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A. Confusion Matices for IMC at Level 2
Fig. 1 shows the corresponding confusion matrix (CM) for
IMC level 2 which shows similar patterns as the confusion
matrices for classification on level 1 and level 3 as shown in
2.

B. Comparative Analysis via Confusion Matrix
Differencing

To directly assess the qualitative and quantitative dif-
ferences between clustering outcomes in Euclidean and
Lorentzian geometries, we compute and visualize the
element-wise difference between their respective confusion
matrices. This subtraction highlights where one geometry
assigns more samples to a particular predicted class com-
pared to the other.

By visualising the matrix ∆ = CM{Euclidean} −
CM{Lorentz}, in Figures 2, 3, and 4, we reveal system-
atic shifts in classification behavior. Positive entries in ∆
indicate class assignments more prevalent under the Eu-
clidean model, while negative entries highlight where the
Lorentz embedding dominates. This comparative visualiza-
tion allows us to pinpoint the specific cell subtypes and tran-
sitions where hyperbolic geometry provides more biolog-
ically plausible predictions, and where Euclidean embed-
dings may introduce misclassifications due to their inability
to accommodate hierarchical relationships. The difference
matrix thus serves as an interpretable tool to summarize per-
formance gains in a fine-grained, label-wise fashion.

C. Statistical Comparison via McNemar’s Test
To assess whether the differences in classification perfor-
mance between the Euclidean and Lorentzian models are

statistically significant, we apply McNemar’s test to their
respective predictions. This non-parametric test is designed
for paired nominal data and is well-suited for evaluating
whether two classifiers differ in accuracy on a per-sample
basis, particularly when their predictions are dependent or
made on the same test set.

We construct a 2 × 2 contingency table, Fig. 5, captur-
ing the number of instances that were (i) correctly classi-
fied by both models, (ii) only by the Lorentzian model, (iii)
only by the Euclidean model, and (iv) misclassified by both.
The McNemar statistic then tests whether the off-diagonal
elements — the disagreements between the models — are
symmetric. A significant result (typically p < 0.05) indi-
cates that the improvement of one model over the other is
unlikely to be due to chance. This test thus provides rig-
orous statistical backing to our claim that the Lorentzian
geometry leads to more consistent and biologically mean-
ingful predictions.

Our McNemar test yields a p-value that is orders of mag-
nitude smaller than the commonly used threshold of 0.05,
indicating that the null hypothesis—that the Euclidean and
Lorentzian models have the same proportion of correct pre-
dictions—is strongly rejected. This result is further rein-
forced by the very large corresponding chi-squared statis-
tic, which quantifies the degree of disagreement between the
two models’ predictions. The magnitude of this test statistic
clearly highlights a substantial and statistically significant
difference in predictive behavior between the geometries,
underscoring the robustness of the Lorentzian model’s im-
provements in clustering and classification performance.
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Figure 1. k-nearest neighbor (kNN) classifier results on the IMC testset. (a) Euclidean representation with labels at level 2, (b) Lorentz
representation with labels at level 2

Figure 2. IMC level 1 ∆ = CM{Euclidean} − CM{Lorentz}

D. IMC Markers

Markers used span fibroblast heterogeneity, immune sub-
sets, pancytokeratin and E-Cadherin markers, and func-
tional states (e.g., Ki-67 for proliferation, cleaved caspase 3
as an apoptosis marker). enabling fine-grained dissection of
both structural and functional cell phenotypes, facilitating

a comprehensive view of CAF niches and their interactions
with other cell types. Biomarkers used:

1. ALDH1
2. gamma-catenin (not used in training)
3. MCAM
4. aSMA



Figure 3. IMC level 2 ∆ = CM{Euclidean} − CM{Lorentz}

5. CTLA4
6. Vimentin
7. YAP1
8. CD45
9. CD16

10. CD163
11. pancytokeratin
12. CK5
13. PDL1
14. CD31

15. CD34
16. FAP
17. CD44
18. CD11c
19. FOXP3
20. CD4
21. E-cadherin
22. CD68
23. PDGFRa
24. pSMAD2



Figure 4. IMC level 3 ∆ = CM{Euclidean} − CM{Lorentz}

25. CD8
26. ER
27. CD20
28. PD1
29. HER2
30. GATA3
31. Ki67
32. CD24
33. CD3
34. PDGFRb

35. GranzymeB
36. CK8/18



Figure 5. McNemar test between the Euclidean model and Lorentz model predictions.


