Large Language Models
Can Implement Policy Iteration

Ethan Brooks', Logan Walls?, Richard L. Lewis?, Satinder Singh'
!Computer Science and Engineering, University of Michigan
2Department of Psychology, University of Michigan
{ethanbro,logwalls,rickl,baveja}@umich.edu

Abstract

In this work, we demonstrate a method for implementing policy iteration using a
large language model. While the application of foundation models to Reinforce-
ment Learning (RL) has received considerable attention, most approaches rely
on either (1) the curation of expert demonstrations (through manual design or
task-specific pretraining) or (2) adaptation to the task of interest using gradient
methods (fine-tuning or training of adapter layers). Both of these techniques have
drawbacks. Collecting demonstrations is labor-intensive, and algorithms that rely
on them do not outperform the experts from which the demonstrations were de-
rived. Gradient techniques are inherently slow, sacrificing the “few-shot” quality
that makes in-context learning attractive to begin with. Our method demonstrates
that a large language model can be used to implement policy iteration using the
machinery of in-context learning, enabling it to learn to perform RL tasks without
expert demonstrations or gradients. Our approach iteratively updates the contents
of the prompt from which it derives its policy through trial-and-error interaction
with an RL environment. In order to eliminate the role of in-weights learning (on
which approaches like Decision Transformer (L. Chen et al.|2021)) rely heavily),
we demonstrate our method using Codex (M. Chen et al.[2021b)), a language model
that was not trained to perform the tasks which we are evaluating.

1 Introduction

In many settings, models implemented using a transformer or recurrent architecture will improve their
performance as information accumulates in their context or memory. We refer to this phenomenon as
“in-context learning.” Brown et al.|2020b/demonstrated a technique for inducing form of learning by
prompting a large language model with a small number of input/output exemplars. An interesting
property of in-context learning in the case of large pre-trained models (or “foundation models™) is
that the models are not directly trained to optimize a meta-learning objective, but demonstrate an
emergent capacity to generalize (or at least specialize) to diverse downstream task-distributions (Wei
et al. 2022b).

This remarkable capability has been studied in a variety of settings, including Reinforcement Learning
(RL). However, most work in this area either (1) assumes access to expert demonstrations — collected
either from human experts (Huang et al.[2022b}, Baker et al.[2022), or domain-specific pre-trained RL
agents (L. Chen et al.[2021} Lee et al. 2022; Janner et al. 2021; Reed et al.|[2022; Xu et al.[2022). —
or (2) relies on gradient-based methods — e.g. fine-tuning of the foundation models parameters as
a whole (Lee et al. 2022; Reed et al. [2022} Baker et al.|2022) or newly training an adapter layer or
prefix vectors while keeping the original foundation models frozen (X. L. Li et al. 2021; A. K. Singh
et al.[2022; Karimi Mahabadi et al. [2022).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

For each action in {A(1), ..., A(n)}:

arg maxg,

Qs AL) = Ty

Qs A(n)) = S 4t

Environment

Figure 1: For each possible action A(1),...,.A(n), the LLM generates a rollout by alternately
predicting transitions and selecting actions. Q-value estimates are discounted sums of rewards. The
action is chosen greedily with respect to Q-values. Both state/reward prediction and next action
selection use trajectories from D to create prompts for the LLM. Changes to the content of D change
the prompts that the LLM receives, allowing the model to improve its behavior over time.

Our work demonstrates an approach to in-context learning which relaxes these assumptions. Our
method, In-Context Policy Iteration (ICPI), implements policy iteration using the prompt content,
instead of the model parameters, as the locus of learning, thereby avoiding gradient methods. Further-
more, the use of policy iteration frees us from expert demonstrations because suboptimal prompts
can be improved over the course of training.

We illustrate the method empirically on six small illustrative RL tasks— chain, distractor-chain,
maze, mini-catch, mini-invaders, and point-mass—in which the method very quickly finds good
policies. We also compare five pretrained Large Language Models (LLMs), including two different
size models trained on natural language—OPT-30B and GPT-J—and three different sizes of a model
trained on program code—two sizes of Codex as well as InCoder. On our six domains, we find
that only the largest model (the code-davinci-001 variant of Codex) consistently demonstrates
learning.

2 Related Work

A common application of foundation models to RL involves tasks that have language input, for
example natural language instructions/goals (D. Garg et al.[2022; Hill et al. [2020)) or text-based games
(Peng et al. 2021} I. Singh et al. 2021; Majumdar et al. 2020; Ammanabrolu et al. 2021)). Another
approach encodes RL trajectories into token sequences, and processes them with a foundation model,
model representations as input to deep RL architectures (S. Li et al. 2022; Tarasov et al. 2022}
Tam et al.2022)). Finally, a recent set of approaches (which we will focus on in this Related Work
section) treat RL as a sequence modeling problem and use the foundation models itself to predict
states or actions. In this related work section, we will focus a third set of recent approaches that
treat reinforcement learning (RL) as a sequence modeling problem and utilize foundation models
for state prediction, action selection, and task completion. We will organize our survey of these
approaches based on how they elicit these RL-relevant outputs from the foundation models. In this
respect the approaches fall under three broad categories: learning from demonstrations, specialization
(via training or finetuning), and context manipulation (in-context learning).

2.1 Learning from demonstrations

Many recent sequence-based approaches to reinforcement learning use demonstrations that come
either from human experts or pretrained RL agents. For example, Huang et al.[2022b|use a frozen
LLM as a planner for everyday household tasks by constructing a prefix from human-generated
task instructions, and then using the LLM to generate instructions for new tasks. This work is
extended by Huang et al.|2022a, Similarly, Ahn et al. 2022/ use a value function that is trained on

human demonstrations to rank candidate actions produced by an LLM. Baker et al.[2022|use human
demonstrations to train the foundation model itself: they use video recordings of human Minecraft
players to train a foundation models that plays Minecraft. Works that rely on pretrained RL agents
include Janner et al.|[2021| who train a “Trajectory Transformer” to predict trajectory sequences in
continuous control tasks by using trajectories generated by pretrained agents, and L. Chen et al. 2021
who use a dataset of offline trajectories to train a “Decision Transformer” that predicts actions from
state-action-reward sequences in RL environments like Atari. Two approaches build on this method
to improve generalization: Lee et al. 2022 use trajectories generated by a DQN agent to train a single
Decision Transformer that can play many Atari games, and Xu et al. 2022|use a combination of
human and artificial trajectories to train a Decision Transformer that achieves few-shot generalization
on continuous control tasks. Reed et al. [2022]take task-generality a step farther and use datasets
generated by pretrained agents to train a multi-modal agent that performs a wide array of RL (e.g.
Atari, continuous control) and non-RL (e.g. image captioning, chat) tasks.

Some of the above works include non-expert demonstrations as well. L. Chen et al.[2021|include
experiments with trajectories generated by random (as opposed to expert) policies. Lee et al.[2022
and Xu et al.|2022|also use datasets that include trajectories generated by partially trained agents in
addition to fully trained agents. Like these works, our proposed method (ICPI) does not rely on expert
demonstrations—but we note two key differences between our approach and existing approaches.
Firstly, ICPI only consumes self-generated trajectories, so it does not require any demonstrations
(like L. Chen et al. 2021 with random trajectories, but unlike Lee et al. 2022, Xu et al.[2022, and the
other approaches reviewed above). Secondly, ICPI relies primarily on in-context learning rather than
in-weights learning to achieve generalization (like Xu et al. [2022| but unlike L. Chen et al. 2021 &
Lee et al.[2022). For discussion about in-weights vs. in-context learning see Chan et al.|2022.

2.2 Gradient-based training & finetuning on RL tasks

Many approaches that use foundation models for RL involve specifically training or fine-tuning on
RL tasks. For example, Janner et al. 2021} L. Chen et al.[2021; Lee et al. 2022; Xu et al. 2022; Baker
et al. 2022} Reed et al. 2022/ all use models that are trained from scratch on tasks of interest, and
A. K. Singh et al. |2022; Ahn et al. 2022} Huang et al.[2022a combine frozen foundation models with
trainable components or adapters. In contrast, Huang et al. 2022b|use frozen foundation models for
planning, without training or fine-tuning on RL tasks. Like Huang et al.[2022b| ICPI does not update
the parameters of the foundation model, but relies on the frozen model’s in-context learning abilities.
However, ICPI gradually builds and improves the prompts within the space defined by the given fixed
text-format for observations, actions, and rewards (in contrast to Huang et al. 2022bj, which uses the
frozen model to select good prompts from a given fixed library of goal/plan descriptions).

2.3 In-Context learning

Several recent papers have specifically studied in-context learning. Laskin et al.|[2022|demonstrates
an approach to performing in-context reinforcement learning by training a model on complete RL
learning histories, demonstrating that the model actually distills the improvement operator of the
source algorithm. Chan et al. 2022/ and S. Garg et al. 2022 provide analyses of the properties that
drive in-context learning, the first in the context of image classification, the second in the context of
regression onto a continuous function. These papers identify various properties, including “burstiness,”
model-size, and model-architecture, that in-context learning depends on. Y. Chen et al. [2022|studies
the sensitivity of in-context learning to small perturbations of the context. They propose a novel
method that uses sensitivity as a proxy for model certainty. Some recent work has explored iterative
forms of in-context learning, similar to our own. For example, Shinn et al.2023|and Madaan et al.
2023| use iterative self-refinement to improve the outputs of a large language model in a natural
language context. These approaches rely on the ability of the model to examine and critique its own
outputs, rather than using policy iteration as our method does.

3 Method

How can standard policy iteration make use of in-context learning? Policy iteration is either model-
based—using a world-model to plan future trajectories in the environment—or model-free—inferring
value-estimates without explicit planning. Both methods can be realized with in-context learning.

Algorithm 2 Computing Q-values

1: function Q(o¢, a, D)

2: u <41

3 o) = O

4: a =q

5: repeat > All samples come from the experience buffer D
6 Dy, ~ time-steps with action a(*) > balancing terminal and non-terminal
7 b ~ LLM (Dy, 0™, a¥)

8 D,. ~ time-steps with action a(*) and termination b(*) > balancing reward
9: r(W ~ LLM (D,, 0™, a(¥)
10: D, ~ time-steps with action a(*) and termination b(*) > no balancing
11: ol ~ LLM (D,, 0™, a()
12: D,, ~ crecent trajectories

13: a1 ~ LLM (o+1), D,)

14: u—u+1

15: until 5(*) is terminal

16: return) ,_, yF1r®

17: end function

We choose model-based learning because planned trajectories make the underlying logic of value-
estimates explicit to our foundation model backbone, providing a concrete instantiation of a trajectory
that realizes the values. This ties into recent work (Wei et al.[2022a; Nye et al. 2021)) demonstrating
that “chains of thought” can significantly improve few-shot performance of foundation models.

Model-based RL requires two ingredients, a rollout-policy used to act during planning and a world-
model used to predict future rewards, terminations, and states. Since our approach avoids any
mutation of the foundation model’s parameters (this would require gradients), we must instead
induce the rollout-policy and the world-model using in-context learning, i.e. by selecting appropriate
prompts. We induce the rollout-policy by prompting the foundation model with trajectories drawn
from the current (or recent) behavior policy (distinct from the rollout-policy). Similarly, we induce
the world-model by prompting the foundation models with transitions drawn from the agent’s history
of experience. Note that our approach assumes access to some translation between the state-space of
the environment and the medium (language, images, etc.) of the foundation models. This explains
how an algorithm might plan and estimate values using a foundation model. It also explains how the
rollout-policy approximately tracks the behavior policy.

How does the policy improve? When acting in the environment (as opposed to planning), we choose
the action that maximizes the estimated Q-value from the current state (see[Training Loop|pseudocode,
line 6). At time step t, the agent observes the state of the environment (denoted s;) and executes

action a; = arg maxge 4 Q™) (0;,a), where A = {A(1),--- ,.A(n)} denotes the set of n actions

Algorithm 1 Training Loop

1: function TRAIN(environment)

2 initialize D > replay buffer containing full history of behavior
3 while training do

4: 0o < Reset environment.

5: while episode is not done do

6: ay < arg max, Q(o¢, a, D) > policy improvement
7 0t+1,7t, by + Execute a; in environment.

8: t—t+1

9: end while
10: D + DU (00, a0, 70, b0, 014 - - -, Ot, Gt, T't, by, 0¢41) > add trajectory to buffer
11: end while
12: end function

available, 7, denotes the policy of the agent at time step ¢, and Q(™) denotes the Q-estimate for policy
m. Taking the greedy (arg max) actions with respect to Q™* implements a new and improved policy.

Computing Q-values This section provides details on the prompts that we use in our computation
of Q-values (see [Computing Q-values| pseudocode & Figure[I)). During training, we maintain a
buffer D of transitions experienced by the agent. To compute Q™) (0, a) at time step ¢ in the
real-world we rollout a simulated trajectory o!) = o;, a(t) = a, r(1), 02, ¢ 2 ... (1) (1)
(™), oT+1) by predicting, at each simulation time step u: reward r(*) ~ LLM (D, 0", a(");
termination b(*) ~ LLM (Db7 o), a(“)); observation o(*t1) ~ LLM (Do, o), a(“)); action
aV ~ LLM (D,, o). Termination b(*) decides whether the simulated trajectory ends at step u.

—~

S

The prompts D,., Dy, contain data sampled from the replay buffer. For each prompt, we choose some
subset of replay buffer transitions, shuffle them, convert them to text (examples are provided in table
@.T) and clip the prompt at the 4000-token Codex context limit. We use the same method for D,
except that we use random trajectory subsequences.

In order to maximize the relevance of the prompt contents to the current inference we select transitions
using the following criteria. Dy, contains (o, ax, by) tuples such that ay equals a(®), the action for
which the LLM must infer termination. D,. contains (o, ax, i) tuples, again constraining aj, = a(®)
but also constraining by, = b(*) — that the tuple corresponds to a terminal time-step if the LLM
inferred b*) = true, and to a non-terminal time-step if b(*) = false. For D,, the prompt includes
(0K, ak0k+1) tuples with ap = a(® and by, = false (only non-terminal states need to be modelled).

We also maintain a balance of certain kinds of transitions in the prompt. For termination prediction,
we balance terminal and non-terminal time-steps. Since non-terminal time-steps far outnumber
terminal time-steps, this eliminates a situation wherein the randomly sampled prompt time-steps
are entirely non-terminal, all but ensuring that the LLM will predict non-termination. Similarly, for
reward prediction, we balance the number of time-steps corresponding to each reward value stored in
D. In order to balance two collections of unequal size, we take the smaller and duplicate randomly
chosen members until the sizes are equal.

In contrast to the other predictions, we condition the rollout policy on trajectory subsequences, not
individual time-steps. Prompting with sequences better enables the foundation model to apprehend the
logic behind a policy. Trajectory subsequences consist of (oy, ax) pairs, randomly clipped from the ¢
most recent trajectories. More recent trajectories will, in general demonstrate higher performance,
since they come from policies that have benefited from more rounds of improvement.

In contrast to the other predictions, we condition the rollout policy on trajectory subsequences, not
individual time-steps. Prompting with sequences better enables the foundation model to apprehend the
logic behind a policy. Trajectory subsequences consist of (oy, ax) pairs, randomly clipped from the ¢
most recent trajectories. More recent trajectories will, in general demonstrate higher performance,
since they come from policies that have benefited from more rounds of improvement.

Finally, the Q-value estimate is simply the discounted sum of rewards for the simulated episode.
Given this description of Q-value estimation, we now return to the concept of policy improvement.

Policy-Improvement The arg max (line 6 of Algorithm (1)) drives policy improvement in ICPI.
Critically this is not simply a one-step improvement but a mechanism that builds improvement on top
of improvement. This occurs through a cycle in which the arg max improves behavior. The improved
behavior is stored in the buffer D, and then used to condition the rollout policy. This improves
the returns generated by the LLM during planning rollouts. These improved rollouts improve the
Q-estimates for each action. Completing the cycle, this improves the actions chosen by the arg max.
Because this process feeds into itself, it can drive improvement without bound until optimality is
achieved.

Note that this process takes advantage of properties specific to in-context learning. In particular, it
relies on the assumption that the rollout policy, when prompted with trajectories drawn from a mixture
of policies, will approximate something like an average of these policies. Given this assumption,
the rollout policy will improve with the improvement of the mixture of policies from which its
prompt-trajectories are drawn. This results in a kind of rapid policy improvement that works without
any use of gradients.

Algorithms
= ICPI = No ArgMax - Tabular Q = Matching Model
Chain Distractor Chain Maze Mini Catch Mini Invaders Point Mass

o\

0O 20 40 60800 40 801200 40 80 120 O 80 160 240 O 80 160 0 80 160
step step step step step step

e

Figure 2: Comparison of ICPI with three baselines, “No arg max”, “Tabular Q,” and “Nearest
Neighbor.” The y-axis depicts regret (normalized between 0 and 1), computed relative to an optimal
return with a discount-factor of 0.8. The z-axis depicts time-steps during training. Error bars are
standard errors from four seeds.

Prompt-Format The LLM cannot take non-linguistic prompts, so our algorithm assumes access to
a textual representation of the environment—of states, actions, terminations, and rewards—and some
way to recover the original action, termination, and reward values from their textual representation
(we do not attempt to recover states). Since our primary results use the Codex language model (see
Table [T)), we use Python code to represent these values (examples are available in Table [2]in the
appendix).

In our experiments, we discovered that the LLM world-model was unable to reliably predict rewards,
terminations, and next-states on some of the more difficult environments. We experimented with
providing domain hints in the form of prompt formats that make explicit useful information — similar
to Chain of Thought Prompting (Wei et al. [2022a)). For example, for the chain domain, the hint
includes an explicit comparison (== or !=) of the current state with the goal state. Note that while
hints are provided in the initial context, the LLM must infer the hint content in rollouts generated
from this context.

We use a consistent idiom for rewards and terminations, namely assert reward == x and assert
done or assert not done. Some decisions had to be made when representing states and actions. In
general, we strove to use simple, idiomatic, concise Python. On the more challenging environments,
we did search over several options for the choice of hint. For examples, see Table 2] We anticipate
that in the future, stronger foundation models will be increasingly robust to these decisions.

4 Experiments

We have three main goals in our experiments: (1) Demonstrate that the agent algorithm can in fact
quickly learn good policies, using pretrained LLMs, in a set of six simple illustrative domains of
increasing challenge; (2) provide evidence through an ablation that the policy-improvement step—
taking the arg max over Q-values computed through LLM rollouts—accelerates learning; and (3)
investigate the impact of using different LLMs (see Table [[)—different sizes and trained on different
data, in particular, trained on (mostly) natural language (GPT-3 and GPT-J) vs. program code (Codex
and InCoder). We next describe the six domains and their associated prompt formats, and then
describe the experimental methodology and results.

4.1 Domains and prompt format

Chain. In this environment, the agent occupies an 8-state chain. The agent has three actions: Lef?,
right, and try goal. The try goal action always terminates the episode, conferring a reward of 1 on
state 4 (the goal state) and O on all other states. Episodes also terminate after 8 time-steps. States
are represented as numbers from O to 7, as in assert state == n, with the appropriate integer
substituted for n. The actions are represented as functions left (), right (), and try_goal (). For
the hint, we simply indicate whether or not the current state matches the goal state, 4.

Distractor Chain. This environment is an 8-state chain, identical to the chain environment, except
that the observation is a pair of integers, the first indicating the true state of the agent and the second
acting as a distractor which transitions randomly within {0, . .., 7}. The agent must therefore learn to
ignore the distractor integer and base its inferrences on the information contained in the first integer.

Aside from the addition of this distractor integer to the observation, all text representations and hints
are identical to the chain environment.

Maze. The agent navigates a small 3 x 3 gridworld with obstacles. The agent can move up, down,
left, or right. The episode terminates with a reward of 1 once the agent navigates to the goal grid,
or with a reward of O after 8 time-steps. This environment tests our algorithms capacity to handle
2-dimensional movement and obstacles, as well as a 4-action state-space. We represent the states as
namedtuples — C(x, y), with integers substituted for x and y. Similar to chain, the hint indicates
whether or not the state corresponds to the goal state.

Mini Catch. The agent operates a paddle to catch a falling ball. The ball falls from a height of 5
units, descending one unit per time step. The paddle can stay in place (not move), or move left or
right along the bottom of the 4-unit wide plane. The agent receives a reward of 1 for catching the ball
and O for other time-steps. The episode ends when the ball’s height reaches the paddle regardless
of whether or not the paddle catches the ball. We chose this environment specifically to challenge
the action-inference/rollout-policy component of our algorithm. Specifically, note that the success
condition in Mini Catch allows the paddle to meander before moving under the ball—as long as it
gets there on the final time-step. Successful trajectories that include movement away from the ball
thus make a good rollout policies more challenging to learn (i.e., elicit from the LLM via prompts).
Again, we represent both the paddle and the ball as namedtuples C(x, y) and we represent actions
as methods of the paddle object: paddle.stay(), paddle.left(), and paddle.right (). For
the hint, we call out the location of the paddle’s x-position, the ball’s z-position, the relation between
these positions (which is larger than which, or whether they are equal) and the ball’s y-position.
Table[2|in the appendix provides an example. We also include the text ball.descend () to account
for the change in the ball’s position between states.

Mini Invaders. The agent operates a ship that shoots down aliens which descend from the top
of the screen. At the beginning of an episode, two aliens spawn at a random location in two of four
columns. The episode terminates when an alien reaches the ground (resulting in O reward) or when
the ship shoots down both aliens (the agent receives 1 reward per alien). The agent can move left,
right, or shoot. This domain highlights ICPI’s capacity to learn incrementally, rather than discovering
an optimal policy through random exploration and then imitating that policy, which is how our “No
arg max’” baseline learns (see|Comparison of ICPI with baseline algorithms)). ICPI initially learns to
shoot down one alien, and then builds on this good but suboptimal policy to discover the better policy
of shooting down both aliens. In contrast, random exploration takes much longer to discover the
optimal policy and the “No arg max” baseline has only experienced one or two successful trajectories
by the end of training.

We represent the ship by its namedtuple coordinate (C(x, y)) and the aliens as a list of these
namedtuples. When an alien is shot down, we substitute None for the tuple, as in aliens ==
[C(x, y), None]. We add the text for a in aliens: a.descend() in order to account for
the change in the alien’s position between states.

Point-Mass. A point-mass spawns at a random position on a continuous line between —6 and
+6 with a velocity of 0. The agent can either accelerate the point-mass (increase velocity by 1) or
decelerate it (decrease the velocity by 1). The point-mass position changes by the amount of its
velocity each timestep. The episode terminates with a reward of 1 once the point-mass is between —2
and +2 and its velocity is O once again. The episode also terminates after 8 time-steps. This domain
tests the algorithm’s ability to handle continuous states.

States are represented as assert pos == p and vel == v, substituting floats rounded to two
decimals for p and v. The actions are accel (pos, vel) and decel(pos, vel). The hintindicates
whether the success conditions are met, namely the relationship of pos to —2 and +2 and the whether
or not vel == 0. The hint includes identification of the aliens’ and the ship’s z-positions as well as
a comparison between them.

4.2 Experiment Methodology and Results

Methodology and evaluation. For the results, we record the agent’s regret over the course of
training relative to an optimal policy computed with a discount factor of 0.8. For all experiments

Ablations
= ICPI = No Hints - c=16 = No Constraints = No Balance

Chain Distractor Chain Maze Mini Catch Mini Invaders Point Mass

e S

0 20 40 60 86 0 40 80120 0 40 8‘0’ 1720k 0 80 160 240 O 80 160 0 80 160
step step step step step step

Figure 3: Comparison of ICPI with ablations. The y-axis depicts regret (normalized between 0 and
1), computed relative to an optimal return with a discount-factor of 0.8. The z-axis depicts time-steps
during training. Error bars are standard errors from four seeds.

¢ = 8 (the number of most recent successful trajectories to include in the prompt). We did not have
time for hyperparameter search and chose this number based on intuition. However the ¢ = 16
baseline demonstrates results when this hyperparameter is doubled. All results use 4 seeds.

For both versions of Codex, we used the OpenAl Beta under the API Terms of Use. For GPT-J (B.
Wang et al. 2021) , InCoder (Fried et al. [2022) and OPT-30B (Zhang et al. 2022), we used the
open-source implementations from Huggingface Transformers (Wolf et al. [2020), each running
on one Nvidia A40 GPU. All language models use a sampling temperature of 0.1. Code for our
implementation is available at https://github. com/ethanabrooks/icpil

Comparison of ICPI with baseline algorithms. We compare ICPI with three baselines (Fig. [2).

The “No arg max” baseline learns a good policy through random exploration and then imitates this
policy. This baseline assumes access to a “success threshold” for each domain — an undiscounted
cumulative return greater than which a trajectory is considered successful. The action selection
mechanism emulates ICPI’s rollout policy: prompting the LLM with a set of trajectories and eliciting
an action as output. For this baseline, we only include trajectories in the prompt whose cumulative
return exceeds the success threshold. Thus the policy improves as the number of successful trajectories
in the prompt increases over time. Note that at the start of learning, the agent will have experienced too
few successful trajectories to effectively populate the policy prompt. In order to facilitate exploration,
we act randomly until the agent experiences 3 successes.

“Tabular Q” is a standard tabular Q-learning algorithm, which uses a learning rate of 1.0 and opti-
mistically initializes the Q-values to 1.0.

“Matching Model” is a baseline which uses the trajectory history instead of an LLM to perform
modelling. This baseline searches the trajectory buffer for the most recent instance of the current
state, and in the case of transition/reward/termination prediction, the current action. If a match is
found, the model outputs the historical value (e.g. the reward associated with the state-action pair
found in the buffer). If no match is found, the modelling rollout is terminated. Recall that ICPI breaks
ties randomly during action selection so this will often lead to random action selection.

As our results demonstrate, only ICPI learns good policies on all domains. We attribute this advantage
to ICPI’s ability to generalize from its context to unseen states and state/action pairs (unlike “Tabular
Q” and “Matching Model”). Unlike “No arg max” ICPI is able to learn progressively, improving the
policy before experiencing good trajectories.

Ablation of ICPI components. With these experiments, we ablate those components of the
algorithm which are not, in principle, essential to learning (Fig. [3). “No Hints” ablates the hints
described in the [Prompt-Format| paragraph. “No Balance” removes the balancing of different kinds of
time-steps described in the [Computing Q-values| paragraph (for example, D, is allowed to contain an
unequal number of terminal and non-terminal time-steps). The “No Constraints” baseline removes
the constraints on these time-steps described in the same paragraph. For example, D,. is allowed to
contain a mixture of terminal and non-terminal time-steps (regardless of the model’s termination
prediction). Finally, “c = 16” prompts the rollout policy with the last 16 trajectories (instead of the
last 8, as in ICPI). We find that while some ablations match ICPI’s performance in several domains,
none match its performance on all six.

https://github.com/ethanabrooks/icpi

Language Models
= code-davinci-002 - code-cushman-001 - OPT-30B = InCoder - GPT-J

Chain Distractor Chain Maze Mini Catch Mini Invaders Point Mass
‘_'0.8
0.6}
go.4
0 20 40 60800 40 801200 40 80 120 0O 80 160 240 O 80 160 0 80 160
step step step step step step

Figure 4: Comparison of different language models used to implement ICPI. The y-axis depicts regret
(normalized between 0 and 1), computed relative to an optimal return with a discount-factor of 0.8.
The z-axis depicts time-steps of training. Error bars are standard errors from four seeds.

Comparison of Different Language Models. While our lab lacks the resources to do a full study
of scaling properties, we did compare several language models of varying size (Fig. @). See Table[T]
for details about these models. Both code-davinci-002 and code-cushman-001 are variations of
the Codex language model. The exact number of parameters in these models is proprietary according
to OpenAl, but M. Chen et al.|2021aldescribes Codex as fine-tuned from GPT-3 (Brown et al.|[2020a)),
which contains 185 billion parameters. As for the distinction between the variations, the OpenAl
website describes code-cushman-001 as “almost as capable as Davinci Codex, but slightly faster.”

We found that the rate of learning and final performance of the smaller models fell significantly short
of Codex on all but the simplest domein, chain. Examining the trajectories generated by agents
trained using these models, we noted that in several cases, they seemed to struggle to apprehend
the underlying “logic” of successful trajectories, which hampered the ability of the rollout policy to
produce good actions. Since these smaller models were not trained on identical data, we are unable
to isolate the role of size in these results. However, the failure of all of these smaller models to learn
suggests that size has some role to play in performance. We conjecture that larger models developed
in the future may demonstrate comparable improvements in performance over our Codex model.

Limitations ICPI can theoretically work on any control task with discrete actions, due to the
guarantees associated with policy iteration. However, since our implementation uses Codex, the
domains in our paper were limited by the ability to encode states as text and to fit these encodings in
the model’s context window. Moreover, Codex demonstrated a limited ability to predict transitions
and actions in more complex domains. As sequence models mature, we anticipate that more domains
will become tractable for ICPI. We also note that reliance on the proprietary OpenAPI API limits
exact reproduction of these results.

Societal Impacts An extensive literature (Tamkin et al.2021; Abid et al. 2021; Liang et al. 2021}
Pan et al. |2023) has explored the possible positive and negative impacts of LLMs. Some of this
work has explored mitigation strategies. In extending LLMs to RL, our work inherits these benefits
and challenges. We highlight two concerns: the use of LLMs to spread misinformation and the
detrimental carbon cost of training and using these models.

5 Conclusion

Our main contribution is a method for implementing policy iteration algorithm using Large Language
Models and the mechanism of in-context learning. The algorithm uses a foundation models as both
a world model and policy to compute Q-values via rollouts. Although we presented the method
here as text-based, it is general enough to be applied to any foundation models that works through
prompting, including multi-modal models like Reed et al.|2022| and Seo et al.[2022| In experiments
we showed that the algorithm works in six illustrative domains imposing different challenges for
ICPI, confirming the benefit of the LLM-rollout-based policy improvement. While the empirical
results are preliminary, we believe the approach provides an important new way to use LLMs that
will increase in effectiveness as the models themselves become more powerful.

Table 1: Pretrained Large Language Models (LLMs) Used in Experiments

Model Parameters Training data

“The Pile” (Leo Gao et al.|2020), an 825GB En-

GPT-J (B. Wang et al.|2021) 6 billion glish corpus incl. Wikipedia, GitHub, academic
pubs
InCoder (Fried et al. [2022) 6.7 billion 159 GB of open-source StackOverflow code

180B tokens of predominantly English data in-
OPT-30B (Zhang et al.[2022) 30 billion cluding “The Pile” (Leo Gao et al.[2020) and
“PushShift.io Reddit” (Baumgartner et al.2020)

Codex (M. Chen et al.[2021a) 185 billion 179 GB of GitHub code

References

[1] Abubakar Abid et al. “Persistent anti-muslim bias in large language models”. In: Proceedings
of the 2021 AAAI/ACM Conference on Al, Ethics, and Society. 2021, pp. 298-306.

[2] Michael Ahn et al. Do As I Can, Not As I Say: Grounding Language in Robotic Affordances.
arXiv:2204.01691 [cs]. Apr. 2022. DOI: |10 . 48550 / arXiv . 2204 . 01691, URL: http :
//arxiv.org/abs/2204.01691 (visited on 08/09/2022).

[3] Prithviraj Ammanabrolu et al. “Learning Knowledge Graph-based World Models of Tex-
tual Environments”. In: Advances in Neural Information Processing Systems. Vol. 34. Cur-
ran Associates, Inc., 2021, pp. 3720-3731. URL: https://proceedings .neurips.cc/
paper/2021/hash/1e747ddbea997a1b933aaf58a7953c3c-Abstract.html (visited on
05/16/2022).

[4] Bowen Baker et al. Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online
Videos. arXiv:2206.11795 [cs]. June 2022. DOI: 10 . 48550 / arXiv . 2206 . 11795, URL:
http://arxiv.org/abs/2206.11795 (visited on 08/09/2022).

[5] Jason Baumgartner et al. The Pushshift Reddit Dataset. Number: arXiv:2001.08435
arXiv:2001.08435 [cs]. Jan. 2020. DOI: |10 . 48550 / arXiv . 2001 . 08435, URL: http :
//arxiv.org/abs/2001.08435|(visited on 08/02/2022).

[6] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in Neural Informa-
tion Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 1877-1901. URL: https:
/ / papers . nips . cc / paper / 2020 / hash / 1457c0d6bf cb4967418bfb8ac142f64a -
Abstract.html|(visited on 05/14/2022).

[7] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural information
processing systems 33 (2020), pp. 1877-1901.

[8] Stephanie C.Y. Chan et al. Data Distributional Properties Drive Emergent In-Context Learning
in Transformers. arXiv:2205.05055 [cs]. May 2022. DOI:|10.48550/arXiv.2205.05055.
URL: http://arxiv.org/abs/2205.05055| (visited on 08/11/2022).

[9] Lili Chen et al. “Decision Transformer: Reinforcement Learning via Sequence Modeling”. In:
arXiv:2106.01345 [cs] (June 2021). URL: http://arxiv.org/abs/2106.01345 (visited
on 05/18/2022).

[10] Mark Chen et al. Evaluating Large Language Models Trained on Code. Tech. rep.
arXiv:2107.03374. arXiv, July 2021. URL: http://arxiv.org/abs/2107.03374 (visited
on 05/15/2022).

[11] Mark Chen et al. “Evaluating large language models trained on code”. In: arXiv preprint
arXiv:2107.03374 (2021).

[12] Yanda Chen et al. On the Relation between Sensitivity and Accuracy in In-context Learning.
arXiv:2209.07661 [cs]. Sept. 2022. URL: http://arxiv.org/abs/2209.07661 (visited on
09/28/2022).

10

https://doi.org/10.48550/arXiv.2204.01691
http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2204.01691
https://proceedings.neurips.cc/paper/2021/hash/1e747ddbea997a1b933aaf58a7953c3c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1e747ddbea997a1b933aaf58a7953c3c-Abstract.html
https://doi.org/10.48550/arXiv.2206.11795
http://arxiv.org/abs/2206.11795
https://doi.org/10.48550/arXiv.2001.08435
http://arxiv.org/abs/2001.08435
http://arxiv.org/abs/2001.08435
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2205.05055
http://arxiv.org/abs/2205.05055
http://arxiv.org/abs/2106.01345
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2209.07661

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

Daniel Fried et al. “InCoder: A Generative Model for Code Infilling and Synthesis”. In:
arXiv:2204.05999 [cs] (Apr. 2022). URL: http://arxiv.org/abs/2204.05999 (visited
on 05/15/2022).

Leo Gao et al. “The Pile: An 800GB Dataset of Diverse Text for Language Modeling”. In:
arXiv:2101.00027 [cs] (Dec. 2020). URL: http://arxiv.org/abs/2101.00027 (visited
on 05/18/2022).

Divyansh Garg et al. “LISA: Learning Interpretable Skill Abstractions from Language”. In:
arXiv:2203.00054 [cs] (Feb. 2022). URL: http://arxiv.org/abs/2203.00054 (visited
on 05/14/2022).

Shivam Garg et al. What Can Transformers Learn In-Context? A Case Study of Simple
Function Classes. arXiv:2208.01066 [cs]. Aug. 2022. DOI:(10.48550/arXiv.2208.01066.
URL: http://arxiv.org/abs/2208.01066 (visited on 09/28/2022).

Felix Hill et al. “Human Instruction-Following with Deep Reinforcement Learning via Transfer-
Learning from Text”. In: arXiv:2005.09382 [cs] (May 2020). URL: http://arxiv.org/
abs/2005.09382 (visited on 05/15/2022).

Wenlong Huang et al. Inner Monologue: Embodied Reasoning through Planning with Lan-
guage Models. arXiv:2207.05608 [cs]. July 2022. DOI:/10.48550/arXiv.2207.05608. URL:
http://arxiv.org/abs/2207.05608 (visited on 08/09/2022).

Wenlong Huang et al. “Language Models as Zero-Shot Planners: Extracting Actionable
Knowledge for Embodied Agents”. In: arXiv:2201.07207 [cs] (Mar. 2022). URL: http :
//arxiv.org/abs/2201.07207 (visited on 05/14/2022).

Michael Janner et al. Offline Reinforcement Learning as One Big Sequence Modeling Problem.
arXiv:2106.02039 [cs]. Nov. 2021. DOI: |10 . 48550 / arXiv . 2106 . 02039, URL: http :
//arxiv.org/abs/2106.02039 (visited on 08/09/2022).

Rabeeh Karimi Mahabadi et al. “Prompt-free and Efficient Few-shot Learning with Language
Models”. In: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Computational Lin-
guistics, May 2022, pp. 3638-3652. DOI: |10 . 18653 /v1 /2022 . acl - long . 254, URL:
https://aclanthology.org/2022.acl-1long. 254/ (visited on 08/09/2022).

Michael Laskin et al. “In-context reinforcement learning with algorithm distillation”. In: arXiv
preprint arXiv:2210.14215 (2022).

Kuang-Huei Lee et al. Multi-Game Decision Transformers. arXiv:2205.15241 [cs]. May 2022.
DOI: 10 . 48550/ arXiv . 2205 . 156241, URL: http://arxiv. org/abs/2205. 15241
(visited on 08/09/2022).

Shuang Li et al. “Pre-Trained Language Models for Interactive Decision-Making”. In:
arXiv:2202.01771 [cs] (Feb. 2022). URL: http://arxiv.org/abs/2202.01771 (vis-
ited on 05/14/2022).

Xiang Lisa Li et al. “Prefix-Tuning: Optimizing Continuous Prompts for Generation”. en. In:
(Jan. 2021). DOI:|10.48550/arXiv.2101.00190. URL: https://arxiv.org/abs/2101,
00190v1 (visited on 05/15/2022).

Paul Pu Liang et al. “Towards understanding and mitigating social biases in language models”.
In: International Conference on Machine Learning. PMLR. 2021, pp. 6565-6576.

Aman Madaan et al. “Self-refine: Iterative refinement with self-feedback™. In: arXiv preprint
arXiv:2303.17651 (2023).

Arjun Majumdar et al. “Improving Vision-and-Language Navigation with Image-Text Pairs
from the Web”. In: arXiv:2004.14973 [cs] (May 2020). URL: http://arxiv.org/abs/
2004 .14973| (visited on 05/14/2022).

Maxwell Nye et al. Show Your Work: Scratchpads for Intermediate Computation with Language
Models. arXiv:2112.00114 [cs]. Nov. 2021. DOI: 10 .48550/arXiv.2112.00114. URL:
http://arxiv.org/abs/2112.00114 (visited on 08/11/2022).

Yikang Pan et al. “On the Risk of Misinformation Pollution with Large Language Models”. In:
arXiv preprint arXiv:2305.13661 (2023).

Xiangyu Peng et al. “Inherently Explainable Reinforcement Learning in Natural Language”. In:
arXiv:2112.08907 [cs] (Dec. 2021). URL: http://arxiv.org/abs/2112.08907 (visited
on 05/14/2022).

11

http://arxiv.org/abs/2204.05999
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2203.00054
https://doi.org/10.48550/arXiv.2208.01066
http://arxiv.org/abs/2208.01066
http://arxiv.org/abs/2005.09382
http://arxiv.org/abs/2005.09382
https://doi.org/10.48550/arXiv.2207.05608
http://arxiv.org/abs/2207.05608
http://arxiv.org/abs/2201.07207
http://arxiv.org/abs/2201.07207
https://doi.org/10.48550/arXiv.2106.02039
http://arxiv.org/abs/2106.02039
http://arxiv.org/abs/2106.02039
https://doi.org/10.18653/v1/2022.acl-long.254
https://aclanthology.org/2022.acl-long.254
https://doi.org/10.48550/arXiv.2205.15241
http://arxiv.org/abs/2205.15241
http://arxiv.org/abs/2202.01771
https://doi.org/10.48550/arXiv.2101.00190
https://arxiv.org/abs/2101.00190v1
https://arxiv.org/abs/2101.00190v1
http://arxiv.org/abs/2004.14973
http://arxiv.org/abs/2004.14973
https://doi.org/10.48550/arXiv.2112.00114
http://arxiv.org/abs/2112.00114
http://arxiv.org/abs/2112.08907

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Scott Reed et al. A Generalist Agent. arXiv:2205.06175 [cs]. May 2022. DOI: |10 . 48550/
arXiv.2205.06175, URL: http://arxiv.org/abs/2205.06175|(visited on 08/09/2022).

John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

Younggyo Seo et al. HARP: Autoregressive Latent Video Prediction with High-Fidelity Image
Generator. arXiv:2209.07143 [cs]. Sept. 2022. URL: http://arxiv.org/abs/2209.07143
(visited on 09/28/2022).

Noah Shinn et al. Reflexion: Language Agents with Verbal Reinforcement Learning. 2023.
arXiv:[2303.11366 [cs.AI]l

Aaditya K. Singh et al. Know your audience: specializing grounded language models with the
game of Dixit. arXiv:2206.08349 [cs]. June 2022. DOI:10.48550/arXiv.2206.08349. URL:
http://arxiv.org/abs/2206.08349 (visited on 08/09/2022).

Ishika Singh et al. “Pre-trained Language Models as Prior Knowledge for Playing Text-based
Games”. In: arXiv:2107.08408 [cs] (Dec. 2021). URL: http://arxiv.org/abs/2107 |
08408 (visited on 05/14/2022).

Allison C. Tam et al. “Semantic Exploration from Language Abstractions and Pretrained
Representations”. In: arXiv:2204.05080 [cs] (Apr. 2022). URL: http://arxiv.org/abs/
2204 .05080| (visited on 05/14/2022).

Alex Tamkin et al. “Understanding the capabilities, limitations, and societal impact of large
language models”. In: arXiv preprint arXiv:2102.02503 (2021).

Denis Tarasov et al. “Prompts and Pre-Trained Language Models for Offline Reinforcement
Learning”. en. In: Mar. 2022. URL: https://openreview.net/forum?id=Spf4TE6NkWq
(visited on 05/14/2022).

Ben Wang et al. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. May 2021.
URL: https://github.com/kingoflolz/mesh-transformer-jax.

Jason Wei et al. “Chain of Thought Prompting Elicits Reasoning in Large Language Models”.
In: arXiv:2201.11903 [cs] (Apr. 2022). URL: http://arxiv.org/abs/2201.11903|(visited
on 05/15/2022).

Jason Wei et al. Emergent Abilities of Large Language Models. arXiv:2206.07682 [cs]. June
2022. DOI: [10.48550/arXiv.2206.07682. URL: http://arxiv.org/abs/2206.07682
(visited on 08/11/2022).

Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Processing”. In: Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. Online: Association for Computational Linguistics, Oct. 2020, pp. 38—45. DOTI:
10.18653/v1/2020.emnlp-demos. 6L URL: https://aclanthology.org/2020.emnlp-
demos . 6 (visited on 01/22/2022).

Mengdi Xu et al. Prompting Decision Transformer for Few-Shot Policy Generalization.
arXiv:2206.13499 [cs]. June 2022. DOT: |10 . 48550 / arXiv . 2206 . 13499. URL: http :
//arxiv.org/abs/2206.13499) (visited on 08/09/2022).

Susan Zhang et al. OPT: Open Pre-trained Transformer Language Models. _eprint:
2205.01068. 2022.

12

https://doi.org/10.48550/arXiv.2205.06175
https://doi.org/10.48550/arXiv.2205.06175
http://arxiv.org/abs/2205.06175
http://arxiv.org/abs/2209.07143
https://arxiv.org/abs/2303.11366
https://doi.org/10.48550/arXiv.2206.08349
http://arxiv.org/abs/2206.08349
http://arxiv.org/abs/2107.08408
http://arxiv.org/abs/2107.08408
http://arxiv.org/abs/2204.05080
http://arxiv.org/abs/2204.05080
https://openreview.net/forum?id=Spf4TE6NkWq
https://github.com/kingoflolz/mesh-transformer-jax
http://arxiv.org/abs/2201.11903
https://doi.org/10.48550/arXiv.2206.07682
http://arxiv.org/abs/2206.07682
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://doi.org/10.48550/arXiv.2206.13499
http://arxiv.org/abs/2206.13499
http://arxiv.org/abs/2206.13499

Appendix

A Example prompts for each domain

assert state == 6
state = left ()
assert reward ==

assert not done

Chain

assert state == (6, 3)
state = left ()

assert reward ==
assert not done

Distractor

assert state == C(i=2, j=1)

state, reward = left ()
assert reward ==
assert not done

Maze

assert paddle == C(2, 0)

reward = paddle.left ()
ball.descend ()

assert reward ==
assert not done

Mini Catch

assert ship == C(2, 0)

ship.left ()

assert reward == 0

for a in aliens:
a.descend ()

assert not done

Mini Invaders

assert pos == -3.45 and vel == 0.00

pos, vel = decel(pos, vel)
assert reward ==
assert not done

Point-Mass

Table 2: This table provides example prompts for each domain, showcasing the text format and hints.
Hints are highlighted in grey.

13

B Tabular Q-Learning Hyperparameter Sweeps

Tabular Q learning rate
-0.01-005-01-025-05-1-2

) Chain Distractor Chain Maze ~ Mini Catch Mini Invaders
08 k
206 \\“ Wiy
go.a J) | | \M M
0o NS |\ NP | S
= | Lo \ e | “f\/‘v‘\k‘%M EERSNVIS ST
0O 200 400 O 6,000 0 6,000 0 6,000 0 6,000
step step step step step

This figure presents learning curves using the standard Tabular Q-Learning algorithm. Given an
appropriately chosen learning rate, this algorithm does converge, but this can take several thousand
timesteps on all but the simplest domains.

Tabular Q exploration bonus
=0-0.01-01-1
Chain Distractor Chain Maze Mini Catch Mini Invaders

6,000 0 6,000 0 6,000 0o 6,000
step step step step step

This figure presents learning curves for Tabular Q-Learning with a count-based exploration bonus.
Actions are chosen using the following formulation: a < argmax, Q(s,a’) + k/(1 + N(s,a’))
where k is the exploration bonus hyperparameter, assuming values {0,0.01,0.1, 1} in the graph, and
N(s,a’) is the visitation count for the state-action (s, a’).

C Proximal Policy Optimization Hyperparameter Sweeps

Distractor-chain

@ 1.0+ @ 1.0+ @ 1.0+
o o o
2 2 2
208 208 208
4] 4] 4]
o 0.6- o 0.6- o 0.6-
o o o
£ £ £
5 0.4 5 0.4 5 04
L L L
[+4] [+4] [+4]
™ ™ ™
e 0.2- e 0.2- e 0.2-
1] 1] 1]
QD QD QD
= 00 = 00 = 00

by
o
|

o
@
1

o
=
1

o
s
1

Mean return per episode
Mean return per episode

Mean return per episode

0 | 40,000 80,000 | 0 | 40,000 80,000 | 0 | 40,000 80,000

Steps Steps Steps

14

This figure presents learning curves for Proximal Policy Optimization (PPO) (Schulman et al.[2017)), a
deep RL algorithm trained using gradient descent. These runs search the following hyperparameters:

Number of Hidden Layers 1,2

Hidden Size 256,512, 1024
Actor Learning Rate 0.001, 0.002, 0.005
Critic Learning Rate 0.0001, 0.0005, 0.001

As the graphs indicate, PPO takes several thousand steps to converge, even on simple domains.

D Random Prediction Ablation

This ablation studies the contribution that each prediction type makes to ICPT’s ability to learn. To
this end, for prediction type — observation, termination, action, and reward — we ran an ablation
that substitutes a random, valid prediction for the prediction made by the LLM. For example, for
actions, we first sample a random action from the action space of the environment and then apply the
standard string formatting used in other parts of the algorithm. As figure[5]indicates, on Chain, the
simplest of our environments, none of the ablations are able to learn.

Chain

Randomizes
= None

= Observation
Termination

= Action

= Reward

0 20 40 60 80
step

Figure 5: This figure presents learning curves for the random prediction ablation described above on
the Chain domain. The Y-axis represents regret and the X-axis represents timesteps in the environment.
Each colored line refers to a different prediction which was randomized. The red line is the original
ICPI learning curve, included for reference.

E Error Analysis

In this section we present examples of errors made by ICPI on each domain. In each subsection, we
will examine one rollout generated by the Codex LLM that causes the agent to choose suboptimal
behavior in the actual environment.

Chain

Here, we analyze an example in which the rollouts incorrectly estimate equal values for all three
actions. Each line in the code snippet represents actual output from the LLM, excluding comments
which are added for clarity. The agent’s state is 5 (recall that the goal state is 4). For the 1left ()
action, the model generates the following rollout:

assert state == 5 and state != 4 # the current, starting state

state = left () # a new state is the result of the left() action

assert not done

assert reward == 0

assert state == 4 and state == 4 # The new state is state 4, the goal state

Here the rollout policy unexpectedly chooses to move right
instead of trying the goal.

state = right ()

assert not done

assert reward == 0

assert state == 5 and state != 4

Again the rollout policy outputs a suboptimal action:

reward = try_goal(state)

assert done # try_goal always terminates an episode with O reward
assert reward == 0

15

Note that the model outputs the action right () when the agent is in goal state 4, and then outputs
action try_goal (). As a result the rollout estimates value O for an action which has value v under
the optimal policy (one timestep away from a terminal state with reward 1).

The estimate for action try_goal () is accurate in state 5:

assert state == 5 and state != 4 # the current, starting state
reward = try_goal(state)

assert done

assert reward == 0

However the rollout also underestimates the value of action right ():

assert state == 5 and state != 4 # the current, starting state

state = right ()

assert not done

assert reward ==

assert state == 6 and state != 4

reward = try_goal(state) # left() would be the optimal policy, not try_goal().
assert done

assert reward ==

Distracter Chain

In this example the agent starts in state (2, 3). Recall that in this environment, the second digit in
the tuple is chosen randomly and does not affect environment transitions or reward.

In the first of the three rollouts, the first action is 1eft (). Since the goal is state (4, *), this action is
already suboptimal. However, we see that the agent continues to behave sub-optimally throughout the
rest of the rollout by continuously choosing action 1eft () instead of the optimal action right ().
This occurs because at this stage of training, the agent has mostly taken 1left () actions and as a
result, the rollout policy prompt mostly contains left () actions.

assert state == [2, 3] and state !'= [4, 3]
state = left ()

assert not done

assert reward == 0

assert state == [1, 2] and state !'= [4, 2]
state = left () # The optimal action is right ()
assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]
state = left() # The optimal action is right ()
assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]
state = left() # The optimal action is right()
assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]
state = left() # The optimal action is right ()
assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]
state = left() # The optimal action is right ()
assert not done

assert reward == 0

assert state == [0, 1] and state !'= [4, 1]
state = left() # completion

The rollout for the try_goal () action is correct:

assert state == [2, 3] and state !'= [4, 3]
reward = try_goal(state)

assert done

assert reward == # completion

Here the initial action is optimal: right (). However, we once again see that the rollout policy is
suboptimal because it favors the 1eft () action over the optimal right () action.

assert state == [2, 3] and state !'= [4, 3]
state = right ()

assert not done

assert reward == 0

assert state == [3, 7] and state != [4, 7]

16

state = left ()

assert not done

assert reward == 0

assert state == [2, 4] and state !'= [4, 4]
state = left ()

assert not done

assert reward == 0

assert state == [1, 7] and state !'= [4, 7]
state = left ()

assert not done

assert reward == 0

assert state == [0, 0] and state !'= [4, 0]
state = left ()

assert not done

assert reward == 0

assert state == [0, 0] and state != [4, 0]
state = left ()

assert not done

assert reward == 0

assert state == [0, 0] and state !'= [4, 0]
state = left ()

This causes the model to inaccurately produce a value estimate of 0 for the right () action.

Maze

Similar to the previous example, we study an example for maze early in training, when the rollout
policy is still quite suboptimal. As a result, the rollout policy does not discover the reward, causing
the rollouts to estimate equal value for each of the four actions.

The rollouts all start at state (1, 1).

assert state == C(i=1, j=1) and state != C(i=1, j=0)
state, reward = left ()

assert not done

assert reward == 0

assert state == C(i=1, j=0) and state != C(i=1, j=0)
state, reward = right ()

assert not done

assert reward == 0

assert state == C(i=1, j=1) and state != C(i=1, j=0)
state, reward = up()

assert not done

assert reward == 0

assert state == C(i=0, j=1) and state != C(i=1, j=0)
state, reward = down()

assert not done

assert reward == 0

assert state == C(i=1, j=1) and state != C(i=1, j=0)
state, reward = up()

assert not done

assert reward == 0

assert state == C(i=0, j=1) and state != C(i=1, j=0)
state, reward = down ()

assert not done

assert reward == 0

assert state == C(i=1, j=1) and state != C(i=1, j=0)
state, reward = up()

assert state == C(i=1, j=1) and state != C(i=1, j=0)
state, reward = down ()

assert not done

assert reward == 0

assert state == C(i=2, j=1) and state != C(i=1, j=0)
state, reward = down ()

assert not done

assert reward == 0

assert state == C(i=2, j=1) and state != C(i=1, j=0)

state, reward = left ()

assert not done

assert reward == 0

assert state == C(i=2, j=0) and state != C(i=1, j=0)
state, reward = right()

assert not done

assert reward == 0

assert state == C(i=2, j=1) and state != C(i=1, j=0)
state, reward = right ()

assert not done

17

assert
assert
state,
assert
assert
assert
state,

assert
state,
assert
assert
assert
state,
assert
assert
assert
state,
assert
assert
assert
state,
assert
assert
assert
state,
assert
assert
assert
state,
assert
assert
assert
state,

assert
state,
assert
assert
assert
state,
assert
assert
assert
state,
assert
assert
assert
state,
assert
assert
assert
state,
assert
assert
assert
state,
assert
assert
assert
state,

state == C(i=2,
reward = right ()
not done

reward == 0
state == C(i=2,
reward = right ()

state == C(i=1,
reward = up()
not done

reward == 0
state == C(i=0,
reward = down ()
not done

reward == 0
state == C(i=1,
reward = up()
not done

reward == 0
state == C(i=0,

reward = right ()
not done

reward == 0
state == C(i=0,
reward = right ()
not done

reward == 0
state == C(i=0,
reward = right ()
not done

reward == 0
state == C(i=0,
reward = right ()

state == C(i=1,
reward = right ()
not done

reward == 0
state == C(i=1,
reward = right ()
not done

reward == 0
state == C(i=1,
reward = down ()
not done

reward == 0
state == C(i=2,

reward = right ()
not done

reward == 0
state == C(i=2,
reward = right ()
not done

reward == 0
state == C(i=2,
reward = right ()
not done

reward == 0
state == C(i=2,
reward = right ()

j=2)

j=2)

j=1)
j=1)
=D
3=

j=2)

j=2)

j=2)

j=1)

j=2)

j=2)

j=2)

3=2)

i=2)

j=2)

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

state

state

state

state

state

state

state

state

state

state

state

state

state

state

state

state

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

c(i=1,

18

j=0)

j=0)

j=0)

j=0)

j=0)

3=0)

j=0)

j=0)

j=0)

j=0)

j=0)

j=0)

j=0)

j=0)

j=0)

j=0)

	Introduction
	Related Work
	Learning from demonstrations
	Gradient-based training & finetuning on RL tasks
	In-Context learning

	Method
	Experiments
	Domains and prompt format
	Experiment Methodology and Results

	Conclusion
	Appendix
	Example prompts for each domain
	Tabular Q-Learning Hyperparameter Sweeps
	Proximal Policy Optimization Hyperparameter Sweeps
	Random Prediction Ablation
	Error Analysis

