
Under review as a conference paper at ICLR 2023

(a) Shortest path problem (b) Blackmailer’s problem (c) Optimal stopping problem

Figure 6: Revisiting Fig. 1 for the discounted cases where γ ∈ (0, 1).

A MORE EXAMPLES WITH MULTIPLE FIXED POINTS

A.1 CASES OF γ = 1

Consider MDP examples with an terminal state 0, as shown in Fig. 1 (we adapt dynamic programming
examples [5, 39] into reinforcement learning settings),

• Shortest path problem (deterministic) in Fig. 1(a): At state 1, an agent transits to either state
1 or 0 with reward 0 or b, respectively. Assume the value function for state 0 is V (0) = 0. The
Bellman’s optimality equation for state 1 is V (1) = max{V (1), b}, where any V (1) ≥ b is a
feasible solution. If initialize V0(1) ≥ b, a resulting policy is that an agent at state 1 always transits
back to state 1; otherwise, drives to terminal state 0 (always returns back to itself with reward 0).

• Blackmailer’s problem (stochastic) in Fig. 1(b): At state 1, a profit maximizing blackmailer
demands a cash amount a ∈ (0, 1]; a victim transits to state 1 with probability a or state 0 with
probability 1 − a, respectively. At state 0, a victim always refuses to yield, i.e., V (0) = 0. The
Bellman’s optimality equation for state 1 is V (1) = maxa{a+(1−a)V (1)}, where any V (1) ≥ 1
is a feasible solution. If initialize V0(1) > 1, the blackmailer’s policy is demanding a→ 0 to keep
the victim at state 1; otherwise, demanding a = 1 that drives the victim to terminal state 0.

• Optimal stopping problem (terminating policies) in Fig. 1(c): In a space R2 with terminal
state of point 0, an agent at point x ̸= 0 moves to either point 0 with negative reward −c or
point αx with reward −||x||, respectively, where α ∈ (0, 1). The Bellman’s optimality equation
is V (x) = max{−c,−||x||+ V (αx)} and the optimal policy is to continue inside the sphere of
radius (1− α)c and to stop outside. If add a cone region C within which an agent always receives
a reward −c, a second policy is jumping to point 0 at any point in region C.

A.2 CASES OF γ ∈ (0.1)

First, we consider the discounted formulations of the three examples (shown in Fig. 1), as shown in
Fig. 6 where γ ∈ (0, 1). The differences are marked in red.

• (a) Shortest path problem (deterministic, discounted case): Given two states 1 and 0, an agent
at state 1 transits to either state 1 or 0 with rewards r = c or r = b, respectively. c > (1− γ) · b.
At state 0, the value function is V (0) = 0. At state 1, the Bellman’s optimality equation is
V (1) = max{c+ γ · V (1), b}, where any V (1) ≥ (b− c)/γ is a solution. If initialize V0(1) ≥ b,
an agent obtains a policy that always transits back to state 1; otherwise, a result policy drives to
terminal state 0.

• (b) Blackmailer’s problem (stochastic, discounted case): Different from (a), a profit maximizing
blackmailer/agent at 1 demands a cash amount a ∈ (0, 1] (an action), while a victim transits to state
1 with probability a or to state 0 with probability 1− a, respectively. At state 0, a victim always
refuses to yield to the blackmailer’s demand, i.e., V (0) = 0. The Bellman’s optimality equation
is V (1) = maxa{a+ γ · (1− a)V (1)} for state 1, where any V (1) ≥ 1 is a feasible solution. If
initialize V0(1) = c > 1, the blackmailer’s policy is demanding a → 0 at the k-th step to keep
the victim stay at state 1, for any k ≤ K0 = −⌊logγ c⌋; and taking a = 1 to transit to terminal

13

Under review as a conference paper at ICLR 2023

state 0 at the k-th step, for any k ≥ K0 + 1; otherwise initialize V0(1) = c ≤ 1, the result policy is
demanding the maximum a = 1 that drives the victim to a refusal state 0 (a terminal state).

• (c) Optimal stopping problem (terminating policies, discounted case): In a space R2 with
terminating state at point 0, at point x ̸= 0 an agent moves to either point 0 with negative reward−c
or point αx with reward −||x||, respectively, where α ∈ (0, 1). The Bellman’s optimality equation
is V (x) = max{−c,−||x||+ γ · V (αx)} and the optimal policy is to continue inside the sphere of
radius (1− α)c and to stop outside. If add a cone region C within which an agent always receives
a reward −c, a second policy is jumping to point 0 at any point in region C.

Then, we elaborate how the proposed H-term fixes the problems in Fig. 6.

(a) Shortest path problem (deterministic, discounted case)

Assume V0(1) ≥ b and c > (1− γ)b, we have

V1(1) = c+ γ · V0(1) ≥ c+ γ · b > b

V2(1) = c+ γ · c+ γ2 · V0(1) ≥ (1 + γ)c+ γ2b > b

V3(1) = c+ γ · c+ γ2c+ γ3 · V0(1) ≥ (1 + γ + γ2)c+ γ3b > b

· · ·

Vk(1) =

k−1∑
i=0

γi · c+ γk · V0(1) ≥
k−1∑
i=0

γi · c+ γkb > b

· · ·

V ∗(1) =

∞∑
i=0

γi · c = 1

1− γ
c > b

(9)

The values of H(0) and H(1) are as follows:

H(0) = 0, H(1) = −b−
∞∑
k=2

(

k−1∑
i=1

γi−1 · c+ γkb) = −∞. (10)

Adding the above H-values to state 1 and 0, respectively, we have

V ∗(1) +H(1) =

∞∑
i=0

γi · c−∞ = −∞

V ∗(0) +H(0) = b.

(11)

Therefore, V ∗(1) +H(1) < V ∗(0) +H(0), independent of the initial value V0(1). That is, an agent
always obtains a policy that drives to terminal state 0 at step 1.

(b) Blackmailer’s problem (stochastic, discounted case)

If initialize V0(1) = c > 1, the blackmailer’s policy is demanding a→ 0 at the k-th step to keep the
victim stay at state 1, for any k ≤ K0 = −⌊logγ c⌋; and taking a = 1 to transit to terminal state 0 at
the k-th step, for any k ≥ K0 + 1; otherwise initialize V0(1) = c ≤ 1, the result policy is demanding
the maximum a = 1 that drives the victim to a refusal state 0 (a terminal state).

The values of H(0) and H(1) are as follows:

H(0) = 0, H(1) = −
∞∑
k=1

k−1∑
i=1

γi−1 · a = −∞. (12)

For arbitrary initial value of V0(1), V1(1) = a+(1−a) ·γ(V0(1)+H(1)) take maximum V1(1) = 1
when a = 1. Therefore, the policy always drives to terminal state 0 at step 1.

(c) Optimal stopping problem (terminating policies, discounted case)

Any policy that takes infinite steps will have

H(x) = −c−
∞∑
k=2

[
k−1∑
i=1

γi · αi · ∥x∥+ γk · (−c)

]
= −∞ (13)

14

Under review as a conference paper at ICLR 2023

and a direct jumping policy will have H(x) = −c. Therefore, the H-term drives to a terminating
policy.

15

Under review as a conference paper at ICLR 2023

B MUJOCO TASKS WITH MULTIPLE POLICIES

B.1 DESCRIPTION OF MUJOCO TAKS

We selected six challenging robotic locomotion tasks from MuJoCo, namely, Swimmer-v3, Hopper-
v3, Walker2D-v3, HalfCheetah-v3, Ant-v3, Humanoid-v3. Table 3 lists the action space and state
space of each task.

Table 3: The state and action spaces of six challenging MuJoCo tasks.
Tasks Agent Action Space State Space

Swimmer-v3 Three-link swimming robot 2 8
Hopper-v3 Two-dimensional one-legged robot 3 11

Walker2d-v3 Two-dimensional bipedal robot 6 17
HalfCheetah-v3 Two-dimensional robot 6 17

Ant-v3 Four-legged creature 8 111
Humanoid-v3 Three-dimensional bipedal robot 17 376

B.2 MULTIPLE POLICIES IN MUJOCO TASKS

In the supplementary files, we includes rendered videos of different policies, as given in Table 4.

• Different policies are obtained over 20 runs of the PPO algorithm. We rendered theses polices and
classified them by physical gaits.

• The policies in bold texts are physically stationary.

Table 4: List of video files for different policies.
Task Different Policies Video Name

hopping hopper_hopping.mp4
diving hopper_diving.mp4Hopper

standing hopper_standing.mp4
running ant_running.mp4
standing ant_standing.mp4Ant
flipping ant_flipping.mp4
walking walker_walking.mp4
diving walker_diving.mp4Walker

standing walker_standing.mp4
two-legs humanoid_two_legs.mp4
one-leg humanoid_one_leg.mp4Humanoid

backward humanoid_backward.mp4
running halfcheetah_running.mp4
diving halfcheetah_diving.mp4

flipping halfcheetah_flipping.mp4HalfCheetah

standing halfcheetah_standing.mp4
moving swimmer_moving.mp4Swimmer standing swimmer_standing.mp4

16

Under review as a conference paper at ICLR 2023

C REINFORCEMENT LEARNING AND BELLMAN EQUATION

A reinforcement learning (RL) [44] agent interacts with an unknown environment and learns an
optimal policy that maximizes the cumulative reward. Mathematically, the environment can be
formulated as a Markov Decision Process (MDP) with the five-tuple ⟨S,A,P, R, γ⟩. Here S and
A denote the state and action spaces; P : S ×A → ∆(S) denotes a transition probability function,
where ∆ is a probability simplex; R : S × A × S → R denotes a reward function; and γ ∈ (0, 1]
denotes a discount factor. The objective is to find an optimal policy π∗ : S → ∆(A) that maximizes
(discounted) expected reward.

Consider a discrete, finite, discounted MDP with infinite horizon, one can define the Q-value function
of a state-action pair (s, a) under policy π as follows

Qπ(s, a) = ESk+1∼P(·|Sk,Ak),Ak+1∼π(Sk+1,·)

[∞∑
k=0

γk ·R(Sk, Ak, Sk+1)|S0 = s,A0 = a

]
, (14)

where R(Sk, Ak, Sk+1) denotes the immediate reward when taking action Ak at state Sk and arriving
at state Sk+1, capital letters denote random variables and lowercase letters denote values. The
conventional objective function J(θ) of reinforcement learning [44] takes the following form

J(θ) ≜ ES0,A0
[Qπθ (S0, A0)] = Eτ∼π [R(τ) · P (τ |πθ)] , (15)

where τ is a trajectory, i.e., τ = (S0, A0, · · ·), and
P (τ |πθ) = d0(s0) ·

∏T
k=0 P(sk+1|sk, ak)πθ(ak|sk).

The Bellman equation [44] converts (14) into a recursive form as follows

Qπ(s, a) =
∑
s′∈S

P(s′ | s, a)

[
R(s, a, s′) + γ

∑
a′∈A

π(s′, a′)Qπ(s′, a′)

]
= R(s, a) + γ

∑
s′∈S

P(s′ | s, a)
∑
a′∈A

π(s′, a′)Qπ(s′, a′),

(16)

which expresses the expected reward as a summation of immediate reward R(s, a) and discounted fu-
ture rewards, and the immediate reward R(s, a) is defined as R(s, a) =

∑
s′∈S P(s′ | s, a)R(s, a, s′).

The Bellman’s optimality equation [44] is

Q∗(s, a) =
∑
s′∈S

P(s′ | s, a)
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
.. (17)

The optimal policy π∗ is given by a greedy strategy such that π∗ = argmaxπ Qπ(s, a).

17

Under review as a conference paper at ICLR 2023

D QUANTUM K-SPIN HAMILTONIAN FORMULATION OF REINFORCEMENT
LEARNING

We provide the detailed steps of reformulating (14) into a K-spin Hamiltonian equation

H(θ) ≜ −ES0,A0 [Q
πθ (S0, A0)]

= −ES0,Ak∼πθ(Sk,·),Sk+1∼P(·|Sk,Ak)

[∞∑
k=0

γk ·R(Sk, Ak)

]

= −
K−1∑
k=0

ES0,A0,··· ,Sk∼P(·|Sk−1,Ak−1),Ak∼πθ(Sk,·)
[
γk ·R(Sk, Ak)

]
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0) · πθ(µ0)

k−1∏
i=0

[P(Si+1|µi) · πθ(µi+1)]

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi)

]
· πθ(µ0) · · ·πθ(µk)

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
· πθ(µ0) · · ·πθ(µk),

(18)

where K →∞, and the density function is

Lµ0,...,µk
= γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi). (19)

18

Under review as a conference paper at ICLR 2023

E DERIVATION STEPS FOR HAMILTONIAN’S POLICY GRADIENTS

We provide the policy gradient of the quantum K-spin Hamiltonian equation in (3) for both stochastic
and deterministic cases, which are variants of the well-known policy gradient theorem [44].

Theorem 3. (Hamiltonian’s stochastic policy gradient) The stochastic gradient of the K-spin
Hamiltonian equation (3) w.r.t. parameter θ is

∇θH(θ) = −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (πθ(µ0) · πθ(µ1) · · ·πθ(µk))

]
. (20)

Corollary 1. When K →∞, the Hamiltonian’s stochastic policy gradient ∇θH(θ) in (20) is equal
to the stochastic policy gradient∇θJ(θ) in [45],

lim
K→∞

∇θH(θ) = −∇θJ(θ) = −Es∼dθ,a∼πθ
[Qπθ (s, a)∇θ log πθ(s, a)] . (21)

Let ηθ(·) : S → A denote a deterministic policy, while we use π̃θ,δ(µ) to represent that a Gaussian
noise (a.k.a, an exploration noise) with standard deviation δ > 0 is added in the exploration process.

Theorem 4. (Hamiltonian’s deterministic policy gradient) The deterministic gradient of the K-spin
Hamiltonian equation (3) w.r.t. parameter θ is

∇θH
′(θ) = −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (π̃θ,δ(µ0) · π̃θ,δ(µ1) · · · π̃θ,δ(µk))

]
. (22)

Corollary 2. When K →∞, the Hamiltonian’s deterministic policy gradient ∇θH
′(θ) in (22) is

equal to the deterministic policy gradient∇θJ
′(θ) in [43],

lim
K→∞

∇θH
′(θ) = −∇θJ

′(θ) = −Es∼dθ

[
∇aQ

π̃θ,δ(s, a)|a=ηθ
∇θηθ(s)

]
. (23)

Corollary 3. When the variance of the exploration noise approaches zero, i.e., δ → 0, the deter-
ministic policy gradient ∇θH

′(θ) is the limiting case of the stochastic policy gradient ∇θH(θ),

∇θH
′(θ) = lim

δ→0
∇θH(θ). (24)

E.1 PROOF OF THEOREM 3: HAMILTONIAN’S STOCHASTIC POLICY GRADIENT

Proof.

∇θH(θ) = −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
∇θ [πθ(µ0) · · ·πθ(µk)]

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
[πθ(µ0) · · ·πθ(µk)]∇θ log [πθ(µ0) · · ·πθ(µk)]

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0) · πθ(µ0)

k−1∏
i=0

[P(Si+1|µi) · πθ(µi+1)] · ∇θ log [πθ(µ0) · · ·πθ(µk)]

= −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log [πθ(µ0) · · ·πθ(µk)]

]
,

(25)

where µk = (Sk, Ak), S0 ∼ d0(·), Ak ∼ πθ(Sk, ·), Sk+1 ∼ P(· | Sk, Ak) for k = 0 · · ·K.

19

Under review as a conference paper at ICLR 2023

E.2 PROOF OF COROLLARY 1

Proof.

∇θH(θ)
(a)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
∇θ [πθ(µ0) · · ·πθ(µk)]

(b)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk

k∑
i=0

πθ(µ0) · · ·πθ(µi−1)πθ(µi+1) · · ·πθ(µk)∇θπθ(µi)

(c)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0)

k−1∏
i=0

P(Si+1|µi)

k∑
i=0

i−1∏
j=0

πθ(µj) · ∇θπθ(µi) ·
k∏

j=i+1

πθ(µj)


(d)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

k∑
i=0

d0(S0)

γi
i−1∏
j=0

πθ(µj)P(Sj+1|µj)

∇θπθ(µi)

 k−1∏
j=i+1

πθ(µj)P(Sj+1|µj)πθ(µk)γ
k−iR(µk)


(e)
= −

K−1∑
k=0

k∑
i=0

S∑
S0

d0(S0)

S∑
Si

ρ(S0, Si, i)

A∑
Ai

∇θπθ(Si, Ai) ·
S×A∑
µk

ρ(Si, Sk, k − i) · πθ(µk) ·R(µk)

(f)
= −

S∑
S0

d0(S0)

S∑
S

K−1∑
i=0

ρ(S0, S, i)

A∑
A

∇θπθ(S,A) ·

[S∑
S′

K−1∑
k=i

ρ(S, S′, k − i) ·
A∑
A′

πθ(S
′, A′) ·R(S′, A′)

]

(g)
= −

S∑
S0

d0(S0)

S∑
S

∞∑
i=0

ρ(S0, S, i)

A∑
A

∇θπθ(S,A) ·Qπθ (S,A)

(h)
= −

[S∑
S

S∑
S0

d0(S0)

∞∑
i=0

ρ(S0, S, i)

]
·

S∑
S

∑S
S0

d0(S0)
∑∞

i=0 ρ(S0, S, i)∑S
s

∑S
S0

d0(S0)
∑∞

i=0 ρ(S0, S, i)

A∑
A

∇θπθ(S,A) ·Qθ(S,A)

(i)
∝ −

S∑
S

dπθ
(S)

A∑
A

∇θπθ(S,A) ·Qπθ (S,A)

(j)
= −ES∼dθ,A∼πθ(S,·)[Q

πθ (S,A)∇θ log πθ(S,A)],
(26)

where ρ(S, S′, i) denotes the probability of state S transfer to S′ in i steps.

We provide detailed explanations step-by-step:

• Equality (a) holds by definition.

• In equality (b), using the chain rule, we take derivative of∇θ[πθ(µ0) · · ·πθ(µk)] with respect to
πθ(µi), i = 1, ..., k.

• In equality (c), we plug in Lµ0,··· ,µk
in (2).

• In equality (d), we insert P(Si+1|µi) P(Si+1|µi) between πθ(µi) and πθ(µi+1), i = 1, ..., k.

• In equality (e), we split trajectory µ0, · · · , µi, · · · , µk into two trajectories µ0, · · · , µi and
µi, · · · , µk. Therefore, we can classify all trajectories µ0, · · · , µk by µ0, µi, µk, and i.

• In equality (f), we reorganize
∑K−1

k=0

∑k
i=0 into

∑K−1
i=0

∑K−1
k=i . The former one first traverses the

length k of a trajeoctory, and then traverses the i-th step on it.The latter one first traverses the i-th
step of a trajectory, and then traverses the length k of it.

• In equality (g), we calculate the limit of (f) when K approaches∞.

• In equality (h), we normalize
∑S

S0
d0(S0)

∑∞
i=0 ρ(S0, S, i) to be a probability distribution.

20

Under review as a conference paper at ICLR 2023

• In equality (i), we remove the constant
∑S

S

∑S
S0

d0(S0)
∑∞

i=0 ρ(S0, S, i) and replace the fraction
with dπθ

(S), the stationary distribution of state S under policy πθ.

• In equality (j), we reformulate (i) as expectation.

E.3 PROOF OF THEOREM 4: HAMILTONIAN’S DETERMINISTIC POLICY GRADIENT

Proof. Let ηθ(·) : S → A denote a deterministic policy, while we use π̃θ,δ(µ) to represent that a
Gaussian noise (a.k.a, an exploration noise) with standard deviation δ > 0 is added in the exploration
process. In the inference stage, there is no exploration noise, the policy is deterministic, i.e., δ = 0
and Ak = ηθ(Sk).

H ′(θ) ≜ −ES0∼d0,A0∼π̃θ,δ

[
Qπ̃θ,δ(S0, A0)

]
= −ES0,Ak∼π̃θ,δ(Sk,·),Sk+1∼P(·|Sk,Ak)

[∞∑
k=0

γk ·R(Sk, Ak)

]

= −
K∑

k=0

ES0,Ak∼π̃θ,δ(Sk,·),Sk+1∼P(·|Sk,Ak)

[
γk ·R(Sk, Ak)

]
= −

K∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0) · π̃θ,δ(µ0)

k−1∏
i=0

[P(Si+1|µi) · π̃θ,δ(µi+1)]

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi)

]
· π̃θ,δ(µ0) · · · π̃θ,δ(µk)

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
· π̃θ,δ(µ0) · · · π̃θ,δ(µk),

(27)

where K →∞, and

Lµ0,...,µk
= γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi). (28)

21

Under review as a conference paper at ICLR 2023

E.4 PROOF OF COROLLARY 2

Proof.

∇θH
′(πθ) = −

K∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

(Lµ0,...,µk
· ∇θ [π̃θ(µ0) · · · π̃θ(µk)] +∇θLµ0,··· ,µk

· π̃θ(µ0) · · · π̃θ(µk))

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

[π̃θ(µ0) · · · π̃θ(µk)] · ∇θLµ0,...,µk

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

∇θ

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi))

]

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

∇A

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi))

]
∇θηθ(S)

= −
S∑
S0

d0(S0)∇AESt+1∼P(·|St,At)

[∞∑
t=0

γkR(St, At)

]
· ∇θηθ(S)

= −
S∑
S0

d0(S0)∇AQ(S0, A0) · ∇θηθ(S)

= −ES0∼d0(·) [∇AQ(S0, A0) · ∇θηθ(S)]
(29)

where µk = (Sk, Ak), S0 ∼ d0(·), Ak ∼ πθ(Sk, ·), Sk+1 ∼ P(· | Sk, Ak), for k = 0 · · ·K.

E.5 PROOF OF COROLLARY 3

Proof. In Corollary 2 and Corollary 1, we have

∇θH
′(θ) = −∇θJ

′(θ),

∇θH(θ) = −∇θJ(θ),
(30)

when K →∞.

[43] proved that
∇θJ

′(θ) = lim
δ→0
∇θJ(θ), (31)

where δ is the standard deviation of the Gaussian noise of stochastic policy πθ.

Therefore,
∇θH

′(θ) = lim
δ→0
∇θH(θ) (32)

22

Under review as a conference paper at ICLR 2023

F VARIANCE REDUCTION WITH QUANTUM K-SPIN HAMILTONIAN EQUATION

F.1 MONTE CARLO ESTIMATOR OF QUANTUM K-SPIN HAMILTONIAN EQUATION

Monte Carlo Estimator [38]: Consider a general probabilistic objective F of the form:

F ≜ Ep(x;θ)[f(x;ϕ)], (33)

in which a function f of an input variable x with structural parameters ϕ is evaluated on average
with respect to an input distribution p(x; θ) with distributional parameters θ.

A Monte Carlo method evaluates the function by first drawing independent samples x̂(1), ..., x̂(N)

from the distribution p(x; θ), and then computing the average:

F̂N =
1

N

N∑
i=1

f(x̂(i)), where x̂(i) ∼ p(x; θ) for i = 1, ..., N. (34)

The Monte Carlo estimator for (15) is

Ĵ(θ) =
1

N

N∑
i=1

R(τ (i)), where τ (i) ∼ P (τ (i)|πθ) for i = 1, ..., N, (35)

and

P (τ (i)|πθ) = d0(s
(i)
0) ·

T∏
k=0

P(s(i)k+1|s
(i)
k , a

(i)
k)πθ(a

(i)
k |s

(i)
k). (36)

The Monte Carlo estimator for (3) is

Ĥ(θ) =
1

N ′

N ′∑
i=1

K−1∑
k=0

L
µ
(i)
0 ,...,µ

(i)
k

, for i = 1, ..., N ′, (37)

and

L
µ
(i)
0 ,...,µ

(i)
k

= γk ·R(µ
(i)
k) · d0(s(i)0) ·

k−1∏
ℓ=0

P(s(i)ℓ+1|µ
(i)
ℓ). (38)

Remark: The above two Monte Carlo estimators are quite different in the simulation process. (36)
samples a random trajectory by following an environment’s stochastic transition and a policy. In
contrast, (38) measures a random path’s discounted reward (the “energy") without following any
policy, and the Hamiltonian equation (3) combinatorially enumerates all possible paths of length K
over the state-action space. In other words, the simulation process of the Hamiltonian term does not
rely on any policy. Therefore, the Hamiltonian term is a suitable regularizer for both on-policy and
off-policy algorithms.

This fundamental difference is due to the Ising model in (1), which combinatorially enumerates all
paths and separates the environment and the policy.

F.2 VARIANCE REDUCTION

For the general function in (33), one simple but effective variance reduction technique is to subtract a
baseline term as follows:

Ep(x;θ) [(f(x)− β)∇θ log p(x; θ)] , (39)
where β is the baseline term.

Our reasoning logic:

1). We first briefly describe a high-level idea [22] that adding a baseline term, like the proposed
H-term, will help reduce the gradient variance.

23

Under review as a conference paper at ICLR 2023

2). We sketch the steps to show how the proposed H-term will mathematically reduce the gradient
variance, following the framework in Section 5.2 of [23].

High-level IDEA. One generic approach to reduce the variance of Monte Carlo estimates is to use an
additive control variate. Suppose we wish to estimate the integral of the function f : X → R, and we
know the value of the integral of another function on the same space ϕ : X → R.
We have ∫

X
f(x) =

∫
X
(f(x)− ϕ(x)) +

∫
X
ϕ(x), (40)

and the integral of f(x) − ϕ(x) can be estimated. If ϕ(x) = f(x), meaning that , then we have
managed to reduce our variance to zero [22]. More generally,

Var(f − ϕ) = Var(f)− 2Cov(f, ϕ) + Var(ϕ). (41)

If ϕ and f are strongly correlated, so that the covariance term on the right hand side is greater than
the variance of ϕ, i.e., −2Cov(f, ϕ) + Var(ϕ) ≤ 0. then a variance reduction has been made over the
original estimation problem [22], i.e., Var(f − ϕ) ≤ Var(f).

Our reasoning. Then, we present our reasoning.

Note that the gradient of the new objective function of the actor network in (8) consists of two
components, namely ∇θJ(θ) and ∇θH(θ). Here, we consider

∇θJ(θ)−λ ∇θH(θ), where λ > 0 is a temperature parameter, (42)

where ∇θJ(θ) in (21) is the above function f(·) and λ ∇θH(θ) in (4) is the above function ϕ(·).
The Hamiltonian stochastic gradient in (4) has the optimal value

∇θH
∗(θ) = − lim

K→∞
Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (πθ(µ0) · πθ(µ1) · · ·πθ(µk))

]
. (43)

According to Theorem 8 of [22] that is proved via (41), we have

Var [∇θJ(θ)− λ ∇θH
∗(θ)] = Var[∇θJ(θ)]−

1

λ
Es∼dθ,a∼πθ

[(
Es∼dθ,a∼πθ

[
(∇θ log πθ(s, a))

2∇θJ(θ)
])2

Es∼dθ,a∼πθ
[(∇θ log πθ(s, a))2]

]
≤ Var[∇θJ(θ)],

(44)

where the second term is positive and

∇θH
∗(θ) =

Es∼dθ,a∼πθ
(
[
∇θ log πθ(s, a))

2∇θJ(θ)
]

Es∼dθ,a∼πθ
[(∇θ log πθ(s, a))2]

. (45)

In Alg. 1 and Alg. 2, we used a general H-term ∇θH(θ), not the optimal one in (43). Next, we
provide a general characterization for this case.

According to Theorem 10 of [22], we have

Var [∇θJ(θ)−λ ∇θH(θ)]− Var [∇θJ(θ)−λ ∇θH
∗(θ)]

= λ2 Es∼dθ,a∼πθ

[
(∇θ log πθ(s, a))

2(∇θH(θ)−∇θH
∗(θ))2

] (46)

Assume Lipschiz continuity of the graident∇θH(θ) such that

||∇θH(θ)−∇θH
∗(θ)||2 ≤ 2L(H(θ)−H∗(θ)) ≤ 2Lϵ, (47)

given K ≥ logγ ϵ with L > 0, ϵ > 0, as pointed out in the end of Section 3.2.

Therefore, combining (46), (48) with (48), we obtain that

24

Under review as a conference paper at ICLR 2023

Var [∇θJ(θ)− λ ∇θH(θ)] = Var[∇θJ(θ)]−
1

λ
Es∼dθ,a∼πθ

[(
Es∼dθ,a∼πθ

[
(∇θ log πθ(s, a))

2∇θJ(θ)
])2

Es∼dθ,a∼πθ
[(∇θ log πθ(s, a))2]

]
+ λ2(2Lϵ)2 Es∼dθ,a∼πθ

[
(∇θ log πθ(s, a))

2
]

≤ Var[∇θJ(θ)],
(48)

when both |∇θ log πθ(s, a)| and |∇θJ(θ)| are upper bounded, e.g., |∇θ log πθ(s, a)| < C1 and
|∇θJ(θ)| < C2; and we set ϵ, λ properly such that

− 1

λ
C2

2 + 4λ2L2ϵ2C2
1 < 0

λ3ϵ2 <
C2

2

4L2C2
1

,
(49)

which can be easily satisfied by properly selecting λ and K ≥ logγ ϵ.

Conclusion:

To sum up, we show that it is easy to achieve Var [∇θJ(θ)− λ ∇θH(θ)] ≤ Var[∇θJ(θ)], which
means adding the H-term can lead to smaller variance than that of the conventional gradient.

25

Under review as a conference paper at ICLR 2023

G ACTOR-CRITIC ALGORITHMS FOR DEEP REINFORCEMENT LEARNING

The gradient of (15) is [44]

∇θJ(θ) ≜
S∑
S

dS,θ(S)

A∑
A

Qθ(S,A)∇θπθ(S,A). (50)

Since Qθ in (50) is unknown [49] (the stationary distribution dθ is unknown), one can plug in a critic
network with parameter ϕ as an estimator of Qθ and obtain

∇ϕ
θJ(θ, ϕ) =

S∑
S

dS,θ(S)

A∑
A

Qϕ(S,A)∇θπθ(S,A), (51)

where dS,θ ∈ R|S||A|×1
+ denotes the stationary distribution over the states instead of state-action

pairs.

(51) is a bi-level optimization problem [9], and a natural solution is an iterative algorithm that
alternates between estimating Qϕ with parameter ϕ and improving policy πθ with parameter θ.
Therefore, a family of actor-critic algorithms are proposed with following objective functions:

Actor : max
θ

Jπ(θ, ϕ) = (1− γ)ES0∼d0,A0∼πθ(S0,·) [Qϕ(S0, A0)]

Critic : max
ϕ

JQ(θ, ϕ) =
1

2
ES∼dθ(·),A∼πθ(S,·)

[
(Qϕ(S,A)− y(S,A))2

]
.

(52)

The gradient of (52) can be estimated as follows

∇θĴπ(θ, ϕ) =
1

N

N∑
i=1

Qϕ(µ) · ∇θ log πθ(µ)

∇ϕĴQ(θ, ϕ) =
1

N

N∑
i=1

[Qϕ(S,A)− y(S,A)] · ∇ϕQϕ(S,A)

(53)

The parameters ϕ and θ are updated as follows:{
Actor : θ ← θ + α ∇ϕ

θ Ĵπ,

Critic : ϕ← ϕ− α ∇ϕĴQ.
(54)

26

Under review as a conference paper at ICLR 2023

Algorithm 2 Stationary Actor-Critic Algorithm with H-term (Deterministic Version)
1: Input: learning rate α, temperature λ, look-ahead step K, and parameters δ,M, T,G,B,B′

2: Initialize actor network η and critic network Q with parameters θ, ϕ, and replay buffers D1, D2

3: for episode = 1, · · · ,M do
4: Initialize state s0
5: for t = 0, · · · , T − 1 do
6: Take action at = ηθ(st) + ϵ, where ϵ ∼ N (0, δ2)
7: Execute action at, receive reward rt, and observe new state st+1

8: Store a transition (st, at, rt, st+1) in D1

9: end
10: Store a trajectory τ of length T in D2

11: for g = 1, · · · , G do
12: Randomly sample a mini-batch of B transitions {(si, ai, ri, si+1)}Bi=1 from D1

13: Randomly sample a mini-batch of B′ trajectories (of length K) {τj}B
′

j=1 from D2

14: Update critic network using a conventional method
15: Update actor network as θ ← θ + α

(
∇θĴ

′(θ)−λ ∇θĤ
′(θ)

)
.

16: end
17: end

H DETERMINISTIC POLICY GRADIENT ALGORITHM WITH H-TERM

For completeness, we present the details of the deterministic actor-critic algorithm with H-term.

We apply the proposed Hamiltonian equation (3) to regularize the actor network. Specifically, H ′(θ)
in (3) is added to the actor’s objective with weight λ > 0. The objective functions of actor and critic
networks become:

Actor : max
θ

J ′
π(θ, ϕ) = (1− γ)ES0∼d0,A0=ηθ(S0) [Qϕ (S0, A0)]−λH ′(θ),

Critic : min
ϕ

JQ(θ, ϕ) =
1

2
ES∼dθ(·),A=ηθ(S)

[
(Qϕ(S,A)− y(S,A))

2
]
.

(55)

The gradient of (55) is

∇θJ
′
π(θ, ϕ) =(1− γ)

S∑
S

dS,θ(S)∇AQϕ(S,A) · ∇θηθ(S)−λ∇θH
′(θ), (56)

∇ϕJQ(θ, ϕ) =

S∑
S

dS,θ(S) · [Qϕ(S,A)− y(S,A)] · ∇ϕQϕ(S,A)|A=ηθ(S). (57)

To estimate∇θH
′(θ), the Monte Carlo gradient estimator in (6) is used. Therefore, (56) and (57) can

be estimated as follows:

∇θĴ
′
π(θ, ϕ) =

1

N

N∑
i=1

[
∇AQϕ(S,A)|A=ηθ(S)∇θηθ(S)

]
− 1

N ′

N ′∑
i=1

[
λ

K∑
k=0

γkR(µk)∇θ log [π̃θ(µ0) · · · π̃θ(µk)]

]
,

(58)

∇ϕĴQ(θ, ϕ) =
1

N

N∑
i=1

[Qϕ(S,A)− y(S,A)] · ∇ϕQϕ(S,A)|A=ηθ(S). (59)

27

Under review as a conference paper at ICLR 2023

I EXPERIMENTS: HYPERPARAMETERS AND MORE RESULTS

I.1 HYPERPARAMETERS IN EXPERIMENTS

Table 5: Hyperparameters used for the PPO and PPO + H in MuJoCo tasks
Parameters Values
Optimizer Adam
Learning rate 3 · 10−4

Discount (γ) 0.99
GAE parameter 0.95
Number of hidden layers for all networks 3
Number of hidden units per layer 256
Mini-batch size 32
Importance rate of H-term (λ) 2−3

Truncation step of H-term (K) 16

Table 6: Hyperparameters used for the DDPG and DDPG + H in MuJoCo tasks
Parameters Values
Optimizer Adam
Learning rate 5 · 10−4

Target Update Rate (τ) 10−3

Discount (γ) 0.995
Replay buffer size 106

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Batch size 64
Importance rate of H-term (λ) 2−3

Truncation step of H-term (K) 16

Table 7: Hyperparameters used for the REINFORCE and REINFORCE + H in TSP, graph maxcut,
MIMO beamforming, and non-convex deep learning classifier tasks

Parameters Values
Optimizer Adam
Learning rate 5 · 10−5

Discount (γ) 0.99
Number of hidden layers for all networks 3
Number of hidden units per layer 512
Batch size 4096
Importance rate of H-term (λ) 2−3

Truncation step of H-term (K) 6

I.2 MORE RESULTS

Fig. 7 shows the H-value (average over 20 runs) during the training process, which verified that the
trained agents have converged to policies with small H-values.

Fig. 8 shows more performance of the PPO+H algorithm, for K = 8, 16, 24. We run each experiment
with 20 random seeds and each run we test 100 episodes.

To verify the hypothesize that smaller replay buffer hurts the performance, we rerun the trials of
K = 8, 16 with a replay buffer size 800.

28

Under review as a conference paper at ICLR 2023

0 1 2 3 4

#samples 1e6

4

2

0

H
va

lu
es

HalfCheetah

0.0 0.5 1.0 1.5 2.0

#samples 1e7

6

4

2

0

H
va

lu
es

Ant

0.0 0.5 1.0 1.5 2.0

#samples 1e7

1.0

0.5

0.0

H
va

lu
es

Humanoid

0 1 2 3

#samples 1e6

2

1

0

H
va

lu
es

Hopper

0 2 4 6 8

#samples 1e7

0.3

0.2

0.1

0.0

H
va

lu
es

Swimmer

0.0 0.5 1.0 1.5 2.0

#samples 1e6

4

2

0

H
va

lu
es

Walker2D

PPO PPO + H, K = 8 PPO + H, K = 16 PPO + H, K = 24

Figure 7: H values during the training process.

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah
K = 8
K = 16
K = 24

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Ant
K = 8
K = 16
K = 24

0.0 0.5 1.0 1.5 2.0
#samples 1e7

 2k

 4k

 6k

 8k

10k

12k

Cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid
K = 8
K = 16
K = 24

0 1 2 3
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Hopper
K = 8
K = 16
K = 24

0 2 4 6 8
#samples 1e6

40

80

120

160

200

Cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer
K = 8
K = 16
K = 24

0.0 0.5 1.0 1.5 2.0
#samples 1e6

 1.5k

 3k

 4.5k

 6k

7.5k

9k

Cu
m

ul
at

iv
e

re
wa

rd
s

Walker2D
K = 8
K = 16
K = 24

Figure 8: For the proposed PPO+H algorithm, the performance with different K values.

J HAMILTONIAN POLICY NETWORK

J.1 HAMILTONIAN POLICY NETWORK

Since Hamiltonian equation in (3) is a functional of policy πθ, a natural question would be: can
we use the Hamiltonian equation replace existing Bellman’s equation (16) or the policy gradient’s
objective function (15)?

As a verification, we test the capability of Hamiltonian equation in (3) as a loss function to train a
policy network. The algorithm is first given as follows.

In Alg. 3, an agent interacts with an environment and updates its policy network. The algorithm has
M episodes and each episode consists of a (Monte Carlo) simulation process and a learning process
(gradient estimation) as follows :

29

Under review as a conference paper at ICLR 2023

Algorithm 3 Hamiltonian Policy Network
1: Input: learning rate α, look-ahead step K, and parameters M,T,G,B
2: Initialize policy network with parameters θ, and replay buffer D
3: for episode = 1, · · · ,M do
4: Initialize state s0
5: for t = 0, · · · , T − 1 do
6: Select action at ∼ πθ(·|st)
7: Execute action at, receive reward rt, and observe new state st+1

8: end
9: Store a trajectory τ of length T in D

10: for g = 1, · · · , G do
11: Randomly sample a mini-batch of B trajectories (of length K) {τj}Bj=1 from D
12: Update pocliy network as θ ← θ − α ∇θĤ(θ).
13: end
14: end

• During the (Monte Carlo) simulation process (lines 5-9 of Alg. 3), an agent takes action at
according to a policy πθ(·|st), t = 0, · · · , T − 1, generating a trajectory of T steps/transitions.
Then, the full trajectory τ = (s0, a0, r0, s1, · · · , sT−1, aT−1, rT−1, sT) is stored in replay buffer
D.

• During the learning process (G ≥ 1 updates in one episode) (lines 10-12 of Alg. 1), a mini-batch of
B trajectories (of length K) {τj = (sj0, a

j
0, r

j
0, s

j
1, · · · , s

j
K−1, a

j
K−1, r

j
K−1, s

j
K)}Bj=1 are sampled

from D, respectively. The policy network is updated by a Monte Carlo gradient estimator over B
trajectories.

Implementation of replay bufferD. After a full trajectory τ of length T is generated, it is partitioned
into T − K + 1 trajectories of length K. We rank them according to the cumulative reward and
store the top portion, say 80%, into a new replay buffer D (line 9 of Alg. 3). We randomly sample a
mini-batch of B trajectories from D (line 11 of Alg. 3) to compute the H-term.

J.2 FROZENLAKE TASK

Environment: Frozenlake 8× 8, a game in OpenAI Gym.

Rules: As shown in Fig. 9 (left), the Frozenlake task has 8× 8 states with 4 optional actions to move
around. The agent needs to go from the start point and find the way to the destination in limited steps.
There are 8 holes which can cause the agent to fail the game.

Experiment settings: We take Deep Q-learning (DQN) [37] as our baseline and use the implementa-
tion from the ElegantRL library. We use a 4-layer fully connected neural network as the deep policy
network both in DQN and DHN. We use the Adam optimizer with a learning rate 1× 10−3 and a
batch size 100.

Evaluation: We evaluate the performance of policy by computing the success rate, in which we use
50 agents to walk 100 steps and compute the rates of agents who successfully arrive the destination.

Results for the Frozenlake task: Fig. 10 (left) shows the success rate of agents with increasing the
number of transitions learned by the network. compared with DQN, DHN has a more stable training
process. It is easy for DQN to quickly obtain a good policy to win the game. But with increasing the
number of transitions fed to the network, the performance of DQN shows a large and frequent shock
while the performance of DHN shows the strong stability.

J.3 GRIDWORLD TASK

Environment: a Gridworld of size 10× 10, a game available in our code.

Rules: As shown in the Fig. 9 (right), the Gridworld has 10× 10 states with 4 optional actions to
move around. The agent will initialize at a random locations and it needs to find the smiley as many

30

Under review as a conference paper at ICLR 2023

Figure 9: The Frozenlake task (left) and Gridworld task (right).

Figure 10: Comparison between the DQN and DHN algorithms. The Frozenlake task (left) and
Gridworld task (right).

as possible which has 10 reward in turn. It should be noted that there are some endpoints which may
cause the agent game over and some transfer-points which transfer the agent to certain location.

Experiment settings and evaluation: Both the experiment settings and evaluation method are the
same with that on Frozenlake 8× 8 game.

Results for the Gridworld task: Fig. 10 (rigt) shows the mean reward obtained by the agents with
increasing the training time. Compared with DQN, DHN has a faster training process. It only needs
massive random parallel samples of trajectories and do not need any policy for guided sampling while
DQN needs guided exploration in the training process which costs a large time consumption.

31

Under review as a conference paper at ICLR 2023

0 2 4 6 8
x

0.0

0.5

1.0

1.5

2.0

2.5

y

(a)

Local minima, Tour Length = 23

0 2 4 6 8
x

0.0

0.5

1.0

1.5

2.0

2.5

y

(b)

Local minima, Tour Length = 22.61

Figure 11: TSP problem has two local minimas in this case.

K COMBINATORIAL OPTIMIZATION PROBLEMS

K.1 PROBLEM FORMULATION AND MDP FORMULATION

• Graph maxcut: Given a graph G = (V,E), where V is the set of nodes and E the set of edges,
find a subset S ⊆ V that maxmizes the weight of the cut-set

∑
u∈S,v∈V \S,(u,v)∈E w(u, v).

• Traveling salesman problems (TSP): Given a fully connected graph G = (V,E), find a tour J
that minimizes the edge weights

∑
e∈J w(e). A tour starts and ends at a specific node after having

visited each node exactly once.
• MDP formulation: The MDP formulations of graph maxcut and TSP are given in Table 8. Note,
J is a partially ordered set, (J, v) means add node v to the end of J .

K.2 EXISTENCE OF MANY LOCAL MINIMAS

• Travelling salesman problem (TSP): the case of 8 cities (Fig. 11) has 2 local minimas.
• Graph maxcut: a fully connected graph of 20 nodes (Appx. K) has 390 local minimas.

K.3 EXPERIMENTAL SETTINGS

• Environments (tasks). We train the proposed algorithms on TSP and graph maxcut tasks with
number of nodes N = 100. For TSP, all nodes in training instances are generated from an uniform
distribution within an unit square. For graph maxcut, training instances are randomly generated
from Erdős–Rényi model. We use the same test cases in [14, 31].

• Compared algorithms. To evaluate policy gradient algorithm, we choose REINFORCE [45].
Since the H-term is compatible with existing variance reduction techniques, we implement the RE-
INFORCE algorithm with baseline reduction. For a fair comparison, we keep the hyperparameters
(listed in Appx. I) the same and make sure that the obtained results reproduce existing benchmark
tests.

• Performance metrics. We employ the metric: Frequency vs. Approximation Ratio. We run each
experiment with 20 random seeds and in each run we test 100 episodes.The approximation ratio ϵ
is defined as

ϵ = max(
Optimal

Obj
,

Obj

Optimal
), (60)

where Optimal is the optimal objective value by Branch and Bound [32], Obj is the objective
value of the best solution obtained from RL.

32

Under review as a conference paper at ICLR 2023

Table 8: MDP formulation of combinatorial optimization: Graph maxcut and TSP
Problem State Action Transition Reward Termination
Graph maxcut S select v ∈ V \S S′ ← S ∪ {v} cut(S′)− cut(S) ∀S′, cut(S′) < cut(S)
TSP J select v ∈ V \J J ′ ← (J, v) cost(J ′)− cost(J) ∀v ∈ V, v ∈ J

W11.real
4

2
0

2
4

w22.real
4

2

0
2

4

Negative Sum
-Rate 1.5

1.4
1.3
1.2
1.1

Figure 12: Geometry of sum-rate (N = 2, M = 2, SNR = 10) with respect to the real part of W11 and
W22. It has three local minimas.

L NON-CONVEX OPTIMIZATION PROBLEMS

• MIMO beamforming [7]: Given a channel [h1, · · · ,hM] ∈ CN×M , and a power constraint P ∈ R,
find a beamformer W = [w1, · · · ,wM] ∈ CN×M that maximizes the summation of rates:

max
W

M∑
m=1

log2 (1 + SINRm)

s.t. Tr
(
WWH

)
≤ P,

where SINRm =

∣∣hH
mwm

∣∣2∑M
j=1,j ̸=m |hH

mwj |2 + σ2
.

(61)

• Non-convex deep learning classifier [33]: Consider a 2-layer binary classifier, using ReLU as
activation layer and softmax as output layer. The task is to find weights W1,W2 and biaes b1, b2
that maximize the cross entropy loss:

min
W1,W2,b1,b2

− 1

n

n∑
i=1

log

 exp
(
(W2 max (W1xi + b1, 0) + b2)yi

)
∑

j exp
(
(W2 max (W1xi + b1, 0) + b2)j

)
 , (62)

where Wi and bi are the weight and bias of i-th layer, n is the batch size, xi is the input, and yi is
the target class.

33

