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A. Confusion Matices for IMC at Level 2001

Fig. 1 shows the corresponding confusion matrix for IMC002
level 2 which shows similar patterns as the confusion ma-003
trices for classification on level 1 and level 3 as shown in004
??.005

B. Comparative Analysis via Confusion Matrix006

Differencing007

To directly assess the qualitative and quantitative dif-008
ferences between clustering outcomes in Euclidean and009
Lorentzian geometries, we compute and visualize the010
element-wise difference between their respective confusion011
matrices. This subtraction highlights where one geometry012
assigns more samples to a particular predicted class com-013
pared to the other.014

By visualising the matrix ∆ = CM{Euclidean} −015
CM{Lorentz}, in Figures 2, 3, and 4, we reveal system-016
atic shifts in classification behavior. Positive entries in ∆017
indicate class assignments more prevalent under the Eu-018
clidean model, while negative entries highlight where the019
Lorentz embedding dominates. This comparative visualiza-020
tion allows us to pinpoint the specific cell subtypes and tran-021
sitions where hyperbolic geometry provides more biolog-022
ically plausible predictions, and where Euclidean embed-023
dings may introduce misclassifications due to their inability024
to accommodate hierarchical relationships. The difference025
matrix thus serves as an interpretable tool to summarize per-026
formance gains in a fine-grained, label-wise fashion.027

C. Statistical Comparison via McNemar’s Test028

To assess whether the differences in classification perfor-029
mance between the Euclidean and Lorentzian models are030
statistically significant, we apply McNemar’s test to their031
respective predictions. This non-parametric test is designed032
for paired nominal data and is well-suited for evaluating033
whether two classifiers differ in accuracy on a per-sample034
basis, particularly when their predictions are dependent or035
made on the same test set.036

We construct a 2 × 2 contingency table, Fig. 5, captur-037
ing the number of instances that were (i) correctly classi-038

fied by both models, (ii) only by the Lorentzian model, (iii) 039
only by the Euclidean model, and (iv) misclassified by both. 040
The McNemar statistic then tests whether the off-diagonal 041
elements — the disagreements between the models — are 042
symmetric. A significant result (typically p < 0.05) indi- 043
cates that the improvement of one model over the other is 044
unlikely to be due to chance. This test thus provides rig- 045
orous statistical backing to our claim that the Lorentzian 046
geometry leads to more consistent and biologically mean- 047
ingful predictions. 048

Our McNemar test yields a p-value that is orders of mag- 049
nitude smaller than the commonly used threshold of 0.05, 050
indicating that the null hypothesis—that the Euclidean and 051
Lorentzian models have the same proportion of correct pre- 052
dictions—is strongly rejected. This result is further rein- 053
forced by the very large corresponding chi-squared statis- 054
tic, which quantifies the degree of disagreement between the 055
two models’ predictions. The magnitude of this test statistic 056
clearly highlights a substantial and statistically significant 057
difference in predictive behavior between the geometries, 058
underscoring the robustness of the Lorentzian model’s im- 059
provements in clustering and classification performance. 060

D. IMC Markers 061

Markers used span fibroblast heterogeneity, immune sub- 062
sets, pancytokeratin and E-Cadherin markers, and func- 063
tional states (e.g., Ki-67 for proliferation, cleaved caspase 3 064
as an apoptosis marker). enabling fine-grained dissection of 065
both structural and functional cell phenotypes, facilitating 066
a comprehensive view of CAF niches and their interactions 067
with other cell types. Biomarkers used: 068

1. ALDH1 069
2. gamma-catenin (not used in training) 070
3. MCAM 071
4. aSMA 072
5. CTLA4 073
6. Vimentin 074
7. YAP1 075
8. CD45 076
9. CD16 077

10. CD163 078
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(a) (b)

Figure 1. k-nearest neighbor (kNN) classifier results on the IMC testset. (a) Euclidean representation with labels at level 2, (b) Lorentz
representation with labels at level 2

Figure 2. IMC level 1 ∆ = CM{Euclidean} − CM{Lorentz}

11. pancytokeratin079
12. CK5080
13. PDL1081
14. CD31082
15. CD34083
16. FAP084

17. CD44 085
18. CD11c 086
19. FOXP3 087
20. CD4 088
21. E-cadherin 089
22. CD68 090
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Figure 3. IMC level 2 ∆ = CM{Euclidean} − CM{Lorentz}

23. PDGFRa091
24. pSMAD2092
25. CD8093
26. ER094
27. CD20095
28. PD1096
29. HER2097
30. GATA3098
31. Ki67099
32. CD24100

33. CD3 101
34. PDGFRb 102
35. GranzymeB 103
36. CK8/18 104
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Figure 4. IMC level 3 ∆ = CM{Euclidean} − CM{Lorentz}
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Figure 5. McNemar test between the Euclidean model and Lorentz model predictions.
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