-CBL [19] by 11.1% CorLoc. The results demonstrate the
significant performance improvement brought by our WeakSAM.

5 ADDITIONAL ABLATION STUDIES
5.1 Analysis on Classification Methods
To further analyze the impact of methods that generate classifica-
tion clues, we replaced WeakTr in WeakSAM with MCTformer and
CLIP-ES. As indicated in Table 5, WeakSAM (MCTformer) achieves
a 1.6% higher Recall (IoU=90) than WeakSAM (WeakTr). Further-
more, WeakSAM (CLIP-ES) records increases of 0.6% and 2.4% in
Recall over WeakSAM (WeakTr) at IoU thresholds of 75 and 90,
respectively. These results demonstrate the versatility of the Weak-
SAM proposal-generating method across different classification
methods. Please note that all classification methods employed in
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Table 4: Comparison on PASCAL VOC 2007 trainval set in
terms of CorLoc(%) with multi-scale testing.

Methods 𝑆𝑢𝑝. Proposal CorLoc

WSDDN [1]

I

EB [23] 53.5
Yang et al. [18] SS [15] 68.0
C-MIL [16] SS 65.0
C-MIDN [3] SS 53.5
WSOD2 [20] SS 69.5
CASD [5] SS 70.4
OD-WSCL [12] SS 69.8
WSOD-CBL [19] SS 71.8
WSOVOD [6] LO-WSRPN+SAM 77.2
WSOVOD‡ LO-WSRPN+SAM 80.1

OICR [14] I SS 60.6
WeakSAM (OICR) WeakSAM 74.5+13.9

MIST [11] I SS 68.8
WeakSAM (MIST) WeakSAM 82.9+14.1

Table 5: Ablation studies for classification methods that gen-
erate WeakSAM queries on PASCAL VOC 2007 𝑡𝑟𝑎𝑖𝑛𝑣𝑎𝑙 set.
We evaluate the average number of proposals and Recall. We
present the results of Selective Search [15] at the first row as
a baseline.

CLS Methods Num. Recall
IoU=0.50 IoU=0.75 IoU=0.90

None 2001 92.6 57.7 19.2
WeakTr [22] 213 95.6 75.0 42.1
MCTformer [17] 173 93.2 74.8 43.7
CLIP-ES [8] 205 93.8 75.6 44.5

this study are CAM networks from weakly-supervised semantic
segmentation (WSSS) methods. Since these networks are typically
well-tuned on specific datasets, such as PASCAL VOC 2012 and
COCO 2014, they are adept at providing rich classification clues.
6 ADDITIONAL VISUALIZATION RESULTS
Fig.3 compares the Selective Search proposals with those generated
by WeakSAM. The WeakSAM proposals exhibit less redundancy
than Selective Search proposals. Fig.4 contrasts the Top-1 PGT with
adaptive PGT, demonstrating that adaptive PGT generation cap-
tures a greater number of target objects, which might be missed by
the Top-1 approach. Additionally, adaptive PGT can be seamlessly
integrated to generate pseudo instance labels.

7 MORE IMPLEMENTATION DETAILS
For Algorithm. 1 in paper, we set the kernel size 𝑘 to 128 and
activation threshold 𝜏 to 0.9 following default parameters from
WeakTr [22]. And for Algorithm. 2, we follow the default manners
similar to SoS-WSOD [13], in which score threshold 𝜏𝑠 is set to 0.3,
and overlap threshold 𝜏𝑜 is set to 0.85.

For Faster R-CNN [10] retraining, we adopt the same training
strategy and hyper-parameters as the fully-supervised ones. For

DINO [21] retraining, we use a learning rate of 9e-5 with the
AdamW [9] optimizer, and a max epoch of 14. Moreover, we apply
multi-scale augmentation and horizontal flips in both training and
testing.

For implementations of Mask R-CNN [4] and Mask2Former [2],
we follow their default hyper-parameters.
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