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ABSTRACT

In this paper, we investigate the theoretical aspects of sampling from strongly
log-concave distributions defined on convex and compact supports. We propose
a general proximal framework that involves projecting onto the constrained set,
which is highly flexible and supports various projection options. Specifically, we
consider the cases of Euclidean and Gauge projections, with the latter having the
advantage of being performed efficiently using a membership oracle. This frame-
work can be seamlessly integrated with multiple sampling methods. Our analysis
focuses on Langevin-type sampling algorithms within the context of constrained
sampling. We provide nonasymptotic upper bounds on the W1 and W2 errors, of-
fering a detailed comparison of the performance of these methods in constrained
sampling.

1 INTRODUCTION

Sampling from probability distributions plays a critical role in various fields of science and engi-
neering, especially when dealing with convex and compact sets (Andrieu et al., 2003; Gelman et al.,
1995; Stuart, 2010). In this context, the problem involves sampling from a probability measure ν on
such sets, characterized by its density function

ν(x) = e−U (x)∫
Rp e
−U (s)ds

,

Here, U(x) = f(x) + `K(x), where f(x) represents a potential function and `K(x) is an indicator
function ensuring x lies within the convex and compact set K ⊂ Rp. Specifically, `K(x) takes the
form

`K :=

{
+∞ if x /∈ K
0 if x ∈ K .

Solving this constrained sampling problem is challenging and has garnered considerable interest
across various fields, including computer science and statistics. In the realm of computer science, a
line of research initiated by Dyer et al. (1991) explored polynomial-time algorithms for uniformly
sampling convex bodies. This has been followed by seminal studies on the convergence proper-
ties of the Ball Walk and the Hit-and-Run algorithm toward uniform density on a convex body
or, more broadly, to log-concave densities (Kannan et al., 1997; Kook et al., 2024; Lovász, 1999;
Lovász & Simonovits, 1993; Lovász & Vempala, 2007; Smith, 1984). Other Markov Chain Monte
Carlo (MCMC) methods, such as Gibbs sampling (Gelfand et al., 1992) and Hamiltonian Monte
Carlo (Brubaker et al., 2012; Gürbüzbalaban et al., 2022; Kook et al., 2022), have also been adapted
and enhanced to sample from distributions defined on convex and compact sets.

In recent years, leveraging optimization techniques to facilitate sampling has become a prevalent ap-
proach. By formulating the sampling challenge as an optimization problem, methods like projected
stochastic gradient descent (Bubeck et al., 2015; 2018; Lamperski, 2021; Lehec, 2023), proximal
approaches (Brosse et al., 2017; Durmus et al., 2018; Salim & Richtárik, 2020), particle-based al-
gorithms Li et al. (2022), and mirror descent (Ahn & Chewi, 2021; Chewi et al., 2020; Hsieh et al.,
2018; Zhang et al., 2020) have proven effective in navigating the target distribution to generate sam-
ples. Further innovations have emerged from the intersection of deep learning and neural networks,
leading to the development of novel sampling techniques via generative adversarial networks (Good-
fellow et al., 2014) and variational autoencoders (Kingma & Welling, 2013). These advanced
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methodologies offer promising pathways for sampling from intricate and high-dimensional distri-
butions, particularly those defined on convex and compact sets (Ortiz-Haro et al., 2022). We will
present a detailed discussion comparing our work with previous mentioned studies in Appendix A.

In this work, we tackle the challenge posed by a non-smooth target density ν by employing a
proximal method. This method leverages a regularization technique that involves projecting onto
set K, effectively transforming the constrained sampling problem into an unconstrained one. Our
framework is versatile, accommodating various projection options, such as the Euclidean projec-
tion—which corresponds to the Moreau envelope of the indicator function `K (Rockafellar & Wets,
2009; Durmus et al., 2018; Brosse et al., 2017; Pereyra, 2016)—and the Gauge projection (Lu et al.,
2022; Mhammedi, 2022), which can be efficiently performed using a membership oracle. Specif-
ically, we introduce a smooth and strongly convex surrogate distribution that closely mimics the
target density. By fine-tuning the regularization parameter, we can significantly reduce approxima-
tion errors. The advantageous properties of our surrogate distribution enable the effective application
of various sampling techniques. In this work, we specifically explore the vanilla Langevin Monte
Carlo (LMC) (Roberts & Tweedie, 1996; Dalalyan, 2017; Durmus & Moulines, 2017; Erdogdu &
Hosseinzadeh, 2021; Mousavi-Hosseini et al., 2023; Raginsky et al., 2017; Erdogdu et al., 2018;
Mou et al., 2022; Erdogdu et al., 2022), kinetic Langevin Monte Carlo (KLMC) (Cheng et al., 2018;
Dalalyan & Riou-Durand, 2020; Shen & Lee, 2019; Ma et al., 2021; Zhang et al., 2023), and the
parallelized versions of the midpoint randomization method for these algorithms (Shen & Lee, 2019;
Yu & Dalalyan, 2024; He et al., 2020; Yu et al., 2023) (referred to as pRLMC and pRKLMC, re-
spectively), within the context of constrained sampling. We derive the convergence rates for these
algorithms in Wasserstein-1 and Wasserstein-2 distances, and provide a detailed comparison of their
performance. To this end, we make the following contributions.

• We establish both general upper and lower bounds for the distance between the smooth
approximation of the target density and its original form in Wasserstein-q distance for any
q > 1. These bounds are detailed in Proposition 2.1 and Proposition 2.2, respectively.

• In Section 2, we demonstrate that our proposed framework can seamlessly incorporate
various projection options, including both Euclidean and Gauge projections.

• In Section 3, we incorporate several MCMC sampling methods, such as (kinetic) Langevin
Monte Carlo and the parallelized midpoint randomization method for these algorithms,
into our general framework. We present a detailed convergence analysis of these methods
in both Wasserstein-1 and Wasserstein-2 distances.

In summary, we develop a comprehensive framework specifically designed for sampling from con-
vex and compact sets, utilizing a regularization technique that involves projecting onto these con-
strained sets. Our study notably presents an improved error bound for LMC in constrained sampling
settings, as well as the first convergence analysis for KLMC, pRLMC, and pRKLMC algorithms in
this scenario. We emphasize that the convergence analysis for these three algorithms relies heavily
on the smooth properties of the target density—conditions that are not met in the constrained set-
ting we examine. Our proposed framework addresses these challenges and is exceptionally flexible
and adaptable, accommodating various projection operators and sampling methods. Additionally, it
enables clear comparisons of the behaviors of different sampling methods in constrained sampling
scenarios. Overall, this new framework provides valuable theoretical insights into the dynamics of
constrained sampling.

Notation. Denote the p-dimensional Euclidean space by Rp. The letter θ denotes the deterministic
vector and its calligraphic counterpart ϑ denotes the random vector. We use Ip and 0p to denote,
respectively, the p × p identity and zero matrices. Define the relations A 4 B and B < A for two
symmetric p× p matrices A and B to mean that B−A is positive semi-definite. The gradient and
the Hessian of a function f : Rp → R are denoted by ∇f and ∇2f , respectively. Given any pair of
measures µ and ν defined on (Rp,B(Rp)), the Wasserstein-q distance between µ and ν is defined as

Wq(µ, ν) =
(

inf%∈Γ(µ,ν)

∫
Rp×Rp ||θ − θ

′||q2 d%(θ,θ′)
)1/q

, q > 1 ,

where the infimum is taken over all joint distributions % that have µ and ν as marginals. For a set
K ⊂ Rp, we use Kc to denote its complement. The ceiling function maps x ∈ R to the smallest
integer greater than or equal to x, denoted by dxe.
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2 SMOOTH APPROXIMATION FOR THE TARGET DENSITY

The absence of smoothness in the target distribution ν presents significant challenges because sam-
pling algorithms often depend on the smoothness properties of the target distribution to effectively
explore the space and produce representative samples. Motivated by this, we consider the approxi-
mation for `K of the form

`λK(θ) := 1
2λ2 ||θ − PK(θ)||22 ,

where λ > 0 is the tuning parameter and PK : Rp → K denotes a projection operator which
projects the vector x ∈ Rp onto the set K. Define Uλ(θ) := f(θ) + `λK(θ), and we the define the
corresponding surrogate target density νλ

νλ(θ) = e−U
λ(θ)∫

Rp e
−Uλ(θ′)dθ′

. (2.1)

Throughout the paper, we define µk(ν) =
∫
||θ||k2 ν(dθ) as the k-th moment of the distribution ν

(k > 1), and we assume the convex and compact set K satisfy the following assumption.
Assumption 2.1. Given a positive constant r ∈ (0,∞), we assume the Euclidean ball centered at
the origin with radius r, denoted by B2(r), is contained in K

B2(r) = {θ ∈ Rp : ||θ||2 6 r} ⊂ K .

This assumption has been commonly made in the work of constrained sampling (Lamperski, 2021;
Bubeck et al., 2018; Brosse et al., 2017; Gürbüzbalaban et al., 2022). Moreover, we assume that the
potential function f satisfies the following assumption.
Assumption 2.2. The function f : Rp → R is continuously differentiable, and its Hessian matrix
∇2f satisfies

mIp 4 ∇2f(θ) 4MIp, ∀θ ∈ Rp.
Moreover, we assume the function f is lower bounded and 0 = arg minθ∈K f(θ).

The assumption that f attains the minimum at the origin simplifies the presentation of our results.
All our results will still hold even if this condition is not met. Given the minimizer of the function
f over K, denoted by θ∗, we simply need to shift all the coordinates and consider the constrained
set K + θ∗. Additionally, we note that the approximation Uλ inherits the strong convexity of f.
Moreover, we require Uλ to be integrable, continuously differentiable, and smooth, even if U is not.
Condition 2.1. The function Uλ ism-strongly convex, continuously differentiable, andMλ-smooth.
Moreover, it holds that

∫
Rp e

−Uλ(θ)dθ <∞.

Below, we present two examples of the approximation `λK, each utilizing a different, commonly used
projection operator. We will demonstrate that these examples effectively approximate the indicator
function `K and the resulting potential functions fulfill Condition 2.1.
Example 2.1. [Moreau envelope] One example of a projection operator is the Euclidean operator,
which results in the Moreau envelope of the indicator function `K

`E,λK (θ) = infθ′∈Rp
(
`K(θ′) + 1

2λ2 ||θ − θ′||22
)

= 1
2λ2 ||θ − PEK(θ)||22 ,

where PEK denotes the Euclidean projection on K.

Define the corresponding surrogate potential UE,λ(θ) := f(θ) + `E,λK (θ). This surrogate potential
UE,λ satisfies the following property.
Lemma 2.1. Assume Assumptions 2.1 and 2.2 hold, the potential UE,λ satisfies Condition 2.1 with
Mλ = 1/λ2 +M .
Example 2.2. [Gauge projection] Another example of the projection operator is the Gauge projec-
tion PGK : Rp → R, which is defined as

PGK(θ) := θ
gK(θ)

with a variation of Gauge function (also known as the Minkowski function) gK : Rp → R of set K
gK(θ) := inf{t > 1 : θ ∈ tK} . (2.2)

This function encapsulates the scaling required to project θ onto the set K.
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Set `G,λK (θ) = 1
2λ2 ||θ − PGK(θ)||22 . The corresponding surrogate function is defined via UG,λ(θ) :=

f(θ) + `G,λK (θ). This surrogate potential UG,λ satisfies the following property.

Lemma 2.2. Assume Assumptions 2.1 and 2.2 hold, the surrogate potential UG,λ satisfies Condi-
tion 2.1 with Mλ = 1/λ2 +M .

In the following, we aim to measure the discrepancy between the surrogate distribution and the target
distribution. To this end, we establish an upper bound in Wq distance between the target distribution
ν and the approximated distribution νλ defined in equation 2.1. Our aim is to demonstrate that as λ
approaches zero, the distance between these two distributions converges to zero.
Proposition 2.1. Under Assumption 2.1, assume that the potential function f is convex with 0 as its
minimizer. Then, for any q > 1 and any λ ∈

(
0, r

2(p+q)

)
, it holds that

Wq
q(ν, ν

λ) 6 3µq(ν)λ (2p+ q)/r ,

where µq(ν) =
∫
||θ||q2 ν(dθ), q > 1.

In this proposition, we provide a general and precise quantification of the distance between the ap-
proximate distribution νλ to the target distribution ν in Wq distance for any q > 1. When q = 1,
our result aligns with the bound established for W1(ν, νλ) as stated in Proposition 5 of Brosse et al.
(2017). Notably, our Assumption 2.1 is less restrictive than the assumption outlined in Proposition 5
of that work, as we do not require the domain to be contained within a ball, as specified in Assump-
tion H2 of that paper. In Proposition 2.1, the size of K is captured in the bounds through the radius
r and the q-th moment of the target distribution µq . In this context, µq plays a role analogous to the
radius of the ball containing K, denoted as R in Brosse et al. (2017), while offering a more precise
description of the domain’s size.

We also derive the lower bound for the distance between the approximate distribution νλ to the target
distribution ν in Wq distance, specifically for the scenario where K = B2(r) and the projections
discussed in Examples 2.1 and 2.2. In this case, the Gauge projection and Euclidean projection
coincide, yielding the following results.
Proposition 2.2. LetK = B2(r) and assume the potential function f is convex andM -smooth, with
0 as its minimizer and f(0) = 0. Set `K = `E,λK . Under Assumptions 2.1, for any q > 1 and any
λ ∈

(
0, r

2(p+q) ∧
1√
M

)
, it holds that

Wq
q(ν, ν

λ) > µq(ν) min

{∣∣∣(√π
8 e
− 3

4Mr2 λ(p+q)
r+3λp + r

r+3λp

)1/q

− 1
∣∣∣q, ∣∣∣( 3λ(p+q)

r + 1
)1/q

− 1
∣∣∣q} .

This result provides a quantitative assessment of the tightness of the upper bound established in
Proposition 2.1. Before we discuss the results of the lower bound, we present the following corollary.
Corollary 2.1. Under the assumptions stated in Proposition 2.2, when λ = o(r/p) and q = 1, it
holds that

W1(ν, νλ) > CM,rµ1(ν)p+1
r λ ,

where CM,r > 0 is a constant that depends on M and r exponentially.

Based on the results outlined in the preceding corollary, when q = 1 and with a sufficiently small λ,
the lower bound aligns with the rate estimates from Proposition 2.1 up to a constant factor, thereby
confirming the optimality of the upper bound for the case of q = 1. However, when q > 1 and λ is
small, the lower bound follows the order

(
(1 + λ)1/q − 1

)q
, which increases at a rate slower than

λ. This indicates the suboptimality1 of the rate stated in Proposition 2.1, highlighting a difference in
behavior for higher values of q.

3 PROXIMAL LANGEVIN ALGORITHMS

A central theme of this work is the approximation of the non-smooth potential ν using a carefully
crafted smooth surrogate density νλ. We note that the convergence analysis for the log-concave

1We conjecture that this suboptimality arises from the general technique used in our proof. With specific
assumptions about the density, a refined lower bound for the Wasserstein distance between ν and νλ.
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sampling algorithms typically relies heavily on the strongly log-concave and smooth properties of
the target density. However, these conditions are not met in the constrained setting considered in
this work. Owing to the desirable properties of the surrogate density νλ, we now can utilize various
sampling methods that are effective for distributions with smooth and strongly convex densities.

In this section, we demonstrate how the proposed scheme can be adapted to various sampling meth-
ods that collectively aim to sample from the density νλ. We particularly focus on Langevin Monte
Carlo (LMC) and its variant, Kinetic Langevin Monte Carlo (KLMC). LMC employs stochastic
differential equations to sample effectively from complex distributions, making it a powerful tool
in high-dimensional spaces. KLMC enhances efficiency by incorporating kinetic energy dynamics.
Additionally, we explore the parallelized randomized midpoint method for these two algorithms,
which improves sampling speed by leveraging parallel computations. Due to space constraints, we
provide only a brief overview of each algorithm for the convenience of readers in the following sub-
section. We refer interested readers to the works of Dalalyan (2017); Durmus & Moulines (2017);
Shen & Lee (2019); Yu & Dalalyan (2024); He et al. (2020); Yu et al. (2023) for further details on
these algorithms.

More specifically, we combine the discretization error with the approximation error analyzed in
Section 2 to evaluate errors in Wasserstein-1 and Wasserstein-2 distances between the sample dis-
tribution and the target density ν in the context of constrained sampling. Table 1 below offers a
comparison of the results for the four sampling methods mentioned above, using the specific pro-
jection operators discussed in Example 2.1 and Example 2.22. For simplicity, we omit the constants
and logarithmic terms that appear in the bounds. The table illustrates that when the number of par-
allel steps R > 1, the randomized midpoint method markedly enhances the performance of both
the vanilla Langevin Monte Carlo and kinetic Langevin Monte Carlo algorithms. When the number
of parallel steps R = 1, the pRLMC and pRKLMC algorithms correspond exactly to the random-
ized midpoint method applied to Langevin Monte Carlo (RLMC) and kinetic Langevin Monte Carlo
(RKLMC), respectively, as detailed in Yu & Dalalyan (2024). The convergence rate for RLMC is
comparable to that of LMC when assessing the error in W2 distance. Further details are provided
following Corollary 3.2.

LMC KLMC pRLMC pRKLMC

W1 Õ(ε−4) Õ(ε−4) Õ(R−1/3ε−10/3) Õ(R−1/3ε−8/3)

W2 Õ(ε−6) Õ(ε−7) Õ(R−1/3ε−6) Õ(R−1/3ε−5)

Table 1: The number of iterations required by {L,KL,pRL,pRKL}MC algorithms to achieve an error
bounded by ε

√
p/m in W1 distance and W2 distance. R > 1 denotes the number of parallel steps.

3.1 LANGEVIN MONTE CARLO (LMC)

Let ϑ0 be a random vector drawn from a distribution νλ on Rp and let W = (Wt : t > 0) be a
p-dimensional Brownian motion that is independent of ϑ0. To sample from the approximation dis-
tribution νλ, we consider the vanilla Langevin diffusion, which is a strong solution to the stochastic
differential equation

dLLD
t = −∇Uλ(LLD

t ) dt+
√

2 dWt, t > 0, LLD
0 = ϑ0. (3.1)

This equation has a unique strong solution, which is a continuous-time Markov process, termed
Langevin diffusion. Under the further assumptions on the potential Uλ, such as strong convexity,
the Langevin diffusion is ergodic, geometrically mixing and has νλ as its unique invariant distribu-
tion (Bhattacharya, 1978). Moreover, we can sample from the distribution defined by νλ by using
a suitable discretization of the Langevin diffusion. LMC algorithm is based on this idea, combin-
ing the considerations with the Euler discretization. Specifically, for small values of h > 0 and

2In this work, we mainly focus on the Wasserstein metric. To our knowledge, the only comparable results
are those provided by Brosse et al. (2017) concerning the application of Langevin Monte Carlo. We offer a
detailed discussion of this comparison following Corollary 3.1.
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∆hWt = Wt+h −Wt, the following approximation holds

LLD
t+h = LLD

t −
∫ h

0
∇Uλ(LLD

t+s) ds+
√

2 ∆hWt ≈ LLD
t − h∇Uλ(LLD

t ) +
√

2 ∆hWt.

By repeatedly applying this approximation with a small step-size h, we can construct a Markov
chain (ϑLMC

k : k ∈ N) that converges to the target distribution νλ as h goes to zero. More precisely,
ϑLMC
k ≈ LLD

kh , for k ∈ N, is given by

ϑLMC
k+1 = ϑLMC

k − h∇Uλ(ϑLMC
k ) +

√
2 (W(k+1)h −Wkh).

We now provide explicit upper bounds for the error of the LMC algorithm in terms of W1 and W2

distances within the context of constrained sampling.
Theorem 3.1. Under Assumptions 2.1 and 2.2, we further assume that the potential Uλ satisfies
Condition 2.1. Let the step size h ∈ (0, 1/Mλ) and the tuning parameter λ ∈

(
0, r

2(p+2)

)
. Then,

for every n > 1, the distribution νLMC
n of ϑLMC

n satisfies

W2(νLMC
n , ν) 6 e−

mnh
2 W2(νLMC

0 , ν) + 2
√

3µ2(ν)λ(2p+2)
r +

√
2phMλ

m .

Moreover, when the initial distribution νLMC
0 is set to be the Dirac measure at the minimizer of f, it

holds that

W1(νLMC
n , ν) 6 e−

mnh
2

√
p
m + 3µ1(ν)λ(2p+1)

r +
√

2phMλ

m .

The term Mλ introduces an additional factor of λ into the convergence rate. To clarify this de-
pendence on λ, we specify in the following corollary that Mλ = M + 1/λ2. This specification
corresponds to the specific projection operators used in Example 2.1 and Example 2.2. We then
optimize λ to obtain the results presented below.
Corollary 3.1. Let ε ∈ (0, 1) be a small number, and Mλ = M + 1

λ2 .

(a) Set λ =
√

2/3(ph/m)1/4
√
r/(µ1(ν)(2p+ 1)), choose h > 0 and n ∈ N so that

h = 2−103−2(p/m)r2
(
µ1(ν)(2p+ 1)

)−2
ε4 and n > 2

mh log(2/ε) ,

then we have W1(νLMC
n , ν) 6 ε

√
p/m.

(b) Set λ = 2−2/33−1/3(rh)1/3(µ2(ν)m)−1/3, choose h > 0 and n ∈ N so that

h = 2−203−2r2(µ2(ν)m)−2ε6 and n > 2
mh log(2/ε) ,

then we have W2(νLMC
n , ν) 6 ε

√
p/m.

According to this corollary, when evaluating the error in W1 distance, the required sample size n
to achieve a prespecified error level is of order Õ(ε−4). This represents an improvement over the
rate of Õ(ε−6) obtained in Brosse et al. (2017). Additionally, our general framework provides the
convergence rate in W2 for the proximal LMC algorithm, thus complementing the study of the
proximal LMC presented in Brosse et al. (2017).

3.2 PARALLELIZED RANDOMIZED MIDPOINT DISCRETIZATION OF VANILLA LANGEVIN
DIFFUSION (PRLMC)

As an alternative to the Euler discretization method discussed in Section 3.1 for the stochastic dif-
ferential equation 3.1, we consider the randomized midpoint method, initially introduced in Shen &
Lee (2019), as a different discretization framework. This method enables the discretization and sim-
ulation of the Langevin diffusion 3.1, ultimately converging to the distribution νλ. Building upon
the foundations laid by Shen & Lee (2019); Yu et al. (2023), Yu & Dalalyan (2024) developed a
parallel computing scheme for this algorithm, significantly enhancing the efficiency of the sampling
process. The formal definition of pRLMC is defined in Algorithm 1. For simplicity, the superscript
pRLMC is omitted therein. We now introduce the primary findings in the work, which establish
explicit upper bounds for the error associated with the pRLMC algorithm, measured in W1 and W2

distances, specifically within the framework of constrained sampling.
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Algorithm 1 Parallelized RLMC (pRLMC)
Input: number of parallel steps R, number of sequential iterations Q, step size h, number of iterations K,
initial point ϑ0.
Output: iterate ϑK+1

1: for k = 1 to K do
2: Draw Ukr uniformly from

[
r−1
R
, r
R

]
, r = 1, . . . , R.

3: Generate ξkr = W(k+Ukr)h −Wkh, r = 1, . . . , R.

4: Set ϑ(0,r)
k = ϑk, r = 1, . . . , R.

5: for q = 1 to Q− 1 do
6: for r = 1 to R in parallel do
7: akj = min{ 1

R
, Ukr − j−1

R
}, j = 1, . . . , r

8: ϑ
(q,r)
k = ϑk − h

∑r
j=1 akj∇U

λ
(
ϑ

(q−1,j)
k

)
+
√

2ξkr .
9: end for

10: end for
11: ϑk+1 = ϑk − h

R

∑R
r=1∇U

λ
(
ϑ

(Q−1,r)
k

)
+
√

2(W(k+1)h −Wkh).
12: end for

In parallel

Theorem 3.2. Under Assumptions 2.1 and 2.2, we further assume that the potential Uλ satisfies
Condition 2.1. Let the the tuning parameter λ ∈

(
0, r

2(p+2)

)
. Choose the step size h such that

Mλh 6 1/10. Then, for every n > 1, the distribution νpRLMC
n of ϑpRLMC

n satisfies

W2(νpRLMC
n , ν) 6

(
1 +
√
κMλh

(
0.82(Mλh)Q−1 + 0.94Mλh/R

))
e−mnh/2W2(νpRLMC

0 , ν)

+
√
κMλh

(
3.98(Mλh)Q−1 + 6.91Mλh/

√
R
)√

p/m(
2 +
√
κMλh

(
0.82(Mλh)Q−1 + 0.94Mλh/R

))√
3µ2(ν)λ(2p+ 2)/r ,

where κ = Mλ/m. Moreover, when the initial distribution νpRLMC
0 is set to be the Dirac measure at

the minimizer of f, it holds that

W1(νpRLMC
n , ν) 6

(
1 +
√
κMλh

(
0.82(Mλh)Q−1 + 0.94Mλh/R

))
e−mnh/2

√
p/m

+
√
κMλh

(
3.98(Mλh)Q−1 + 6.91Mλh/

√
R
)√

p/m

+ 3µ1(ν)λ(2p+ 1)/r.

To our knowledge, this represents the first convergence rate for the pRLMC algorithm within the
context of constrained sampling. When R = 1, these results recover the convergence rate for the
randomized midpoint method applied to Langevin Monte Carlo algorithm (RLMC) (He et al., 2020;
Yu et al., 2023; Yu & Dalalyan, 2024) in constrained sampling. Below, we define Mλ = M + 1/λ2,
a setting that corresponds to the projection choices outlined in Examples 2.1 and 2.2. We then
optimize λ to derive the following corollary.

Corollary 3.2. Given the number of parallel steps R, we set Q = dlogRe + 1. Let ε ∈ (0, 1) be a
small number, and Mλ = M + 1

λ2 .

(a) Set λ = ( 24·7
3 )1/5( pR )1/10( r

mµ1(ν)(2p+1) )1/5h3/10, choose h > 0 and n ∈ N so that

h = 15.6−10/3p2/5m−1
(

r
µ1(ν)(2p+1)

)8/3

R1/3ε10/3 and n > 2
mh log

(
2.22
ε

)
,

then we have W1(νpRLMC
n , ν) 6 ε

√
p/m.

(b) λ = 3202/93−1/3
(

rp
m2µ2(ν)(2p+2)R

)1/9
h1/3, choose h > 0 and n ∈ N so that

h = 13−6m−7/3
(

rp
µ2(ν)(2p+2)

)8/3

R1/3ε6 and n > 2
mh log

(
2.22
ε

)
,

then we have W2(νpRLMC
n , ν) 6 ε

√
p/m.
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Comparing this convergence rate with that obtained for proximal LMC in Corollary 3.1, we observe
superior performance of pRLMC over LMC when R > 1. When assessing the error in W2 distance
for the case ofR = 1, the sample complexity Õ(ε−6) aligns with that of LMC. This outcome results
from our specific choice of λ during the optimization of the upper bound concerning λ, placing it
within a region where the performance of LMC is comparable to that of RLMC.

3.3 KINETIC LANGEVIN MONTE CARLO (KLMC)

In this part, we explore the application of kinetic Langevin diffusion in constrained sampling. Recall
that the kinetic Langevin processLKLD is a solution to a second-order stochastic differential equation
that can be informally written as

1
γ L̈

KLD
t + L̇KLD

t = −∇Uλ(LKLD
t ) +

√
2 Ẇt, (3.2)

with initial conditions LKLD
0 = ϑ0 and L̇KLD

0 = v0. In equation 3.2, γ > 0, W is a standard p-
dimensional Brownian motion and dots are used to designate derivatives with respect to time t > 0.
This can be formalized using Itô’s calculus and introducing the velocity field VKLD so that the joint
process (LKLD,VKLD) satisfies

dLKLD
t = VKLD

t dt; 1
γdVKLD

t = −
(
VKLD
t +∇Uλ(LKLD

t )
)

dt+
√

2 dWt. (3.3)

Similar to the vanilla Langevin diffusion 3.1, the kinetic Langevin diffusion (LKLD,VKLD) is a
Markov process that exhibits ergodic properties when the potentialUλ is strongly convex (see Eberle
et al. (2019) and references therein). The invariant density of this process is given by

p∗(θ,v) ∝ exp{−Uλ(θ)− 1
2γ ‖v‖

2}, for all θ,v ∈ Rp.

Note that the marginal of p∗ corresponds to θ coincides with the target density νλ. The kinetic
Langevin Monte Carlo (KLMC) algorithm is a discretized version of KLD 3.3, where the term
∇Uλ(Lt) is replaced by∇Uλ(Lkh) on each interval [kh, (k+ 1)h). The resulting error bounds are
given in the following theorem.
Theorem 3.3. Under Assumptions 2.1 and 2.2, we further assume that the potential Uλ satisfies
Condition 2.1. Let the tuning parameter λ ∈

(
0, r

2(p+2)

)
. Choose γ and h so that γ > 5Mλ

and
√
κ γh 6 0.1, where κ = Mλ/m. Assume that ϑKLMC

0 is independent of vKLMC
0 and that

vKLMC
0 ∼ Np(0, γIp). Then, for any n > 1, the distribution ν KLMC

n of ϑKLMC
n satisfies

W2(νKLMC
n , ν) 6 2%nW2(νKLMC

0 , ν) + 3
√

3µ2(ν)λ(2p+2)
r + 0.05

√
%nE[Uλ(ϑKLMC

0 )−f(0)]
m + 0.9γh

√
κp
m ,

where % = e−mh. Moreover, let the staring points ϑKLMC
0 = 0, it holds that

W1(νKLMC
n , ν) 6 2%n

√
p
m + 3µ1(ν)λ(2p+1)

r + 0.9γh
√

κp
m .

To our knowledge, these results are the first reported convergence rate for the KLMC algorithm
within the context of constrained sampling. Below, we set Mλ = M + 1/λ2, aligning with the
projection methods detailed in Example 2.1 and Example 2.2. We proceed by optimizing λ to
establish the subsequent corollary.
Corollary 3.3. Let ε ∈ (0, 1) be a small number. Set γ = 5Mλ,Mλ = M + 1

λ2 .

(a) Set λ = 33/421/8r1/4
(
µ1(ν)(2p+ 1)

)−1/4
p1/8m−1/4h1/4, choose h > 0 and n ∈ N so that

h = 2−7/2r3
(
µ1(ν)(2p+ 1)

)−3
p3/2m−1ε4 and n > 1

mh log(4/ε) ,

then we have W1(νKLMC
n , ν) 6 ε

√
p/m.

(b) Set λ = 21/733/7(r/µ2(ν))1/7(h/m)2/7, choose h > 0 and n ∈ N so that

h = 32.26−7m−5/2r3µ2(ν)−3ε7 and n > 1
mh log(4/ε) ,

then we have W2(νKLMC
n , ν) 6 ε

√
p/m.

We note that our error bounds depend in part on the synchronous coupling between the KLMC
and the KLD 3.3. However, for the vanilla Langevin algorithm, Durmus et al. (2019) have shown
that the dependency of the error bound on κ can be improved by employing alternative couplings.
We propose that similar improvements might be achievable for the KLMC algorithm in constrained
sampling scenarios using non-synchronous coupling. For further insights, interested readers are
directed to Yu et al. (2023).
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3.4 PARALLELIZED RANDOMIZED MIDPOINT DISCRETIZATION OF KINETIC LANGEVIN
DIFFUSION (PRKLMC)

The randomized midpoint method, introduced and studied in Shen & Lee (2019), aims at providing
a discretization of the kinetic Langevin process 3.2 that reduces the bias of sampling as compared
to more conventional discretizations. The parallel computing of this algorithm is outlined in Yu &
Dalalyan (2024). This algorithm is referred to as pRKLMC, and for the convenience of the readers,
we restate it in Algorithm 2. To ease the notation, we omit the superscript pRKLMC therein. In

Algorithm 2 Parallelized RKLMC (pRKLMC)
Input: number of parallel stepsR, number of sequential iterationsQ, step size h, friction coefficient γ, number
of iterations K, initial points v0 and ϑ0.
Output: iterates ϑK+1 and vK+1

1: for k = 1 to K do
2: Draw Uk1, . . . , UkR uniformly from

[
0, 1

R

]
, . . . ,

[
R−1
R
, 1
]
, respectively.

3: Generate W̄s = Wkh+s −Wkh

4: Generate ξkr =
∫ Ukrh
0

(
1− e−γ(Ukrh−s)

)
dW̄s, r = 1, . . . , R.

5: Set ϑ(0,r)
k = ϑk, r = 1, . . . , R.

6: for q = 1 to Q− 1 do
7: for r = 1 to R in parallel do
8: akr = 1−e−γhUkr

γ
.

9: bkj =
∫ hmin( j

R
,Ukr)

(j−1)h
R

(1− e−γ(Ukrh−s))ds, j = 1, . . . , r.

10: ϑ
(q,r)
k = ϑk + akrvk −

∑r
j=1 bkj∇U

λ
(
ϑ

(q−1,j)
k

)
+
√

2ξkr.
11: end for
12: end for
13: ϑk+1 = ϑk + 1−e−γh

γ
vk −

∑R
r=1

h
R

(1 − e−γh(1−Ukr))∇Uλ
(
ϑ

(Q−1,r)
k

)
+
√

2
∫ h
0

(
1 −

e−γ(h−s)
)
dW̄s.

14: vk+1 = e−γhvk − γ
∑R
r=1

h
R
e−γh(1−Ukr)∇Uλ

(
ϑ

(Q−1,r)
k

)
+
√

2γ
∫ h
0
e−γ(h−s)dW̄s.

15: end for

In parallel

the theorem below, we quantify the error bounds for this algorithm when applied to constrained
sampling.
Theorem 3.4. Under Assumptions 2.1 and 2.2, we further assume that the potential Uλ satisfies
Condition 2.1. Let the tuning parameter λ ∈

(
0, r

2(p+2)

)
. Choose γ and h so that γ > 5Mλ and

γh 6 0.1κ−1/6, where κ = Mλ/m. Assume that ϑpRKLMC
0 is independent of vpRKLMC

0 and that
vpRKLMC

0 ∼ Np(0, γIp). Then, for any n > 1, the distribution ν pRKLMC
n of ϑpRKLMC

n satisfies

W2(νpRKLMC
n , ν) 6 1.8%nW2(νpRKLMC

0 , ν) + 2.8
√

3µ2(ν)λ(2p+2)
r + 0.28

√
%nE[Uλ(ϑpRKLMC

0 )−f(0)]
m

+ 44.78
√

(γMλh2)3

R2 + (γMλh2)2Q−1
√

κp
m ,

where % = e−mh. Moreover, let the staring points ϑpRKLMC
0 = 0, it holds that

W1(νpRKLMC
n , ν) 6 1.8%n

√
p
m + 3µ1(ν)λ(2p+1)

r + 44.78
√

(γMλh2)3

R2 + (γMλh2)2Q−1
√

κp
m .

To our knowledge, this represents the first convergence analysis for the pRKLMC algorithm
within the context of constrained sampling. When R = 1, we recover the convergence rate for
RKLMC Shen & Lee (2019); Yu et al. (2023); Yu & Dalalyan (2024) when applied in the context of
constrained sampling. We define Mλ = M + 1/λ2, in line with the projection options described in
Examples 2.1 and 2.2. We then select the optimal λ to derive the following corollary.
Corollary 3.4. Given the number of parallel stepsR, setQ = dlogRe+2. Let ε ∈ (0, 1) be a small
number, γ = 5Mλ with Mλ = M + 1/λ2.
(a) Set λ = ( 7·8011

3 )1/8( rh3

Rµ1(ν)(2p+1) )1/8( p
m2 )1/16, choose h > 0 and n ∈ N so that

h = 23.6−8/3p7/6m−1r7/3
(
µ1(ν)(2p+ 1)

)−7/3
R1/3ε8/3 and n > 1

mh log
(

3.6
ε

)
,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

then we have W1(νpRKLMC
n , ν) 6 ε

√
p/m.

(b) Set λ = ( 14·8011
5 )2/15( rp

m2µ2(ν)(2p+2) )1/15(h
3

R )2/15, choose h > 0 and n ∈ N so that

h = 20.9−5p7/3m−13/6r7/3
(
µ2(ν)(2p+ 2)

)−7/3
R1/3ε5 and n > 1

mh log
(

3.6
ε

)
,

then we have W2(νpRKLMC
n , ν) 6 ε

√
p/m.

The corollary demonstrates that pRKLMC achieves the best performance in terms of sample com-
plexity compared to the other three algorithms considered in this work.

4 DISCUSSION

Strongly convexity In this work, we focus on a strongly convex potential function f coupled
with specific choices of projection operators, resulting in a strongly log-concave surrogate density
νλ. However, it is important to note that the approximation error bound between the target density
ν and the surrogate density νλ, as stated in Proposition 2.1, depends solely on the convexity of f .
By relaxing the strong convexity requirement of f and considering alternative projection operators,
one can generate a surrogate density νλ that is less restrictive than strongly log-concave. This
modification enables the extension of these findings to a broader spectrum of sampling methods.

Other metrics The Wasserstein distance we employ is a natural metric for measuring sampling
errors due to its relevance to optimal transport theory. However, recent advancements in gradient-
based sampling have investigated other metrics, including total variation distance, KL divergence,
and χ2 divergence. An intriguing avenue for future research would be to establish error guarantees
for constrained sampling concerning these alternative metrics.

Limitation The primary focus of this work is to provide theoretical insights into the analysis of
constrained sampling. We hope that these insights pave the way for empirical evaluations of the
performance of Langevin-type algorithms in various settings, as well as for implementations in real
data applications, which offer promising directions for future research.
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A RELATION TO PREVIOUS WORKS ON CONSTRAINED SAMPLING

Sampling from constrained log-concave distributions is a fundamental task across various fields. In
computer science, several studies have explored the convergence of the ball walk and hit-and-run
algorithms toward the uniform density on a convex body K, or more generally, a log-concave den-
sity (Dyer et al., 1991; Kannan et al., 1997; Kook et al., 2024; Lovász, 1999; Lovász & Simonovits,
1993; Lovász & Vempala, 2007; Smith, 1984). Unlike the first-order sampling methods examined
in this work, these algorithms require calls to zero-order oracles at each iteration. Additionally, the
performance of these geometric random walks is influenced by the skewed shape ofK, necessitating
pre-processing steps to enhance efficiency.

Another category of samplers addresses the geometric structure of convex constraints, including
Riemannian Hamiltonian Monte Carlo (Brubaker et al., 2012; Gürbüzbalaban et al., 2022; Kook
et al., 2022), Gibbs sampling (Gelfand et al., 1992), and Mirror Langevin methods (Ahn & Chewi,
2021; Chewi et al., 2020; Hsieh et al., 2018; Zhang et al., 2020).

A particularly relevant approach to this work involves diffusion-type samplers (Brosse et al., 2017;
Bubeck et al., 2015; 2018; Lamperski, 2021; Lehec, 2021; 2023). These samplers, based on dis-
cretizations of Itô diffusions, exhibit rapid convergence to the target density in continuous time and
have been extensively employed in unconstrained settings. While the underlying stochastic pro-
cesses can be generalized to constrained settings, the discretization analysis heavily relies on the
smoothness of the target distribution, which is challenging to achieve in the constrained context
considered here.

Among these works, Brosse et al. (2017) is the most closely aligned with the spirit of this work.
It considers the same setting as the current study, proposing the use of the Moreau envelope (Ex-
ample 2.1) to derive a smooth surrogate density, followed by applying LMC to sample from this
density. Their approach supports our general framework, which integrates Euclidean projection
with LMC, and provides convergence bounds in both the W1 metric and total variation norm. Our
work expands on this approach by presenting a general scheme that accommodates a broader range
of projection methods and sampling techniques beyond LMC. This enhances the applicability of
algorithms such as KLMC, pRLMC, and pRKLMC in constrained settings. Furthermore, we estab-
lish a lower bound for the distance between the surrogate distribution and the target distribution in
Proposition 2.2, demonstrating the tightness of the bound for the distance between the approxima-
tion and the target density established in Proposition 2.1. This aspect has not been addressed in any
of the previously mentioned works on the diffusion-type samplers.

B PROOFS OF SECTION 2

In this part, we provide the proof of Lemma 2.1, Lemma 2.2, Proposition 2.1, and Proposition 2.2.

B.1 PROOFS OF LEMMA 2.1 AND LEMMA 2.2

Proof of Lemma 2.1. By Theorem 2.26 in Rockafellar & Wets (2009), the function `E,λK (x) is con-
vex and continuously differentiable, and `E,λK (x) is 1

λ2 -smooth. The last claim follows from Lemma
1 in Brosse et al. (2017).

Proof of Lemma 2.2. By the definition of `G,λK , we have

`G,λK =
1

2λ2

(
1− 1

gK(x)

)2||x||22 .
By the definition of UG,λ, the function UG,λ is m-strongly convex, continuously differentiable.
Moreover, it holds that

||∇`G,λK (x)−∇`G,λK (y)||2 6
1

λ2
||x− y||2 ,

14
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This implies UG,λ is 1
λ2 + M -smooth. Now we show that

∫
Rp e

−UG,λ(s)ds < ∞. Let R :=
maxx∈K||x||2, and there is a constant l ∈ R such that f(x) > l,∀x ∈ R. Define R := supx∈K||x||2.
Note that∫

Rp
e−U

G,λ(x)dx =

∫
K
e−f(x)dx+

∫
B2(0,R)∩Kc

e−U
G,λ(x)dx+

∫
B2(0,R)c

e−U
G,λ(x)dx .

We now derive the bound for the second and the third terms on the right-hand side of the previous
display. Since f is convex, there exists a ∈ R and b ∈ Rp such that

f(x) > a+ 〈b, x〉 .

We then find ∫
B2(0,R)∩Kc

e−U
G,λ(x)dx 6 e−a+bR

∫
B2(0,R)

dx .

Thus, ∫
B2(0,R)∩Kc

e−U
G,λ(x)dx 6e−a+bR

∫
B2(0,R)

dx

6e−a+bR

∫
B2(0,R)

dx

=e−a+bR πp/2

Γ(d2 + 1)
Rp

<∞ .

Note that ∫
B2(0,R)c

e−U
G,λ(x)dx 6 e−l

∫
B2(0,R)c

e−
1

2λ2
(||x||2−R)2dx

By Fubini’s theorem and the fact that

e−
1

2λ2
(||x||2−R)2 =

∫ ∞
0

t

λ2
e−

t2

2λ2 1[||x||2−R,∞)(t)dt ,

we obtain ∫
B2(0,R)c

e−U
G,λ(x)dx 6e−l

∫ ∞
0

t

λ2
e−

t
2λ2

∫
x:||x||2≥R

1[||x||2−R,∞)(t)dxdt

6e−l
∫ ∞

0

t

λ2
e−

t
2λ2

∫
B2(0,R+t)

dxdt

=e−l
∫ ∞

0

t

λ2
e−

t
2λ2

πp/2

Γ(p2 + 1)
(R+ t)ddt

<∞ .

Collecting pieces gives the desired result.

B.2 PROOFS OF PROPOSITION 2.1

To prove the Proposition 2.1, we need the following auxiliary lemma.
Lemma B.1. Assume f is convex and 0 = arg minθ∈K f(θ). Under Assumption 2.1 , it holds for
any λ ∈

(
0, r

2(p+k)

)
that ∫

Kc
||x||k2νλ(x)dx 6

3λ (p+ k)

r
× µk(ν) ,

where µk(ν) =
∫
Rp ||θ||

k
2 ν(dθ).
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Proof of Lemma B.1. By Fubini’s theorem and the fact that∫ ∞
0

t

λ2
e−

t2

2λ2 1[||x−PK(x)||2,+∞)(t)dt = e−
1

2λ2
||x−PK(x)||22 ,

it holds for every k > 0 that∫
Kc
||x||k2e−U

λ(x)dx =

∫ ∞
0

(∫
Kc
||x||k2e−f(x)1(||x− PK(x)||2 6 t) dx︸ ︷︷ ︸

ψ(t)

) t

λ2
e−

t2

2λ2 dt. (B.1)

Define the set Kt := {x ∈ Rp : ||x− PK(x)||2 6 t}, we then have

ψ(t) =

∫
Kt
||x||k2e−f(x) dx−

∫
K
||x||k2e−f(x) dx. (B.2)

On the other hand, it holds for every b > 0 that∫
Kt
||x||k2e−f(x) dx = (1 + b)p+k

∫
Kt/(1+b)

||y||k2e−f((1+b)y) dy

6 (1 + b)p+k
∫
Kt/(1+b)

||y||k2e−f(y) dy

where we have used the inequality

f((1 + b)y) + bf(0) > (1 + b)f
( 1

1 + b
(1 + b)y +

b

b+ 1
0
)

= (1 + b)f(y) > f(y) + bf(0),

implying that f((1 + b)y) > f(y) for every b > 0 and every y ∈ Rp. In addition, it holds for any
x ∈ Kt/(1 + b) that

||(1 + b)x− PK
(
(1 + b)x

)
||2 6 t

which is equivalent to

1 + b

b
||x− 1

1 + b
PK
(
(1 + b)x

)
||2 6

t

b
.

Note that we can rewrite x as

x =
1

1 + b
PK
(
(1 + b)x

)
+

b

1 + b

x− 1
1+bPK

(
(1 + b)x

)
b

1+b

.

Notice that

PK
(
(1 + b)x

)
∈ K

and when b = t/r we have

x− 1
1+bPK

(
(1 + b)x

)
b

1+b

∈ K .

By the convexity of the set K, this implies x ∈ K. Therefore, we obtain∫
Kt
||x||k2e−f(x) dx 6

(
1 +

t

r

)p+k ∫
K
||y||k2e−f(y) dy 6 e(p+k)t/r

∫
K
||y||k2e−f(y) dy .

Combining this inequality with display B.2, we get

ψ(t) 6
(
e(p+k)t/r − 1

) ∫
K
||y||k2e−f(y) dy .
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Substituting this upper bound in display B.1 leads to∫
Kc
||x||k2e−U

λ(x)dx 6
∫ ∞

0

t

λ2
e−t

2/2λ2(
e(p+k)t/r − 1

)
dt×

∫
K
||y||k2e−f(y) dy

=

∫ ∞
0

(
e(p+k)t/r − 1

)
d
(
− e−t

2/2λ2)
×
∫
K
||y||k2e−f(y) dy

=
(p+ k)

r

∫ ∞
0

exp
{
− t2

2λ2
+

(p+ k)t

r

}
dt×

∫
K
||y||k2e−f(y) dy

=
(p+ k)

r
exp

{λ2(p+ k)2

2r2

}∫ ∞
0

exp
{
− (t− (λ2/r)(p+ k))2

2λ2

}
dt×

∫
K
||y||k2e−f(y) dy

6

√
2πλ (p+ k)

r
exp

{λ2(p+ k)2

2r2

}
×
∫
K
||y||k2e−f(y) dy .

When λ < r
2(p+k) , it holds that∫

Kc
||x||k2e−U

λ(x)dx 6
3λ (p+ k)

r
×
∫
K
||y||k2e−f(y) dy. (B.3)

Finally, note that the normalizing constant of νλ can be lower bounded as follows∫
Rp
e−U

λ(x)dx >
∫
K
e−U

λ(x)dx =

∫
K
e−f(x)dx .

The desired result follows readily by dividing the two sides of display B.3 by
∫
Rp e

−Uλ(x)dx and
employing this inequality.

We are now ready to prove Proposition 2.1

Proof of Proposition 2.1. By Theorem 6.15 in Villani (2009), it holds that

Wq
q(ν, ν

λ) 6
∫
Rp
||x||q2|ν(x)− νλ(x)|dx .

We note that∫
Rp
||x||q2|ν(x)− νλ(x)|dx =

∫
K
||x||q2|ν(x)− νλ(x)|dx+

∫
Kc
||x||q2νλ(x)dx

=
(

1−
∫
K e
−f(y) dy∫

Rp e
−Uλ(y) dy

)∫
K
||x||q2ν(x)dx+

∫
Kc
||x||q2νλ(x)dx

=

∫
Kc e

−Uλ(y) dy∫
Rp e

−Uλ(y) dy
×
∫
K
||x||q2ν(x)dx+

∫
Kc
||x||q2νλ(x)dx

=

∫
Kc
νλ(y) dy × µq(ν) +

∫
Kc
||x||q2νλ(x)dx .

When λ 6 r
2(p+q) , we apply Lemma B.1 with k = 0 and k = q, which leads us to the inequality∫

Rp
||x||q2|ν(x)− νλ(x)|dx 6

3λ
(
pµ0(ν) + (p+ q)

)
µq(ν)

r
=

3λ(2p+ q)

r
× µq(ν).

This completes the proof.
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B.3 PROOF OF PROPOSITION 2.2

To prove Proposition 2.2, we need the following auxiliary lemma.

Lemma B.2. Under the assumptions stated in Proposition 2.2, for any k > 1 and any λ ∈(
0, r

2(p+k) ∧
1√
M

)
, it holds that∫

Kc
||x||k2νλ(dx)/µk(ν) >

1

2

√
π

2
e−

3
4Mr2 p+ k

r + 3λp
λ .

Proof of Lemma B.2. By the definition of νλ and µk(ν), we have∫
Kc
||x||k2νλ(dx)/µk(ν) =

∫
Kc ||x||

k
2e
−f(x)− 1

2λ2
(||x||2−r)2dx∫

Rp e
−Uλ(x)dx

·
∫
K e
−f(x)dx∫

K||x||
k
2e
−f(x)dx

. (B.4)

Note that f is M -smooth and f(0) = 0, it then holds that

f(x) 6
M

2
||x||22 .

This implies ∫
Kc
||x||k2e

−f(x)− 1
2λ2

(||x||2−r)2dx >
∫
Kc
||x||k2e

−M2 ||x||
2
2− 1

2λ2
(||x||2−r)2dx .

Employing the integration in polar coordinates gives∫
Kc
||x||k2e

−M2 ||x||
2
2− 1

2λ2
(||x||2−r)2dx = ωp−1

∫ +∞

r

tk+p−1e−
M
2 t

2− 1
2λ2

(t−r)2dt ,

where ωp−1 =
∫ π
−π
∫ π

0
· · ·
∫ π

0

∏p−2
j=1(sin θj)

p−j−1dθ1 · · · dθp−1. Let t = r+λz, it then follows that∫
Kc
||x||k2e

−f(x)− 1
2λ2

(||x||2−r)2dx

> λωp−1

∫ +∞

0

(r + λz)k+p−1e−
M
2 (r+λz)2− 1

2 z
2

dz

> λωp−1r
k+p−1

∫ +∞

0

e−
M
2 (r+λz)2− 1

2 z
2

dz

= λωp−1r
k+p−1

∫ +∞

0

e
−
(√

1+Mλ2

2 x+ Mλr√
2(1+Mλ2)

)2
dxe
−Mr22

(
1+ Mλ2

1+Mλ2

)
.

The last step follows from a change of variables. Using the fact that λ < 1/
√
M and (x + y)2 6

2x2 + 2y2,∀x, y > 0, we then obtain∫
Kc
||x||k2e

−f(x)− 1
2λ2

(||x||22−r)
2

dx > λωp−1r
k+p−1

∫ +∞

0

e−(1+Mλ2)x2

dxe
−Mr22 (1+ Mλ2

1+Mλ2
)

= λωp−1r
k+p−1 1

2

√
π

1 +Mλ2
e
−Mr22 (1+ Mλ2

1+Mλ2
)

> λωp−1r
k+p−1 1

2

√
π

2
e−

3
4Mr2 .

Moreover, by display B.3, we find∫
Rp
e−U

λ(x)dx =

∫
K
e−U

λ(x)dx+

∫
Kc
e−U

λ(x)dx

6
(

1 +
3λp

r

)∫
K
e−||x||

2
2/2dx .
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Furthermore, using the integration in polar coordinates again gives∫
K
||x||k2e−f(x)dx 6 ωp−1

∫ r

0

tk+p−1dt

= ωp−1
rk+p

k + p
.

Collecting pieces and plugging them into display B.4 gives∫
Kc
||x||k2νλ(dx)/µk(ν) >

1

2

√
π

2
e−

3
4Mr2 p+ k

r + 3λp
λ

as desired.

We are now ready to prove Proposition 2.2.

Proof of Proposition 2.2. By Proposition 7.29 in Villani (2009), it holds for any q > 1 that

Wq
q(ν

λ, ν) >
∣∣∣( ∫

Rp
||x||q2νλ(dx)

)1/q

−
(∫

Rp
||x||q2ν(dx)

)1/q∣∣∣q .
Dividing both sides by µq(ν) gives

Wq
q(ν

λ, ν)/µq(ν) >
∣∣∣( ∫

Rp
||x||q2νλ(dx)/µq(ν)

)1/q

− 1
∣∣∣q

=

∣∣∣∣∣
(∫
K||x||

q
2ν
λ(dx) +

∫
Kc ||x||

q
2ν
λ(dx)∫

Rp ||x||
q
2ν(dx)

)1/q

− 1

∣∣∣∣∣ .
By the definitions of ν and νλ, we have∫

K||x||
q
2ν
λ(dx)∫

Rp ||x||
q
2ν(dx)

=

∫
K||x||

q
2e
−f(x)dx∫

Rp e
−Uλdx

·
∫
K e
−f(x)dx∫

K||x||
q
2e
−f(x)dx

=

∫
K e
−f(x)dx∫

K e
−f(x)dx+

∫
Kc e

−f(x)dx
.

Combining this with display B.3 then yields∫
K||x||

q
2ν
λ(dx)∫

Rp ||x||
q
2ν(dx)

>
r

r + 3λp
.

By Lemma B.2 and Lemma B.1, we have

1

2

√
π

2
e−

3
4Mr2 p+ q

r + 3λp
λ 6

∫
Kc ||x||

q
2ν
λ(dx)∫

Rp ||x||
q
2ν(dx)

6
3λ(p+ q)

r
.

Collecting pieces gives the desired result.

C PROOFS OF SECTION 3

Proof of Theorem 3.1. The triangle inequality for the Wasserstein distance provides us with

W2(νLMC
n , ν) 6 W2(νLMC

n , νλ) + W2(νλ, ν) . (C.1)

By Theorem 9 in Durmus et al. (2019), it holds that

W2(νLMC
n , νλ) 6 e−

mnh
2 W2(νLMC

0 , νλ) +

√
2Mλph

m
(C.2)
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provided that h 6 1/Mλ. Using the triangle inequality for the Wasserstein distance again gives

W2(νLMC
n , νλ) 6 e−

mnh
2 W2(νLMC

0 , ν) +

√
2Mλph

m
+ W2(ν, νλ) .

Plugging this back to display C.1 then provides us with

W2(νLMC
n , ν) 6 e−

mnh
2 W2(νLMC

0 , ν) +

√
2Mλph

m
+ 2W2(ν, νλ) .

Combining this with Proposition 2.1, for any λ ∈
(
0, r

2(p+2)

)
, we obtain

W2(νLMC
n , ν) 6 e−

mnh
2 W2(νLMC

0 , ν) +

√
2Mλph

m
+ 2
(3µ2(ν)λ(2p+ 2)

r

) 1
2

.

This completes the proof of the first claim.

We then proceed to prove the second claim. By the triangle inequality and the monotonicity of
Wasserstein distance, we have

W1(νLMC
n , ν) 6 W1(νLMC

n , νλ) + W1(νλ, ν)

6 W2(νLMC
n , νλ) + W1(νλ, ν) .

When νLMC
0 is the Dirac mass at the minimizer of the function f , by Proposition 1 in Durmus &

Moulines (2019), it holds that

W2(νLMC
0 , νλ) 6

√
p

m
.

Combining this with previous display, display C.2, and Proposition 2.1 then gives

W1(νLMC
n , ν) 6 e−

mnh
2 W2(νLMC

0 , νλ) +

√
2Mλph

m
+ W1(νλ, ν)

6 e−
mnh

2

√
p

m
+

√
2Mλph

m
+

3µ1(ν)λ(2p+ 1)

r

as desired.

Proof of Theorem 3.2. The proof employs a similar technique to that used in the proof of Theo-
rem 3.1. Note that Mλh 6 1/10, by the triangle inequality and Theorem 1 from Yu & Dalalyan
(2024), we have

W2(νpRLMC
n , ν) 6 W2(νλ, ν) + W2(νpRLMC

n , νλ)

6
(

1 +
√
κMλh

(
0.82(Mλh)Q−1 + 0.94Mλh/R)

))
e−mnh/2W2(νpRLMC

0 , νλ)

+
√
κMλh

(
3.98(Mλh)Q−1 + 6.91Mλh/

√
R
)√

p/m+ W2(νλ, ν)

6
(

1 +
√
κMλh

(
0.82(Mλh)Q−1 + 0.94Mλh/R)

))
e−mnh/2

(
W2(νpRLMC

0 , ν) + W2(ν, νλ)
)

+
√
κMλh

(
3.98(Mλh)Q−1 + 6.91Mλh/

√
R
)√

p/m+ W2(νλ, ν) .

Combining this with Proposition 2.1, for any λ ∈
(
0, r

2(p+2)

)
, we obtain

W2(νpRLMC
n , ν) 6

(
1 +
√
κMλh

(
0.82(Mλh)Q−1 + 0.94Mλh/R

))
e−mnh/2W2(νpRLMC

0 , ν)

+
√
κMλh

(
3.98(Mλh)Q−1 + 6.91Mλh/

√
R
)√

p/m(
2 +
√
κMλh

(
0.82(Mλh)Q−1 + 0.94Mλh/R

))√
3µ2(ν)λ(2p+ 2)/r

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

as desired. Invoking Proposition 2.1 and the monotonicity of the Wasserstein distance, since νpRLMC
0

is the Dirac mass at the minimizer of the function f , it holds that

W1(νpRLMC
n , ν) 6 W2(νpRLMC

n , νλ) + W1(νλ, ν)

6
(

1 +
√
κMλh

(
0.82(Mλh)Q−1 + 0.94Mλh/R

))
e−mnh/2

√
p/m

+
√
κMλh

(
3.98(Mλh)Q−1 + 6.91Mλh/

√
R
)√

p/m(
2 +
√
κMλh

(
0.82(Mλh)Q−1 + 0.94Mλh/R

))√
3µ2(ν)λ(2p+ 2)/r

as desired.

Proof of Theorem 3.3. The proof relies a similar technique to that used in the proof of Theorem 3.1.
The key distinction lies in the utilization of Theorem 3 from Yu et al. (2023) to bound the W2

distance between νKLMC
n and νλ. By the triangle inequality and Theorem 3 from Yu et al. (2023),

we have

W2(νKLMC
n , ν) 6 W2(νλ, ν) + W2(νKLMC

n , νλ)

6 2%nW2(νKLMC
0 , νλ) + 0.05

√
%nE[Uλ(ϑKLMC

0 )− f(0)]

m
+ 0.9γh

√
κp

m
+ W2(νλ, ν)

6 2%n
(
W2(νKLMC

0 , ν) + W2(ν, νλ)
)

+ 0.05

√
%nE[Uλ(ϑKLMC

0 )− f(0)]

m
+ 0.9γh

√
κp

m

+ W2(νλ, ν) .

Combining this with Proposition 2.1, for any λ ∈
(
0, r

2(p+2)

)
, we obtain

W2(νKLMC
n , ν) 6 2%nW2(νKLMC

0 , ν) + 3

√
3µ2(ν)λ(2p+ 2)

r
+ 0.05

√
%nE[Uλ(ϑKLMC

0 )− f(0)]

m

+ 0.9γh

√
κp

m

as desired.

Invoking Proposition 2.1 and the monotonicity of the Wasserstein distance, since ϑKLMC
0 = 0, it

holds that

W1(νKLMC
n , ν) 6 W2(νKLMC

n , νλ) + W1(νλ, ν)

6 2%n
√

p

m
+

3µ1(ν)λ(2p+ 1)

r
+ 0.9γh

√
κp

m

as desired.

Proof of Theorem 3.4. By the triangle inequality and Theorem 2 from Yu & Dalalyan (2024), we
have

W2(νpRKLMC
n , ν) 6 W2(νλ, ν) + W2(νpRKLMC

n , νλ)

6 1.8%nW2(νpRKLMC
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√
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m

+ 44.78
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Combining this with Proposition 2.1, for any λ ∈
(
0, r

2(p+2)

)
, we obtain

W2(νpRKLMC
n , ν) 6 1.8%nW2(νpRKLMC

0 , ν) + 0.28

√
%nE[Uλ(ϑpRKLMC

0 )− f(0)]

m

+ 44.78

√
(γMλh2)3

R2
+ (γMλh2)2Q−1

√
κp

m
+ 2.8

√
3µ2(ν)λ(2p+ 2)

r

as desired.

Invoking Proposition 2.1 and the monotonicity of the Wasserstein distance, since ϑpRKLMC
0 = 0, it

holds that

W1(νpRKLMC
n , ν) 6 W2(νpRKLMC

n , νλ) + W1(νλ, ν)

6 1.8%n
√

p

m
+

3µ1(ν)λ(2p+ 1)

r
+ 44.78

√
(γMλh2)3

R2
+ (γMλh2)2Q−1

√
κp

m

as desired.
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