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1 MORE DETAILS OF WEAKSAM PROPOSALS
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Figure 1: The cosine similarity among the features of pro-
posals, i.e., Left for Selective Search proposals and Right for
WeakSAM proposals. For a single image from PASCAL VOC
2007, we randomly sampled 200 proposal features to calcu-
late their similarity.

We further analyze the proposal similarity in the different weakly-
supervised object detection (WSOD) proposals, as shown in Fig. 1.
We randomly sample 200 proposal features each from Selective
Search [15] proposals and WeakSAM proposals, and then com-
pute their cosine similarity, respectively. Please note that all the
features are output by the Rol pooling layer. It can be seen that
the features from Selective Search tend to have higher similarity
with other ones. In contrast, the features from WeakSAM proposals
show lower similarity, which usually means it has less overlap and
redundancy.

2 MORE DETAILS OF ROI DROP

REGULARIZATION
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| 0.8
21000
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) / 5
'g / 0'55
2 500 /
“ 0.4
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Figure 2: The relationship between the normalized regression
loss, the corresponding number of Rols, and the correspond-
ing error rate. The results are obtained from training the
Faster-RCNN [10] using PASCAL VOC 2007 pseudo ground
truth (PGT) in the preliminary training stage.

We further present the relationship between the normalized
regression loss, the corresponding number of Rols, and the corre-
sponding error rate in Fig. 2. It shows that the regression losses
of Rols have different number distributions compared to the clas-
sification losses. However, they exhibit similar error rate curves.
This observation further demonstrates the necessity of Rol drop
regularization with a regression threshold zyg.

3 MORE DETAILS OF QUERY DROP
REGULARIZATION

Because DINO [21] employs Focal loss [7] as the classification loss,
queries associated with background classes tend to have higher
predicted probabilities and lower losses. This results in the inadver-
tent omission of most foreground category queries when directly
dropping queries. To mitigate this issue, our first step involves
normalizing the unweighted Focal loss, which is essentially the
binary cross-entropy loss, for both foreground and background
queries within each training batch. Normalizing at the batch level
broadens the sampling scope from a single image to the size of
the batch. In the second step, queries are dropped based on their
loss ranking post-normalization. This approach avoids making the
model converge slowly due to the dropping of the most foreground
queries.

3.1 Ablation Studies for Rol Drop
Regularization

Table 1: Ablation study for the regression threshold and clas-
sification threshold in Rol drop regularization in terms of
APs5) on the PASCAL VOC 2007 test set.

(a) Ablation study for the re- (b) Ablation study for the clas-

gression threshold. sification threshold.
Treg | 08 10 12 Teis | 30 40 50
APsy | 710 718 713 APsy | 712 718 711

To further analyze the impact of the regression threshold and
classification threshold in Rol drop regularization, we conduct ex-
periments as shown in Table 1. It is observed that the best regression
threshold 7,4 and classification threshold 75 for Rol drop regular-
ization is 1.0 and 4.0, respectively.

3.2 Ablation Studies for Query Drop
Regularization

To analyze the impact of dropping queries corresponding to fore-
ground categories Queryyy;n,; and background categories Queryy,;,
we conduct ablations as shown in Table 2. Experimental results
indicate that dropping only the foreground queries (Querythings)
leads to the best performance, whereas dropping both types of
queries results in a slight decrease in performance. We maintain
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Figure 4: Visualization of the pseudo ground truth boxes and pseudo instance labels on the PASCAL VOC 2012 trainaug set.

Table 2: Ablation studies for query drop regularization on
the PASCAL VOC 2007 test set.

Baseline  Queryping,  Querypy, ‘ APs
v | 728

v 734406

v v 733405

the viewpoint that dropping more background queries may also
lead to slower convergence. Consequently, we choose to drop only
Queryiyings to achieve better performance.

We further analyze the impact of classification threshold 7 in
query drop regularization, as shown in Table 3. Quantitative results
demonstrate that 90 is the best percentile classification threshold.

4 ADDITIONAL QUANTITATIVE RESULTS

We present the comparison on PASCAL VOC 2007 trainval set
in terms of CorLoc, as shown in Table 4. It can be seen that the
WeakSAM achieves the 13.9% and 14.1% CorLoc improvements on
OICR and MIST, respectively. The WeakSAM (OICR) outperforms

Table 3: Ablation study for the classification threshold in
query drop regularization in terms of AP5y on the PASCAL
VOC 2007 test set.

T(%) | 100 9 80
APsy | 728 734 718

the WSOD-CBL [19] by 11.1% CorLoc. The results demonstrate the
significant performance improvement brought by our WeakSAM.

5 ADDITIONAL ABLATION STUDIES
5.1 Analysis on Classification Methods

To further analyze the impact of methods that generate classifica-
tion clues, we replaced WeakTr in WeakSAM with MCTformer and
CLIP-ES. As indicated in Table 5, WeakSAM (MCTformer) achieves
a 1.6% higher Recall (IoU=90) than WeakSAM (WeakTr). Further-
more, WeakSAM (CLIP-ES) records increases of 0.6% and 2.4% in
Recall over WeakSAM (WeakTr) at IoU thresholds of 75 and 90,
respectively. These results demonstrate the versatility of the Weak-
SAM proposal-generating method across different classification
methods. Please note that all classification methods employed in
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Table 4: Comparison on PASCAL VOC 2007 trainval set in
terms of CorLoc(%) with multi-scale testing.

Methods Sup. Proposal CorLoc
WSDDN [1] EB [23] 53.5
Yang et al. [18] SS [15] 68.0
C-MIL [16] ss 65.0
C-MIDN [3] SS 535
WSOD?2 [20] ; ss 69.5
CASD [5] SS 70.4
OD-WSCL [12] ss 69.8
WSOD-CBL [19] SS 71.8
WSOVOD [6] LO-WSRPN+SAM 77.2
WSOVOD* LO-WSRPN+SAM 80.1
OICR [14] ; ss 60.6
WeakSAM (OICR) WeakSAM 74.5+13.9
MIST [11] ; ss 68.8
WeakSAM (MIST) WeakSAM 82.9+14.1

Table 5: Ablation studies for classification methods that gen-
erate WeakSAM queries on PASCAL VOC 2007 trainval set.
We evaluate the average number of proposals and Recall. We
present the results of Selective Search [15] at the first row as
a baseline.

Recall
CLS Methods | Num. | 1 0 o0 100075 ToU=0.90
None | 2001 | 926 57.7 19.2
WeakTr [22] 213 95.6 75.0 42.1
MCTformer [17] | 173 93.2 74.8 43.7
CLIP-ES [8] 205 93.8 75.6 445

this study are CAM networks from weakly-supervised semantic
segmentation (WSSS) methods. Since these networks are typically
well-tuned on specific datasets, such as PASCAL VOC 2012 and
COCO 2014, they are adept at providing rich classification clues.

6 ADDITIONAL VISUALIZATION RESULTS

Fig.3 compares the Selective Search proposals with those generated
by WeakSAM. The WeakSAM proposals exhibit less redundancy
than Selective Search proposals. Fig.4 contrasts the Top-1 PGT with
adaptive PGT, demonstrating that adaptive PGT generation cap-
tures a greater number of target objects, which might be missed by
the Top-1 approach. Additionally, adaptive PGT can be seamlessly
integrated to generate pseudo instance labels.

7 MORE IMPLEMENTATION DETAILS

For Algorithm. 1 in paper, we set the kernel size k to 128 and
activation threshold 7 to 0.9 following default parameters from
WeakTr [22]. And for Algorithm. 2, we follow the default manners
similar to SoS-WSOD [13], in which score threshold 7 is set to 0.3,
and overlap threshold 7, is set to 0.85.

For Faster R-CNN [10] retraining, we adopt the same training
strategy and hyper-parameters as the fully-supervised ones. For

ACM MM, 2024, Melbourne, Australia

DINO [21] retraining, we use a learning rate of 9e-5 with the
AdamW [9] optimizer, and a max epoch of 14. Moreover, we apply
multi-scale augmentation and horizontal flips in both training and
testing.

For implementations of Mask R-CNN [4] and Mask2Former [2],
we follow their default hyper-parameters.
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