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APPENDIX A. CONTRASTIVE ROLE REPRESENTATION LEARNING

In this section, we give the proof of Theorem 1 in the text based on introducing a lemma as follows.

Lemma 1. Given a role from the distribution M ~ P(M), let e = f,(>, (o', a'™ 1)) as the agent
embedding generated by role M, and z ~ fo(z|e), where Y, (o', a’=1) is the agent’s local trajectory
following a given policy. Then, we have
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The proof is completed. O

Theorem 1. Let M denote a set of roles following the role distribution P(M), and (M| = K.

M € M is a given role. Let e = f4(3,(0",a'™1)), z ~ fo(zle), and h(e,z) = p}g(zz‘i), where

>, (o, a'~1) is the agent’s local trajectory following a given policy. For any role M* € M, let e*
denote the agent embedding generated by the role M*, then we have
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Thus, we complete the proof. [
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APPENDIX B. IMPLEMENTATION DETAILS AND EXTENDED EXPERIMENTS OF

QMIX-BASED ACORM

Based on the implementations in Section 2, we summarize the brief procedure of ACORM based on

QMIX in Algorithm

Algorithm 1: ACORM based on QMIX

Input: ¢: agent’s trajectory encoder
0: role encoder
K: number of clusters
T,;: time interval for updating contrastive loss
n: number of agents
B: replay buffer
T': time horizon of a learning episode
1 Initialize all network parameters
2 Initialize the replay buffer B for storing agent trajectories
3 for episode = 1,2, ... do

4 Initialize history agent embedding €?, and action vector a! for each agent
5 fort=1,2,....,T do
6 Obtain each agent’s partial observation the {of}”_; and global state s’
7 for agenti=1,2,...,ndo
8 Calculate the agent embedding e! = f, (o}, al™t, ef™t)
9 Calculate the role representation z! = fy(ef)
10 Select the local action a} according to individual Q-function Q;(e;, a)
1 end
12 Execute joint action a® = [af,a}, ...,a! ], and obtain global reward r*
13 end
14 Store the trajectory to B
15 Sample a batch of trajectories from B3
16 if episode mod T,; == 0 then
7 Partition agent embeddings {e!}-, into K clusters {C;}!*, using K-means
18 for agenti=1,2,....,ndo
19 | Construct positive keys {2y }i7cc;, and negative keys {z;- };-¢¢, for query z;,i€C}
20 end
21 Update contrastive learning loss according to Eq. (4)
2 Update momentum role encoder according to Eq. (5)
23 Calculate attention output Ty, Via prompting the global state to attend to role
representations {z; }7_; in Eqgs. (6)-(3)
24 Concatenate T,n, with state embedding 7 to form the input to the mixing network
25 Update the parameters of individual Q-network and the mixing network
26 end
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In this paper, we use simple network structures for the trajectory encoder, the role encoder, and
the attention mechanism. Specifically, the trajectory encoder contains a fully-connected multi-layer
perceptron (MLP) and a GRU network with ReL.U as the activation function, and encodes agent’s
trajectory into a 128-dimensional embedding vector. The role encoder is a fully-connected MLP
that transforms the 128-dimensional agent embedding into a 64-dimensional role representation.
The setting of the mixing network is kept as the same as that of QMIX (Rashid et al.| 2020), where
the architecture contains two 32-dimensional hidden layers with ReLU activation. Table [I] shows
the details of network structures.

For all tested algorithms, we use the Adam optimizer with a learning rate of 6e-4. For exploration,
we use the e-greedy strategy with € annealed linearly from 1.0 to 0.02 over 80k time steps and kept
constant for the rest of the training. Every time an entire episode from online interaction is collected
and stored in the buffer, the Q-networks are updated using a batch of 32 episodes sampled from
the replay buffer with a capacity of 5000 state transitions. The target Q-network is updated using
a soft update strategy with momentum coefficient 0.005. The contrastive learning loss is jointly
trained every 100 steps of the Q-network updates. The decentralized policy is evaluated every 5k
update steps with 32 episodes generated. For all domains, the number of clusters in ACORM is
set to K = 3. Appendix D provides an analysis on this hyperparameter, and the experiments show
that the performance of ACORM is not significantly affected by the value of K. The details of
hyperparameters can be found in Table 2]

Table 1: The network configurations used for ACORM based on QMIX.

Network Configurations Value Network Configurations Value
role representation dim 64 hypernetwork hidden dim 32
agent embedding dim 128 hypernetwork layers num 2
state embedding dim 64 type of optimizer Adam
attention output dim 64 activation function ReLU
attention head num 4 add last action True
attention embedding dim 128

Table 2: Hyperparameters used for ACORM based on QMIX.

Hyperparameter Value Hyperparameter Value
buffer size 5000 start epsilon €, 1.0
batch size 32 finish epsilon € 0.02
learning rate 6 x 1074 e decay steps 80000
use learning rate decay True evaluate interval 5000
contrastive learning rate 8 x 1074 evaluate times 32
momentum coefficient 3 0.005 target update interval 200
update contrastive loss interval T 100 discount factor 0.99
cluster num 3
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Figure 6: Extended performance comparison between ACORM and baselines on 12 SMAC maps.

Fig. [ presents the extended performance of ACORM on 12 SMAC maps. Obviously, the observa-
tions and conclusions from the extended performance are kept consistent with those in Sec. 3.1 of

the main paper.
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APPENDIX C. EXTENDED EXPERIMENTS ON GOOGLE RESEARCH FOOTBALL

In addition to SMAC environments, we also benchmark our approach on three challenging Google
research football (GRF) offensive scenarios as

* academy_3_vs_1_with_keeper: Three of our players try to score from the edge of the
box, one on each side, and the other at the center. Initially, the player at the center has the ball
and is facing the defender. There is an opponent keeper.

* academy_counterattack_hard: 4 versus 2 counter-attack with keeper; all the remaining
players of both teams run back towards the ball.

* academy_run_to_score_with_keeper: Our player starts in the middle of the field with
the ball, and needs to score against a keeper. Five opponent players chase ours from behind.

In GRF tasks, agents need to coordinate timing and positions for organizing offense to seize fleeting
opportunities, and only scoring leads to rewards. In our experiments, we control left-side players
except the goalkeeper. The right-side players are rule-based bots controlled by the game engine.
Agents have a discrete action space of 19, including moving in eight directions, sliding, shooting,
and passing. The observation contains the positions and moving directions of the ego-agent, other
agents, and the ball. The z-coordinate of the ball is also included. Environmental reward only occurs
at the end of the game. They will get 4100 if they win, else get —1.

Fig.[7] presents the performance comparison between ACORM and baselines on three challenging
GREF scenarios. It can be observed that QMIX obtains poor performance, since the tasks in GRF
are more challenging than in the SMAC benchmark. In contrast, ACORM gains a significantly im-
proved increase in the test win rate, especially in the first 1M training timesteps, which successfully
demonstrates the effectiveness of our method evaluated on GRF benchmarks. Together with evalua-
tions on SMAC domains, the same conclusion can still be drawn that ACORM outperforms baseline
methods by a larger margin on harder tasks that demand a significantly higher degree of behavior
diversity and coordination. In summary, experimental results on extended GRF environments are
generally consistent with those on the SMAC benchmark. .

Due to the very limited time for rebuttal revision, we only compare ACORM to QMIX and CDS, as
other baselines (RODE, EOI, MACC, CIA) are not evaluated on GRF in their original papers. Also,
we just show the performance within 2M training steps. We hope that the extended experimental
evaluation could demonstrate adequate persuasiveness of our method. We are rushing to conduct the
evaluation of baseline methods on GRF scenarios with more training timesteps, and trying to update
them before the rebuttal deadline.
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Figure 7: Performance comparison between ACORM and baselines on three GRF scenarios.
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APPENDIX D. ACORM BASED ON MAPPO

In addition, we realize ACORM on top of the MAPPO algorithm, as show in Fig.[8] Most of the
network structure is kept the same as QMIX-based ACORM, including the agent embedding, the role
encoder, and the attention mechanism. To align with MAPPO that uses an actor-critic architecture,
we input both the agent’s observation and the augmented global state s (obtained from the attention
mechanism in Fig. [§e)) into the critic, as shown in Fig. [§[a). Tables 3] and [ present the detailed
network structure and experimental hyperparameters, respectively.
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Figure 8: The ACORM framework based on MAPPO. (a) The overall architecture. (b) The shared
actor network structure for each agent, where the role representation is extracted from agent’s tra-
jectory. (c) The detail of learning role representations via contrasting learning. (d) The shared critic
network structure for each agent. (e) The attention module that incorporates learned role represen-
tations into value decomposition.

Table 3: The network configurations used for ACORM based on MAPPO.

Network Configurations Value Network Configurations Value
role representation dim 64 attention output dim 64
agent embedding dim 128 attention head num 4
state embedding dim 64 attention embedding dim 128
critic RNN hidden dim 64 type of optimizer Adam
add agent ID False activation ReLU
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Table 4: Hyperparameters used for ACORM based on MAPPO.

Hyperparameter Value Hyperparameter Value
batch size 32 entropy coefficient 0.02
mini batch size 32 cluster num 3
actor learning rate 6 x 10~*  discount factor y 0.99
critic learning rate 8 x 107*  momentum coefficient 3 0.005
contrastive learning rate 8 x 10~* evaluate interval 5000
update contrastive loss interval T¢; 32 evaluate times 32
clip 0.2 use advantage normalization  True
GAE lambda A 0.95 use learning rate decay False
K epochs 5
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Figure 9: Performance comparison between MAPPO-based ACORM and the MAPPO baseline on
representative maps, including two easy levels (2s3z, 3s5z), one hard level (5m_vs_6m), and
three super hard levels (MMM2, corridor, 3s5z_vs_3s62z).

Figure [9] presents the performance of MAPPO-based ACORM on six representative tasks: 2s3z,
3s5z, bm_vs_6m, MMM2, corridor, and 3s5z_vs_3s6z. It can be observed that ACORM
achieves a significant performance improvement over MAPPO. Akin to the QMIX-based version,
ACORM outperforms MAPPO by the largest margin on super hard maps that demand a signifi-
cantly higher degree of behavior diversity and coordination. Again, experimental results demon-

strate ACORM’s superiority of learning efficiency in complex multi-agent domains.
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APPENDIX E. HYPERPARAMETER ANALYSIS ON THE NUMBER OF CLUSTERS

We test the influence of the number of clusters K on ACROM’s performance. Fig.|10|shows the
performance of ACORM with varying values of K =2, 3,4, 5. Generally speaking, ACORM obtains
similar performance across different values of K. It demonstrates that ACORM achieves good
learning stability and robustness as the performance is insensitive to the pre-defined number of role
clusters. An outlier case is observed in the 5m_vs_6m map where the ACORM’s performance
drops a little when K = 5. This is likely because there are only 5 agents in 5m_vs_6m. When
K =5, each agent represents a distinct role cluster. It forces the strategies of each agent to diverge,
which might not be conductive to realize effective team composition across agents.
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Figure 10: Hyperparameter analysis on the number of clusters K in negative pairs generation.

To illustrate why ACORM performs well across different values of K, we show visualizations from
different learned ACORM policies with K = 3,4, 5 in Fig. ﬂ;fl When the clustering granularity is
coarse as K = 3 in Fig. ﬂ;fka), even within the same cluster, ACORM can still learn meaningful
role representations with distinguishable patterns. Agent embeddings of Marines {2, 3,4, 5,6,7, 8}
are crowded together with limited discrimination. Via contrastive learning, the obtained role rep-
resentations exhibit an interesting self-organized structure where Marines {2,5,6} and {3,4, 7,8}
implicitly form two distinctive sub-groups. It can be observed from the rendering scene that Marines
{2,5,6} and {3,4, 7,8} are all at an attacking stage, while the former sub-group is in lower health
than the latter. On the other hand, with a fine granularity of K" = 5 in Fig. [[T|c), the contrastive
learning module transforms clustered agent embeddings into more discriminative role representa-
tions. For example, while Marines 2, 3, 5, 6, 8, and 4, 7 form three clusters, their role representations
are still closer to each other and farther from Marauders {0, 1} and Medivac {9}, since they are the
same type of agents with similar behavior patterns. In summary, it again demonstrates that ACORM
learns meaningful role representations and achieves effective and robust team composition.
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Figure 11: Visualization with different number of clusters K in negative pairs generation.

21



Published as a conference paper at ICLR 2024

APPENDIX F. MORE ABLATION RESULTS

Figure presents the full ablation results of ACORM on all six representative maps. It again
demonstrates the significance of both the contrastive learning module and the attention mech-
anism for ACORM’s performance. A noteworthy point is that both ACORM_w/o_CL and
ACORM_w/o_MHA gain remarkable performance improvement by the largest margin on super
hard maps, which further validate ACORM’s advantages of promoting diversified behaviors and
skillful coordination in complex multi-agent tasks. Another interesting observation is that when
omitting the contrastive learning module, there is a notable increase in the variance of learning
curves. It can be interpreted as an evidence that contrastive learning helps training more robust role
representations and enhances learning stability.
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Figure 12: Full ablation results on ACORM. ACORM_w/o_CL means removing contrastive learn-
ing, ACORM_w/o_MHA represents excluding attention, ACORM_w/o_MHA (Vanilla) represents
excluding attention and state encoding, and QMIX corresponds to removing all components.
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APPENDIX G. MORE INSIGHTS ON CONTRASTIVE REPRESENTATION
LEARNING

Based on Section 3.2, here we provide more insights on the effectiveness of learned role represen-
tations. Indeed, one reason for ACORM'’s significant improvement on learning efficiency comes
from its capability of facilitating implicit knowledge transfer across similar agents throughout the
entire learning process. For example, Marines {2, 3,4, 5,6, 7} form a group at t = 1, Marauders
{0, 1} and Marines {2,4,6,7,8} form a group at ¢ = 12, and Marines {2, 3, 4,6, 7} form a group
at ¢t = 40. It can be observed from the rendering scenes that these three groups are all responsible
for attacking enemies. At different time steps, agents in the attacking group can share similar role
representations to promote knowledge transfer, even if they belong to heterogeneous agent types.
This implicit transfer across agents and across timesteps can significantly increase the exploration
efficiency of agents.

Another highlight of ACORM is the promotion of behavior heterogeneity, even if agents have the
same innate characteristics. For example, while Marines {2, 3, 4, 5, 6, 7, 8} belong to the same agent
type, they are distributed to different groups with heterogeneous roles as: 1) at ¢ = 12, Marines
{2,4,6,7,8} with role of attacking, and Marines {3} and {3} with role of the wounded; and 2)
at t = 40, Marines {2, 3,4, 6, 7} with role of attacking, and Marines {5} and {8} with role of the
dead. In general, even though some information is lost during dimension reduction using t-SNE, it
is evident that our role representation still manages to exhibit such remarkable results.
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Figure 13: Example rendering scenes at three time steps in an evaluation trajectory generated by
the trained ACORM policy on MMM2. The upper row shows screenshots of combat scenarios that
contain the information of positions, health points, shield points, states of ally and enemy units,
etc. The lower row visualizes the corresponding agent embeddings (denoted with bullets ‘e’) and
role representations (denoted with stars ‘x’) by projecting these vectors into 2D space via t-SNE for
qualitative analysis, where agents within the same cluster are depicted using the same color.
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