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A EXPERIMENTAL SETUP

In this section, we introduce how to access the models and datasets used in our paper.

A.1 IMAGENET SETUP

Models. Following the practice of Deng et al. (2022), we use the ImageNet models provided by
PyTorch Image Models (timm) (Wightman, 2019). It provides models trained or fine-tuned on the
ImageNet-1k training set (Deng et al., 2009). We show the names of models used in our paper below:

‘esmlp_36_224’, ’cait_s36_384’, ’cait_s24_224’, ’convit_base’, ’convit_tiny’, ’twins_pcpvt_base’,
’eca_nfnet_l1’, ’xcit_tiny_24_p8_384_dist’, ’efficientnet_b1’, ’efficientnet_b3’ ’efficient-
net_b4’, ’tf_efficientnet_b2’, ’tf_efficientnet_lite1’, ’convnext_base’, ’convnext_small’,

’resnetrs350’, ’pit_xs_distilled_224’, ’crossvit_small_240’, ’botnet26t_256’, ’tinynet_e’,
’tinynet_d’, ’repvgg_b2g4’, ’mnasnet_small’, ’dla46x_c’, ’lcnet_050’, ’tv_resnet34’,
’tv_resnet50’, ’tv_resnet101’ ’tv_resnet152’ ’densenet121’ ’inception_v4’ ’resnet26d’ ’mo-
bilenetv2_140’, ’hrnet_w40’, ’xception’, ’xception41’, ’resnet18’, ’resnet34’, ’seresnet50’,

’mobilenetv2_050’, ’seresnet33ts’, ’wide_resnet50_2’, ’wide_resnet101_2’, ’resnet18d’, ’hr-
net_w18_small’, ’gluon_resnet152_v1d’, ’hrnet_w48’, ’hrnet_w44’, ’repvgg_b2’, ’densenet201’, ’hr-
net_w18_small’, ’resnet101d’, ’gluon_resnet101_v1d’, ’gluon_resnet101_v1s’, ’gluon_xception65’,

’gluon_seresnext50_32x4d’, ’gluon_senet154’, ’gluon_inception_v3’, ’gluon_resnet101_v1c’,
’tf_inception_v3’, ’tv_densenet121’, ’tv_resnext50_32x4d’, ’repvgg_b1g4’, ’resnext26ts’,
’ghostnet_100’, ’crossvit_9_240’, ’deit_base_patch16_384’, ’rexnet_150’, ’rexnet_130’,
’resnetrs50’, ’resnet50d’, ’resnet50’, ’resnetv2_50’, ’resnetrs152’, ’resnetrs101’, ’dpn92’,
’dpn98’, ’dpn68’, ’vgg19_bn’, ’vgg16_bn’, ’vgg13_bn’, ’vgg11_bn’, ’vgg11’, ’vgg11_bn’,
’vgg16’, ’vgg19’, ’swin_small_patch4_window7_224’, ’swin_base_patch4_window12_384’,
’deit_base_patch16_224’, ’deit_small_distilled_patch16_224’, ’densenet161’,
’tf_mobilenetv3_large_075’, ’inception_v3’, ’ssl_resnext101_32x8d’, ’ssl_resnext101_32x16d’,
’swsl_resnext101_32x8d’, ’swsl_resnext101_32x16d’, ’ssl_resnext101_32x4d’, ’ssl_resnext50_32x4d’,
’ssl_resnet50’, ’swsl_resnext101_32x4d’, ’swsl_resnext50_32x4d’, ’swsl_resnet50’,
’tf_efficientnet_l2_ns_475’, ’tf_efficientnet_b7_ns’, ’tf_efficientnet_b6_ns’, ’tf_efficientnet_b4_ns’,
’tf_efficientnet_b5_ns’, ’convnext_xlarge_384_in22ft1k’, ’convnext_xlarge_in22ft1k’, ’con-
vnext_large_384_in22ft1k’, ’convnext_large_in22ft1k’, ’convnext_base_384_in22ft1k’, ’con-
vnext_base_in22ft1k’, ’resnetv2_152x2_bitm’, ’resnetv2_152x4_bitm’, ’resnetv2_50x1_bitm’,

’resmlp_big_24_224_in22ft1k’, ’resmlp_big_24_distilled_224’, ’tf_efficientnetv2_s_in21ft1k’,
’tf_efficientnetv2_m_in21ft1k’, ’tf_efficientnetv2_l_in21ft1k’, ’tf_efficientnetv2_xl_in21ft1k’,
’vit_large_patch16_384’, ’swin_large_patch4_window12_384’, ’beit_large_patch16_512’,
’beit_large_patch16_384’, ’beit_large_patch16_224’, ’beit_base_patch16_384’,
’vit_base_patch16_384’, ’vit_small_r26_s32_384’, ’vit_tiny_patch16_384’, ’vit_large_r50_s32_384’,
’mixer_b16_224_miil’ ’resmlp_big_24_224’, ’resnetv2_50x1_bit_distilled’, ’ig_resnext101_32x16d’,
’ig_resnext101_32x32d’, ’ig_resnext101_32x8d’, ’ig_resnext101_32x48d’, ’regnety_016’, ’reg-
nety_032’.

Datasets. We present the test sets employed in the main paper to evaluate the aforementioned
ImageNet models. Datasets mentioned below can be accessed publicly via the provided links.

ImageNet-A(dversarial) (Hendrycks et al., 2021b) : https://github.com/hendrycks/natural-adv-
examples.
ImageNet-R(endition) (Hendrycks et al., 2021a): https://github.com/hendrycks/imagenet-r.
ImageNet-Blur (Hendrycks and Dietterich, 2019) : https://github.com/hendrycks/robustness.
ImageNet-S(ketch) (Wang et al., 2019) : https://github.com/HaohanWang/ImageNet-Sketch.
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ImageNet-V2 (Recht et al., 2019) : https://github.com/modestyachts/ImageNetV2.
ObjectNet (Barbu et al., 2019) : https://objectnet.dev/download.html.

A.2 CIFAR10 SETUP

Models. We employ 101 models trained on the CIFAR10 training set. Among them, 82 are trained
based on the implementation from https://github.com/kuangliu/pytorch-cifar, following the practice
of Deng et al. (2022). These models vary in their architectures and number of training epochs.
Specifically, the following architectures are used:

‘DenseNet121’, ‘DenseNet169’, ‘DenseNet201’, ‘DenseNet161’, ‘densenet_cifar’, ‘DLA’, ‘Sim-
pleDLA’, ‘DPN26’, ‘DPN92’, ‘EfficientNetB0’, ‘GoogLeNet’, ‘LeNet’, ‘MobileNet’, ‘Mo-
bileNetV2’, ‘PNASNetA’, ‘PNASNetB’, ‘PreActResNet18’, ‘PreActResNet34’, ‘PreActRes-
Net50’, ‘PreActResNet101’, ‘PreActResNet152’, ‘RegNetX_200MF’, ‘RegNetX_400MF’, ‘Reg-
NetY_400MF’, ‘ResNet18’, ‘ResNet34’, ‘ResNet50’, ‘ResNet101’, ‘ResNet152’, ‘ResNeXt29_2x64d’,
‘ResNeXt29_4x64d’, ‘ResNeXt29_8x64d’, ‘ResNeXt29_32x4d’, ‘SENet18’, ‘ShuffleNetG2’, ‘Shuf-
fleNetG3’, ‘ShuffleNetV2’, ‘VGG11’, ‘VGG13’, ‘VGG16’, ‘VGG19’.

For each architecture, we train two variants with 30 and 50 training epochs, respectively.

The rest 19 models are download from https://github.com/chenyaofo/pytorch-cifar-models. Names of
these models are listed below:

‘cifar10_mobilenetv2_x0_5’, ‘cifar10_mobilenetv2_x0_75’, ‘cifar10_mobilenetv2_x1_0’, ‘ci-
far10_mobilenetv2_x1_4’, ‘cifar10_repvgg_a0’, ‘cifar10_repvgg_a1’, ‘cifar10_repvgg_a2’,

‘cifar10_resnet20’, ‘cifar10_resnet32’, ‘cifar10_resnet44’, ‘cifar10_resnet56’, ‘ci-
far10_shufflenetv2_x0_5’, ‘cifar10_shufflenetv2_x1_0’, ‘cifar10_shufflenetv2_x1_5’, ‘ci-
far10_shufflenetv2_x2_0’, ‘cifar10_vgg11_bn’, ‘cifar10_vgg13_bn’, ‘cifar10_vgg16_bn’,

‘cifar10_vgg19_bn’.

Datasets. Datasets used in the CIFAR10 setup can be found through the following links.

CIFAR10 (Krizhevsky et al., 2009) : https://www.cs.toronto.edu/ kriz/cifar.html.
CIFAR10.1 (Recht et al., 2018) : https://github.com/modestyachts/CIFAR-10.1.
CINIC (Darlow et al., 2018) : https://github.com/BayesWatch/cinic-10.

A.3 IWILDCAM SETUP

Models. We access 34 models trained on the iWildCam training set from the official implementation
of the iWildCam benchmark (https://worksheets.codalab.org/worksheets/0x52cea
64d1d3f4fa89de326b4e31aa50a). All models use Resnet50 (He et al., 2016) as the backbone but
differ in training algorithms, learning rate, weight decay, etc. Their identification names are provided
below.

‘iwildcam_afn_extraunlabeled_tune0’, ’iwildcam_dann_coarse_extraunlabeled_tune0’, ‘iwild-
cam_deepcoral_coarse_extraunlabeled_tune0’, ‘iwildcam_deepcoral_coarse_singlepass_extraun-
labeled_tune0’, ‘iwildcam_deepCORAL_seed0’, ‘iwildcam_deepCORAL_seed1’, ‘iwild-
cam_deepCORAL_seed2’ ‘iwildcam_deepCORAL_tune’, ‘iwildcam_ermaugment_tune0’,

‘iwildcam_ermoracle_extraunlabeled_tune0’, ‘iwildcam_erm_seed0’, ‘iwildcam_erm_seed1’,
‘iwildcam_erm_seed2’, ‘iwildcam_erm_tune0’, ‘iwildcam_erm_tuneA_seed0’, ‘iwild-
cam_erm_tuneB_seed0’, ‘iwildcam_erm_tuneC_seed0’, ‘iwildcam_erm_tuneD_seed0’,

‘iwildcam_erm_tuneE_seed0’, ‘iwildcam_erm_tuneF_seed0’, ‘iwildcam_erm_tuneG_seed0’,
‘iwildcam_erm_tuneH_seed0’, ‘iwildcam_fixmatch_extraunlabeled_tune0’, ‘iwild-
cam_groupDRO_seed0’, ‘iwildcam_groupDRO_seed1’, ‘iwildcam_groupDRO_seed2’, ‘iwild-
cam_irm_seed0’, ‘iwildcam_irm_seed1’, ‘iwildcam_irm_seed2’, ‘iwildcam_irm_tune’, ‘iwild-
cam_noisystudent_extraunlabeled_seed0’, ‘iwildcam_pseudolabel_extraunlabeled_tune0’,

‘iwildcam_swav30_ermaugment_seed0’.

Dataset. iWildCam-OOD (Beery et al., 2020) can be download from the the official guidence:
https://github.com/p-lambda/wilds/.
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Figure A1: Illustration of working mechanism of vicinal assessment on individual samples from
ImageNet-S. Four test samples are shown in the top row. The AC method is used as baseline proxy.
Score distribution of 140 models trained on the ImageNet training set are drawn below. Notations
have the same meaning as Fig. 2 in the main paper.

B WORKING MECHANISM ON INDIVIDUAL TEST SAMPLES

As discussed in the working mechanism part (see Section 4.2 of the main paper), we attribute the
effectiveness of our method to its ability to distinguish correct and incorrect model predictions on an
individual sample level, and thus better separability of models with different OOD performance. In
addition to the example shown in Fig. 2 of the main paper, we provide more examples to demonstrate
the working mechanism on individual test samples in Fig. A1, Fig. A2, and Fig A3. We clearly
observe that the distributions of model risk estimates of incorrect and correct predictions are generally
more spreadable by using proposed vicinal assessment. These examples further showcase the working
mechanism, where samples in the vicinity effectively rectify erroneous risk estimates, so that risk
estimates of individual samples better differentiate models making corrent and incorrect predictions.

C WORKING MECHANISM ON A WHOLE DATASET

Definitions. There are two models, fa, and fb, to test. We denote each test sample in the test set
as xi, i ∈ {1, 2, . . . , n}. Given an baseline empirical risk proxy R̂e (e.g., AC, EI, and DoC), the
empirical risk score of model fa on the test sample xi is written as R̂e(fa,xi). Similarly, the vicinal
risk score of fa in the vicinity of xi can be written as R̂v(fa,xi). We assume fa has higher accuracy
than fb and the risk proxy score is positively related to the model accuracy.

Here, We define pie as the probability of the event that the empirical risk score for fa on the test
sample xi is higher than that for fb, where

pie = P ((R̂e(fa,xi)− R̂e(fb,xi)) > 0).

Similarly, we have
piv = P ((R̂v(fa,xi)− R̂v(fb,xi)) > 0).
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Figure A2: Illustration of working mechanism of vicinal assessment on individual samples from
ImageNet-A. DoC is used as baseline proxy. Other notations have the same meaning as Fig. A1.

Working mechanism. Given the preliminary assumption that R̂v enables the score distributions of
correct and incorrect model predictions for each test sample to be more separable (shown by our exper-
iments in Fig. 3 of the main paper), there are some arbitrary samples {xi}, i ∈ {1, 2, . . . ,m},m ≤ n,
where

(
1

m

m∑
i

(piv − pie)) > 0 ⇒ (
1

m

m∑
i

piv −
1

m

m∑
i

pie) > 0.

Therefore, we have the following probability inequality:

P ((
1

m

m∑
i

R̂v(fa,xi)−
1

m

m∑
i

R̂v(fb,xi)) > 0) > P ((
1

m

m∑
i

R̂e(fa,xi)−
1

m

m∑
i

R̂e(fb,xi)) > 0).

According to Eq. 10 in the main paper, the above inequality can be rewritten as

P ((R̂v(fa)− R̂v(fb)) > 0) > P ((R̂e(fa)− R̂e(fb)) > 0),

where Rv(fa) and Re(fa) is the vicinal score and the empirical risk score, respectively. It means that
our method has the higher probability to successfully rank models.

D TIME COMPLEXITY

The computational complexity of our method is O(nm), where n is test set size, and m is the number
of neighboring samples used for VRP computation. In our algorithm, neighoring samples are those
sharing the same predicted label as the sample of interest, so looking for neighboring samples does
not require a search process. In our implementation, m is a hyperparameter that can be as small as
25 or 50 (see Fig. 6) to yield improvement, while a test sample may have 150 neighbors. So the
computational complexity is much less than O(n2).

We would like to present the experimental results of time consumption under different dataset sizes
here. In Table D1, we provide the running time of evaluating the model ‘vit_large_r50_s32_384’ on
the ImageNet-R dataset. We used NVIDIA28 V100 with 4 × GPU.
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Figure A3: Illustration of working mechanism of vicinal assessment on individual samples from
ImageNet-R. ATC is used as baseline proxy. Other notations have the same meaning as Fig. A1.

Table D1: Running time (seconds) vs. test set size for average confidence (AC) and our method
(AC+VRP). The last row presents the runtime increase caused by applying VRP to AC.

Test set size 5,000 10,000 15,000 20,000 25,000 30,000

AC (sec.) 1.75 1.88 1.95 1.99 2.14 2.22

AC + VRP (sec.) 4.38 4.57 4.76 5.02 5.23 5.40

Added time (sec.) 2.63 2.69 2.81 3.03 3.09 3.18

Two main observations can be drawn from the above table. First, compared with the baseline average
confidence (AC) method, applying VRP (AC+VRP) consumes an additional 2-4 seconds when the
test set size is 30k.

Second, the runtime of VRP increases almost linearly with the test set size. For example, VRP
runtime increases by 1.02 seconds and when the test set size increases from 5k to 30k.

E MORE EXPERIMENTS ON VARIANTS OF VICINAL RISK PROXY

We conduct experiments using different variants of the vicinal risk proxy on the ImageNet-R and
ObjectNet datasets. The experimental results in Table E2 show similar observations to those in the
main manuscript.

F VICINAL ASSESSMENT FOR DATA-CENTRIC UNSUPERVISED EVALUATION

As discussed in Section 4.4 of the main paper, vicinal assessment technically can be applied in
data-centric unsupervised evaluation by measuring scores of a fixed model on various test sets. To
evaluate this, we conduct experiments using two models, Efficientet-b2 and Inception-v4, obtained
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Table E2: Comparison of variants of vicinal risk proxy on ImageNet-R (Top) and ObjectNet
(Bottom). Notations follow Tab. 2 of the main submission.

Settings EI AC CI DoC ATC

γ ρ γ ρ γ ρ γ ρ γ ρ

Random (to do) 0.335 0.399 0.277 0.331 0.415 0.466 0.237 0.461 0.357 0.563
Equal 0.910 0.816 0.738 0.633 0.868 0.731 0.897 0.856 0.935 0.892
Dot product 0.955 0.932 0.817 0.729 0.925 0.861 0.909 0.896 0.966 0.948

None 0.816 0.743 0.704 0.606 0.874 0.731 0.889 0.825 0.894 0.786
Grey-scale 0.945 0.922 0.816 0.756 0.944 0.891 0.901 0.901 0.971 0.951
Color jitters 0.930 0.899 0.813 0.748 0.941 0.889 0.880 0.886 0.969 0.947
Rotation 0.955 0.932 0.817 0.729 0.925 0.861 0.909 0.896 0.966 0.948

Random 0.024 0.296 0.165 0.235 0.306 0.451 0.133 0.255 0.172 0.189
Equal 0.894 0.851 0.748 0.714 0.865 0.819 0.913 0.921 0.950 0951
Dot product 0.917 0.871 0.763 0.729 0.875 0.837 0.927 0.932 0.955 0.955

None 0.963 0.959 0.807 0.786 0.965 0.953 0.854 0.875 0.825 0.860
Grey-scale 0.958 0.965 0.835 0.819 0.955 0.939 0.845 0.851 0.859 0.876
Color jitters 0.955 0.937 0.833 0.804 0.948 0.924 0.844 0.862 0.864 0.880
Rotation 0.975 0.972 0.838 0.814 0.969 0.963 0.849 0.868 0.857 0.876

Table F3: Effectiveness of vicinal assessment in data-centric unsupervised evaluation. For each
model, the first row shows results of baseline risk proxies, while the second row gives results of their
vicinal assessments. γ and ρ have the same meaning as described in the main paper.

Model EI AC CI DoC ATC

γ ρ γ ρ γ ρ γ ρ γ ρ

Efficientnet-b2 0.932 0.976 0.987 0.993 0.919 0.965 0.987 0.992 0.933 0.939
0.942 0.979 0.989 0.994 0.918 0.961 0.989 0.994 0.937 0.938

Inception-V4 0.938 0.970 0.960 0.988 0.931 0.963 0.960 0.988 0.991 0.994
0.942 0.973 0.964 0.990 0.928 0.960 0.964 0.990 0.993 0.995

from the model zoo in Section A.1, on 95 testing sets sourced from the test set pool, ImageNet-C
(Hendrycks and Dietterich, 2019). The experimental results, showcasing the performance the vicinal
method under different risk proxies, are presented in Table F3.

Our main observation is that the correlation results obtained using vicinal samples are similar to
those relying merely on individual samples. In other words, there is no noticeable improvements
as opposed to those model-centric experiments in the main paper. In fact, as illustrated in Fig. 1-4,
vicinal proxies are helpful for distinguishing models w.r.t their OOD accuracy. Its limited capability
in distinguishing hard datasets from easy ones leads to the observations in Table F3.

G MORE VISUALIZATIONS OF IMPROVED CORRELATIONS

In Fig. 5 of the main manuscript, we visualized correlations between effective invariance (EI) and
accuracy and the improvement brought by vicinal proxies on the ImgeNet-R and ObjectNet datasets.
Here, we present more visualizations, using AC, CI, DOC and ATC proxies. Results are shown in
Fig. F4, Fig. F5 and Fig. F6. We observe that generally the proposed vicinal assessment allows more
models to get closer to the actual accuracy rank.
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Figure F4: Correlation between various risk proxies and accuracy on the ImgeNet-R dataset.
All notations in each figure have the same meanings as Fig. 5 of the main ppaer. We observe that
proposed vicinal assessment effectively rectifies the risk estimates for the majority of models under
various risk proxies.
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Figure F5: Correlation between various risk proxies and accuracy on the ObjectNet dataset.
Notations in each figure have the same meanings as Fig. 5 of the main paper. Our observations are
similar with those in Fig. F4.
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Figure F6: Correlation between various risk proxies and accuracy on the ImageNet-A dataset.
Notations in each figure have the same meanings as Fig. 5 of the main paper. Our observations are
similar with those in Fig. F4 and Fig. F5.
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