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ABSTRACT

Despite overparameterization, deep networks trained via supervised learning are
surprisingly easy to optimize and exhibit excellent generalization. One hypothe-
sis to explain this is that overparameterized deep networks enjoy the benefits of
implicit regularization induced by stochastic gradient descent, which favors parsi-
monious solutions that generalize well on test inputs. It is reasonable to surmise
that deep reinforcement learning (RL) methods could also benefit from this effect.
In this paper, we discuss how the implicit regularization effect of SGD seen in
supervised learning could in fact be harmful in the offline deep RL setting, lead-
ing to poor generalization and degenerate feature representations. Our theoretical
analysis shows that when existing models of implicit regularization are applied
to temporal difference learning, the resulting derived regularizer favors degener-
ate solutions with excessive aliasing, in stark contrast to the supervised learning
case. We back up these findings empirically, showing that feature representations
learned by a deep network value function trained via bootstrapping can indeed
become degenerate, aliasing the representations for state-action pairs that appear
on either side of the Bellman backup. To address this issue, we derive the form of
this implicit regularizer and, inspired by this derivation, propose a simple and ef-
fective explicit regularizer, called DR3, that counteracts the undesirable effects of
this implicit regularizer. When combined with existing offline RL methods, DR3
substantially improves performance and stability, alleviating unlearning in Atari
2600 games, D4RL domains and robotic manipulation from images.

1 INTRODUCTION

Deep neural networks are overparameterized, which in principle should leave them vulnerable to
overfitting. Despite this, supervised learning with deep networks still learn representations that
generalize well. A widely held consensus is that deep nets find simple solutions that generalize
due to various implicit regularization effects (Blanc et al., 2020; Woodworth et al., 2020; Arora
et al., 2018; Gunasekar et al., 2017; Wei et al., 2019). We may surmise that using deep nets in
reinforcement learning (RL) will work well for the same reason, learning effective representations
that generalize due to such implicit regularization effects. But is this actually the case for value
functions trained via bootstrapping?

In this paper, we argue that, while implicit regularization leads to effective representations in super-
vised deep learning, it may lead to poor learned representations when training overparameterized
deep network value functions. There is already evidence that value functions trained via bootstrap-
ping learn poor representations: value functions trained with offline deep RL eventually degrade
in performance (Agarwal et al., 2020; Kumar et al., 2021) and this degradation is correlated with
the emergence of low-rank features in the value network (Kumar et al., 2021).We focus specifically
on the offline RL setting, in order to rule out any confounding effects from exploration and non-
stationary data. In this paper, we aim to understand the underlying cause of the emergence of poor
representations and develop a potential solution. Building on the theoretical framework developed
by Blanc et al. (2020); Damian et al. (2021), we characterize the implicit regularizer that arises when
training deep value functions with TD learning. This implicit regularizer implies that TD-learning
would alias representations of state-action tuples that appear on either side of a Bellman backup.

We show that this theoretically predicted aliasing phenomenon manifests in practice as feature co-
adaptation, where the features of consecutive state-action tuples learned by the Q-value network
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become extremely similar in terms of their dot product (Section 3). This co-adaptation can lead
to oscillatory learning dynamics, and potentially to poor performance. We find that even when
Q-values are not overestimated, prolonged training in offline RL can result in performance degra-
dation as feature co-adaptation increases. To mitigate the co-adaptation issue that arises as a result
of implicit regularization, we propose an explicit regularizer that we call DR3 (Section 4). While
exactly estimating and cancelling the effects of the theoretically derived implicit regularizer is com-
putationally difficult, DR3 provides a simple and tractable theoretically-inspired approximation, that
mitigates the issues discussed above. In practice, DR3 amounts to regularizing the features at con-
secutive state-action pairs to be dissimilar in terms of their dot-product similarity. Empirically, we
find that DR3 allows neural net Q-functions to use their full representational capacity as measured
by the rank of the learned features, giving rise to methods that train for longer, reach a better solution,
and remain stable at this solution without severe degradation (Section 6).

Our first contribution is the derivation of the implicit regularizer that arises when training deep net
value functions via TD learning, and empirically demonstrate it manifests as feature co-adaptation in
the offline deep RL setting. Feature co-adaptation accounts at least in part for some of the challenges
of offline deep RL, including degradation of performance with prolonged training. Second, we
propose a simple and effective explicit regularizer for offline value-based RL, DR3, which minimizes
the feature similarity between state-action pairs appearing in a bootstrapping update. DR3 is inspired
by the theoretical derivation of the implicit regularizer, it alleviates co-adaptation and can be easily
combined with modern offline RL methods, such as REM (Agarwal et al., 2020), CQL (Kumar et al.,
2020b), and BRAC (Wu et al., 2019). Empirically, using DR3 in conjunction with existing offline RL
methods provides about 60% performance improvement on the harder D4RL (Fu et al., 2020) tasks,
and 160% and 25% stability gains for REM and CQL respectively, on offline RL tasks in 17 Atari
2600 games. Additionally, we observe large improvements on image-based robotic manipulation
tasks (Singh et al., 2020).

2 PRELIMINARIES

The goal in RL is to maximize the long-term discounted reward in an MDP, defined as
(S,A, R, P, γ) (Puterman, 1994), with state space S, action space A, a reward function R(s,a), dy-
namics P (s′|s,a) and a discount factor γ ∈ [0, 1). The Q-function Qπ(s,a) for a policy π(a|s) is the
expected sum of discounted rewards obtained by executing action a at state s and following π(a|s)
thereafter. Qπ(s,a) is the fixed point of Q(s,a) := R(s,a) + γEs′∼P (·|s,a),a′∼π(·|s′) [Q(s′,a′)].
We study the offline RL setting, where the algorithm must learn a policy only using a given dataset
D = {(si,ai, s′i, ri)}, generated from some behavior policy, πβ(a|s), without active data collection.
The Q-function is parameterized with a neural net with parameters θ. We will denote the penultimate
layer of the deep network (the learned features) ϕθ(s,a), such that Qθ(s,a) = wTϕ(s,a), where
w ∈ Rd. Standard deep RL methods (Mnih et al., 2015; Haarnoja et al., 2018) convert the Bellman
equation into a squared temporal difference (TD) error objective for Qθ:

LTD(θ) =
∑

s,a,s′∼D

(
R(s,a) + γQθ(s

′,a′)−Qθ(s,a)
)2
, (1)

where Q̄θ is a delayed copy of same Q-network, referred to as the target network and a′ is computed
by maximizing the target Q-function at state s′ for Q-learning (i.e., when computing Q∗) and by
sampling a′ ∼ π(·|s) when computing the Q-value Qπ of a policy π.

A major problem in offline RL is the issue of distributional shift between the learned policy and
the behavior policy (Levine et al., 2020). Since our goal is to study the effect of implicit regular-
ization in TD-learning and not distributional shift, we build on top of existing offline RL methods
in our experiments: CQL (Kumar et al., 2020b), which penalizes erroneous Q-values during train-
ing, REM (Agarwal et al., 2020), which utilizes an ensemble of Q-functions, and BRAC (Wu et al.,
2019), which applies a policy constraint. An overview of these methods is provided in Appendix E.

3 IMPLICIT REGULARIZATION IN DEEP RL VIA TD-LEARNING

While the “deadly-triad” (Sutton & Barto, 2018) suggests that training value function approximators
with bootstrapping can lead to divergence, modern deep RL algorithms have been able to success-
fully combine these properties (van Hasselt et al., 2018). However, making too many TD updates
to the Q-function in offline deep RL is known to sometimes lead to performance degradation and
unlearning, even for otherwise effective modern algorithms (Fu et al., 2019; Fedus et al., 2020;
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Figure 1: Feature dot-products ϕ(s,a)⊤ϕ(s′,a′) increase during training when backing up from out-of-
sample but in-distribution actions (TD-learning: left, Q-learning: right), though the average Q-value con-
verges and stays relatively constant. Using only seen state-action pairs for backups (offline SARSA) or not
performing Bellman backups (i.e., supervised regression) avoids this issue, with stable and relatively low
dot products. Left: TD-learning with high feature dot products eventually destabilizes and produces incorrect
Q-values, Right: DQN attains extremely large feature dot products, despite a relatively stable trend in Q-values.

Agarwal et al., 2020; Kumar et al., 2021). Such unlearning is not typically observed when training
overparameterized models via supervised learning, so what about TD learning is responsible for it?
We show that one possible explanation behind this pathology is the implicit regularization induced
by minimizing TD error on a deep Q-network. Our theoretical results suggest that this implicit
regularization “aliases” the representations of state-action pairs that appear in a Bellman backup,
and this aliasing is exacerbated when utilizing unseen state-action pairs for the Bellman backup.
Empirically, this typically manifests as “co-adapted” (similar) features for consecutive state-action
tuples, even with specialized TD-learning algorithms that account for distributional shift. Highly
co-adapted features in turn lead to poor solutions as we will theoretically and empirically show. We
first provide empirical evidence of the existence of this co-adaptation phenomenon in Section 3.1
(additional evidence in Appendix A.1) and then theoretically characterize the implicit regularization
in TD learning, and discuss how it can explain the co-adaptation phenomenon in Section 3.2.

3.1 FEATURE CO-ADAPTATION AND HOW IT RELATES TO IMPLICIT REGULARIZATION

In this section, we empirically identify a feature co-adaptation phenomenon that appears when
training value functions via bootstrapping, where the feature representations of consecutive state-
action pairs become excessively similar as measured by their dot product ϕ(s,a)⊤ϕ(s′,a′). Feature
co-adaptation appears even when there is no explicit affinity to increase feature similarity.

Experimental setup. To empirically observe feature co-adaptation, we ran supervised regression
and three variants of approximate dynamic programming (ADP) on an offline dataset consisting of
1% of uniformly-sampled data from the replay buffer of DQN on two Atari games, previously used
in Agarwal et al. (2020). First, for comparison, we trained a Q-function via supervised regression
to Monte-Carlo (MC) return estimates on the offline dataset to estimate the value of the behavior
policy. Then, we trained variants of ADP which differ in the selection procedure for the action
a′ that appears in the target value in LTD(θ) (Equation 1). The offline SARSA variant aims to
estimate the value of the behavior policy, Qπβ , and sets a′ to the actual action observed at the next
time step in the dataset, such that (s′,a′) ∈ D. The TD-learning variant also aims to estimate the
value of the behavior policy, but utilizes an action a′ sampled from the learned behavior policy πβ ,
a′ ∼ πβ(·|s′). We also train Q-learning, which chooses the action a′ to maximize the learned Q-
function. While Q-learning learns a different Q-function, we can still compare the relative stability
of these methods to gain intuition about the learning dynamics. In addition to feature dot products
ϕ(s,a)⊤ϕ(s′,a′), we also track the average prediction of the Q-network over the dataset to measure
whether the predictions diverge or are stable in expectation.

Observing feature co-adaptation empirically. As shown in Figure 1 (right), the average dot prod-
uct (top row) between features at consecutive state-action tuples continuously increases for both
Q-learning and TD-learning (after enough gradient steps), whereas it flatlines and converges to a
small value for supervised regression. We might at first think that this is simply a case of Q-learning
failing to converge. However, the bottom row shows that the average Q-values do in fact converge
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to a stable value. Despite this, the optimizer drives the network towards higher feature dot products.
There is no explicit term in the TD error objective that encourages this behavior, indicating the pres-
ence of some implicit regularization phenomenon. This implicit preference towards maximizing the
dot products of features at consecutive state-action tuples is what we call “feature co-adaptation.”

When does feature co-adaptation emerge? Observe in Figure 1 (right) that the feature dot products
for offline SARSA converge quickly and are relatively flat, similarly to supervised regression. This
indicates that utilizing a bootstrapped update alone is not responsible for the increasing dot-products
and instability, because while offline SARSA uses backups, it behaves similarly to supervised MC
regression. Unlike offline SARSA, feature co-adaptation emerges for TD-learning, which is surpris-
ing as TD-learning also aims to estimate the value of the behavior policy, and hence should match
offline SARSA in expectation. The key difference is that while offline SARSA always utilizes ac-
tions a′ observed in the training dataset for the backup, TD-learning may utilize potentially unseen
actions a′ in the backup, even though these actions a′ ∼ πβ(·|s′) are within the distribution of the
data-generating policy. This suggests that utilizing out-of-sample actions, even when they are not
out-of-distribution, in the Bellman backup critically alters the learning dynamics. This finding is
absent from literature in offline RL which primarily focuses on the impact of out-of-distribution
actions (Levine et al., 2020), but not out-of-sample actions. The theoretical model developed in
Section 3.2 will provide an explanation for this observation with a discussion about how feature
co-adaption caused due to out-of-sample actions can be detrimental in offline RL.

3.2 THEORETICALLY CHARACTERIZING IMPLICIT REGULARIZATION IN TD-LEARNING

Why does feature co-adaptation emerge in TD-learning and what do out-of-sample actions have
to do with it? To answer this question, we theoretically characterize the implicit regularization
effects in TD-learning. We analyze the learning dynamics of TD learning in the overparameterized
regime, where there are many different parameter vectors θ that fully minimize the training set
temporal difference error. When training an overparameterized fθ(x) via supervised regression
using the squared loss, many different values of θ will satisfy L(θ) = 0 on the training set due to
overparameterization, but Blanc et al. (2020) argue that the dynamics of noisy SGD will result in
only those fixed points to be stable that additionally satisfy ∇θR(θ∗) = 0, for a particular implicit
regularizer R(θ). The noisy gradient updates analyzed in this model have the form:

θk+1 ← θk − η∇θL(θ) + ηεk, εk ∼ N (0,M), (2)

and Blanc et al. (2020); Damian et al. (2021) show that when the regression targets are corrupted
with N (0, 1) label noise, then M =

∑|D|
i=1∇θfθ(xi)∇θfθ(xi)

⊤ and the induced implicit regular-
izer is given by R(θ) = η

∑|D|
i ||∇θfθ(xi)||22. Any solution θ∗ found by Equation 2 must satisfy

∇θR(θ∗) = 0. This model corroborates empirical findings (Mulayoff & Michaeli, 2020) about the
solutions found by SGD with deep nets, which motivates our use of this framework. Following this
framework, we analyze the fixed points of noisy TD-learning. We consider noisy pseudo-gradient
TD updates with a general noise covariance M :

θk+1 = θk − η

(∑
i

∇θQ(si,ai) (Qθ(si,ai)−(ri+γQθ(s
′
i,a

′
i)))

)
︸ ︷︷ ︸

:=g(θ)

+ηεk, εk ∼ N (0,M) (3)

We use a deterministic policy a′i = π(s′i) to simplify exposition. Following Blanc et al. (2020),
we can set the noise model M as M =

∑
i∇θQ(si,ai)∇θQ(si,ai)

⊤, or utilize a different choice
of M , but we will derive the general form first. Let θ∗ denote a stationary point of the training TD
error, such that the pseudo-gradient g(θ∗) = 0. Further, we denote to the derivative of g(θ) w.r.t. θ as
matrix G(θ) and refer to as the pseudo-Hessian: although G(θ) is not actually the second derivative
of any well-defined objective, since TD updates are not proper gradient updates, as we will see it
will play a similar role to the Hessian in gradient descent. For brevity, define G = G(θ∗), g = g(θ∗)
and ∇G = ∇θG(θ∗). Also, λi(P ) denotes the i-th eigenvalue of matrix P .

Assumptions. To simplify analysis, we assume that matrices G and M (i.e., the noise covariance
matrix) span the same n-dimensional basis in d-dimensional space, where d is the number of param-
eters and n is the number of datapoints, and n ≪ d due to overparameterization. We also require
θ∗ to satisfy a technical criterion that requires approximate alignment between the eigenspaces of G
and the gradient of the Q-function, without which noisy TD may not be stable at θ∗. We summarize
all the assumptions in Appendix C, and first present our regularizer.
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Theorem 3.1 (Implicit regularizer at TD fixed points). Under the assumptions so far, a fixed point of
TD-learning, θ∗, where Qθ∗(si,ai) = ri + γQθ∗(s′i,a

′
i) for every (si,ai, s

′
i) ∈ D is stableif: (1) it

satisfies Re(λi(G)) ≥ 0,∀i and Re(λi(G)) > 0 if |Imag(λi(G))| > 0, and (2) θ∗ is the stationary
point of the induced implicit regularizer,

RTD(θ) = η

|D|∑
i=1

∇Qθ(si,ai)
⊤Σ∗

M∇Qθ(si,ai)−ηγ
|D|∑
i=1

trace
(
Σ∗

M∇Qθ(si,ai)
[[
∇Qθ(s

′
i,a

′
i)

⊤]]) ,(4)

where (si,ai) and (s′i,a
′
i) denote state-action pairs that appear together in a Bellman update, [[□]]

denotes the stop-gradient function, which does not pass partial derivatives w.r.t. θ into □. Σ∗
M is

the fixed point of the discrete Lyapunov equation: Σ∗
M := (I − ηG)Σ∗

M (I − ηG)⊤ + η2M .

A proof of Theorem 3.1 is provided in Appendix C. Next, we explain the intuition behind this result
and provide a proof sketch. To derive the induced implicit regularizer for a stable fixed point θ∗
of TD error, we study the learning dynamics of noisy TD learning (Equation 3) initialized at θ∗,
and derive conditions under which this noisy update would stay close to θ∗ with multiple updates.
This gives rise to the two conditions shown in Theorem 3.1 which can be understood as controlling
stability in mutually exclusive directions in the parameter space. If condition (1) is not satisfied, then
even under-parameterized TD will diverge away from θ∗, since I − ηG would be a non-contraction
as the spectral radius, ρ(I − ηG) ≥ 1 in that case. Thus, θk − θ∗ will grow or not decrease in some
direction. When (1) is satisfied for all directions in the parameter space, there are still directions
where both the real and imaginary parts of the eigenvalue are 0 due to overparameterization. In such
directions, learning is governed by the projection of the noise under the third-order derivative ∇G,
which appears in the Taylor expansion of θk − θ∗ around the point θ∗:

θk+1 = θk − η

(
g +G(θk − θ∗) +

1

2
∇G[θk − θ∗, θk − θ∗]

)
+ εk, εk ∼ N (0,M) (5)

=⇒ νk+1 = (I − ηG)νk −
η

2
∇G[νk, νk] + εk, (6)

where we define νk := θk − θ∗. θ∗ is stable if it is a stationary point of the implicit regularizer RTD

(condition (2)), which ensures that total noise (i.e., accumulated εk over iterations k) does not lead
to a large deviation in νk.

Interpretation of Theorem 3.1. While the choice of the noise model M will change the form of
the implicit regularizer, of course, in practice, the form of M is not known. We can consider other
choices of M for interpretation, but Theorem 3.1 can be easy to qualitatively interpret for M such
that Σ∗

M = I . In this case, we find that the implicit preference towards local minima of RTD(θ)
can explain feature co-adaptation. In this case, the regularizer takes a simpler form: RTD(θ) :=∑

i ||∇Qθ(si,ai)||22 − γ∇Qθ(si,ai)∇[[Qθ(s
′
i,a

′
i)]]. The first term is equal to the squared per-

datapoint gradient norm, which is same as the implicit regularizer in supervised learning obtained by
Blanc et al. (2020); Damian et al. (2021) with label noise. However, RTD(θ) additionally includes a
second term that is equal to the dot product of the gradient of the Q-function at the current and next
states, ∇θQθ(si,ai)

⊤∇θQθ(s
′
i,a

′
i), and thus this term is effectively maximized. When restricted to

the last-layer parameters of a neural network, this term is equal to the dot product of the features
at consecutive state-action tuples:

∑
i∇θQθ(si,ai)

⊤∇θQθ(s
′
i,a

′
i) =

∑
i ϕ(si,ai)

⊤ϕ(s′i,a
′
i). The

tendency to maximize this quantity to attain a local minimizer of the implicit regularizer corroborates
the empirical findings of increased dot product in Section 3.1.

Explaining the difference between utilizing seen and unseen actions in the backup. If all state-
action pairs (s′i,a

′
i) appearing on the right-hand-side of the Bellman update also appear in the dataset

D, as in the case of offline SARSA (Figure 1), the preference to increase dot products will be
balanced by the affinity to reduce gradient norm (first term of RTD(θ) when Σ∗

M = I): for example,
when (s′i,a

′
i) are permutations of (si,ai), RTD is lower bounded by (1− γ)

∑
i ||∇θQθ(xi)||22 and

hence minimizing RTD(θ) would minimize the feature norm instead of maximizing dot products.
Note that this also corresponds to the implicit regularizer we would obtain when training Q-functions
via supervised learning and hence, our analysis would predict that offline SARSA with in-sample
actions (i.e., when (s′,a′) ∈ D) would behave similarly to supervised regression.

However, the regularizer behaves very differently when unseen state-action pairs (s′i,a
′
i) appear

only on the right-hand-side of the backup. This happens with any algorithm where a′ is not the
dataset action, which is the case for all deep RL algorithms that compute target values by selecting
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Figure 2: Even when current offline RL algorithms are initialized at a high-performing checkpoint that attains
small feature dot products, feature dot products increase with further training and the performance degrades.

a′ according to the current policy. In this case, we expect the dot product of gradients at (s,a) and
(s′,a′) to be large at any attractive fixed point, since this minimizes RTD(θ). This is precisely a
form of co-adaptation: gradients at out-of-sample state-action tuples are highly similar to gradients
at observed state-action pairs measured by the dot product. This observation is also supported by
the analysis in Section 3.1. Finally, note that the choice of M is a modelling assumption, and to
derive our explicit regularizer, later in the paper, we will make a simplifying choice of M , though
we empirically verify that a different M also performs well (Appendix A.4).

Why implicit regularization and hence feature co-adaptation can be detrimental to policy per-
formance? To answer this question, we present theoretical and empirical evidence that depicts the
adverse effects of this implicit regularizer in TD-learning. Empirically, we ran two algorithms,
DQN and CQL initialized from a high-performing Q-function checkpoint obtained using DR3 (Sec-
tion 4), which attains relatively small feature dot products (i.e., the second term of RTD(θ) is small).
Our goal is to see if TD updates starting from such a “good”initialization still stay around it or di-
verge to poorer solutions. Our theoretical analysis in Section 3.2 would predict that TD learning
would destabilize from such a solution since it would not be a stable fixed point. Indeed, as shown
in Figure 2, the policy starts to degrade right from the beginning, and the the dot-product similari-
ties start to increase. This even happens with CQL, which explicitly corrects for any distributional
shift confounds, implying that the performance drop cannot be directly explained by the typical out-
of-distribution action explanations. To investigate the reasons behind this drop, we also measured
the overall training error for these algorithms (i.e., TD error for DQN and TD error + CQL regular-
izer for CQL) and find in Figure 2 that the loss values generally exhibit a non-increasing trend for
both CQL and DQN. In particular, the values attained by TD error are small and do not increase
much with more training significantly, indicating that the preference to increase dot products is a
consequence of an implicit phenomenon and is not explained by smaller values of the training loss.

To motivate why co-adapted features can lead to poor performance in TD-learning, we study the
convergence of linear TD-learning on co-adapted features. Our theoretical result characterizes a
lower bound on the feature dot products in terms of the feature norms for state-action pairs in the
dataset D, which if satisfied, will inhibit convergence:

Proposition 3.2 (TD-learning on co-adapted features). Assume that the features Φ = [ϕ(s,a)]s,a
are used for linear TD-learning. Then, if

∑
s,a,s′∈D ϕ(s,a)⊤ϕ(s′,a′) ≥ 1

γ

∑
s,a∈D ϕ(s,a)⊤ϕ(s,a),

linear TD-learning using features Φ will not converge.

A proof of Proposition 3.2 is provided in Appendix D and it relies on a stability analysis of linear TD.
While features change during training for TD-learning with neural networks, and arguably linear TD
is a simple model to study consequences of co-adapted features, even in this simple linear setting,
Proposition 3.2 indicates that TD-learning may be non-convergent as a result of co-adaptation.

4 DR3: EXPLICIT REGULARIZATION FOR DEEP TD-LEARNING

Since the implicit regularization effects in TD-learning can lead to feature co-adaptation, which in
turn is correlated with poor performance, can we instead derive an explicit regularizer to alleviate
this issue? Inspired by the analysis in the previous section, we will propose an explicit regular-
izer that attempts to counteract the second term in Equation 4, which would otherwise lead to co-
adaptation and poor representations. The explicit regularizer that offsets the difference between the
two implicit regularizers is given by: ∆(θ) =

∑
i trace

[
Σ∗⊤

M ∇θQθ(si,ai)∇θQθ(s
′
i,a

′
i)

⊤], which
represents the second term of RTD(θ). Note that we drop the stop gradient on Qθ(s

′
i,a

′
i) in ∆(θ) as

it performs slightly better in practice (Table A.1), although as shown in that Table, the version with
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the stop gradient also significantly improves over the base method. The first term of RTD(θ) corre-
sponds to the regularizer from supervised learning. Our proposed method, DR3, simply combines
approximations to ∆(θ) with various offline RL algorithms. For any offline RL algorithm, ALG,
with objective LALG(θ), the training objective with DR3 is given by: L(θ) := LALG(θ) + c0∆(θ),
where c0 is the DR3 coefficient. See Appendix E.3 for details on how we tune c0 in this paper.

Practical version of DR3. In order to practically instantiate DR3, we need to choose a particu-
lar noise model M . In general, it is not possible to know beforehand the “correct” choice of M
(Equation 3), even in supervised learning, as this is a complicated function of the data distribution,
neural network architecture and initialization. Therefore, we instantiate DR3 with two heuristic
choices of M : (i) M induced by label noise studied in prior work for supervised learning and
for which we need to run computationally heavy fixed-point computation for M , and (ii) a sim-
pler alternative that sets Σ∗

M = I . We find that both of these variants generally perform equally
well empirically (Figure 6), and so we utilize (ii) in practice due to low computational costs. Ad-
ditionally, because computing and backpropagating through per-example gradient dot products is
slow, we instead approximate ∆(θ) with the contribution only from the last layer parameters (i.e.,∑

i∇wQθ(si,ai)
⊤∇wQθ(s

′
i,a

′
i)), similarly to tractable Bayesian neural nets. As shown in Ap-

pendix A.4, the practical version of DR3 performs similarly to the theoretically derived version.

Explicit DR3 regularizer : Rexp(θ) =
∑
i∈D

ϕ(si,ai)
⊤ϕ(s′i,a

′
i). (7)

5 RELATED WORK

Prior analyses of learning dynamics in RL has focused primarily on analyzing error propagation
in tabular or linear settings (e.g., Chen & Jiang, 2019; Duan et al., 2020; Xie & Jiang, 2020;
Wang et al., 2021a;b; Farahmand et al., 2010; De Farias, 2002), understanding instabilities in deep
RL (Achiam et al., 2019; Bengio et al., 2020; Kumar et al., 2020a; Van Hasselt et al., 2018) and de-
riving weighted TD updates that enjoy convergence guarantees (Maei et al., 2009; Mahmood et al.,
2015; Sutton et al., 2016), but these methods do not reason about implicit regularization or any form
of representation learning. Ghosh & Bellemare (2020) focuses on understanding the stability of
TD-learning in underparameterized linear settings, whereas our focus is on the overparameterized
setting, when optimizing TD error and learning representations via SGD. Kumar et al. (2021) stud-
ies the learning dynamics of Q-learning and observes that the rank of the feature matrix, Φ, drops
during training. While this observation is related, our analysis characterizes the implicit preference
of learning towards feature co-adaptation (Theorem 3.1) on out-of-sample actions as the primary
culprit for aliasing. Additionally, utilizing DR3 not only outperforms the srank(Φ) penalty in Ku-
mar et al. (2021) by more than 100%, but it also alleviates rank collapse, with no apparent term
that explicitly increases rank. Somewhat related to DR3, Durugkar & Stone (2018); Pohlen et al.
(2018) heuristically constrain gradients of TD to prevent changes in target Q-values to prevent diver-
gence. Contrary to such heuristic approaches, DR3 is inspired from a theoretical model of implicit
regularization, and does not prevent changes in target values, but rather reduces feature dot products.

6 EXPERIMENTAL EVALUATION OF DR3

Our experiments aim to evaluate the extent to which DR3 improves performance in offline RL in
practice, and to study its effect on prior observations of rank collapse and how it compares to the
more costly regularizer suggested by our analysis, which requires estimating Σ⋆

M . To this end,
we investigate if DR3 improves offline RL performance and stability on three offline RL bench-
marks: Atari 2600 games with discrete actions (Agarwal et al., 2020), continuous control tasks from
D4RL (Fu et al., 2020), and image-based robotic manipulation tasks (Singh et al., 2020).

Following prior work (Fu et al., 2020; Gulcehre et al., 2020), we evaluate DR3 in terms of final
offline RL performance after a given number of iterations. Additionally, we report training stability,
which is important in practice as offline RL does not admit cheap validation of trained policies for
model selection. To evaluate stability, we train for a large number of gradient steps (2-3x longer
than prior work) and either report the average performance over the course of training or the final
performance at the end of training. We expect that a stable method that does not unlearn with more
gradient steps, should have better average performance, as compared to a method that attains good
peak performance but degrades with more training. See Appendix E for further details.
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Table 1: IQM normalized average performance (training stability) across 17 games, with 95% CIs in parenthe-
sis, after 6.5M gradient steps for the 1% setting and 12.5M gradient steps for the 5%, 10% settings. Individual
performances reported in Tables F.4-F.10. DR3 improves the stability over both CQL and REM.

Data CQL CQL + DR3 REM REM + DR3

1% 43.7 (39.6, 48.6) 56.9 (52.5, 61.2) 4.0 (3.3, 4.8) 16.5 (14.5, 18.6)

5% 78.1 (74.5, 82.4) 105.7 (101.9, 110.9) 25.9 (23.4, 28.8) 60.2 (55.8, 65.1)

10% 59.3 (56.4, 61.9) 65.8 (63.3, 68.3) 53.3 (51.4, 55.3) 73.8 (69.3, 78)
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Figure 3: Performance of DR3 + COG on
two manipulation tasks using only 5% and
25% of the data used by Singh et al. (2020)
to make these more challenging. COG +
DR3 outperforms COG in training and at-
tains higher average and final performance.
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Figure 4: Normalized performance across 17 Atari games
for REM + DR3 (top), CQL + DR3 (bottom). x-axis rep-
resents gradient steps; no new data is collected. While naïve
REM suffers from a degradation in performance with more
training, REM + DR3 not only remains generally stable with
more training, but also attains higher final performance. CQL
+ DR3 attains higher performance than CQL. We report IQM
with 95% stratified bootstrap CIs (Agarwal et al., 2021).

Offline RL on Atari 2600 games. We compare DR3 to prior offline RL methods on a set of offline
Atari datasets of varying sizes and quality, akin to Agarwal et al. (2020); Kumar et al. (2021). We
evaluated on three datasets: (1) 1% and 5% samples drawn uniformly at random from DQN replay;
(2) a dataset with more suboptimal data consisting of the first 10% samples observed by an online
DQN. Following Agarwal et al. (2021), we report the interquartile mean (IQM) normalized scores
across 17 games over the course of training in Figure 4 and report the IQM average performance in
Table 1. Observe that combining DR3 with modern offline RL methods (CQL, REM) attains the best
final and average performance across the 17 Atari games tested on, directly improving upon prior
methods across all the datasets. When DR3 is used in conjunction with REM, it prevents unlearning
and performance degradation with more training. CQL + DR3 improves by 20% over CQL on final
performance and attains 25% better average performance. We also compare DR3 to the srank(Φ)
penalty proposed to counter rank collapse (Kumar et al., 2021). Directly taking median normalized
score improvements reported by Kumar et al. (2021), CQL + DR3 improves by over 2x (31.5%)
over naïve CQL relative to the srank penalty (14.1%), indicating DR3’s efficacy.

Offline RL on robotic manipulation from images.
Next, we aim to evaluate the efficacy of DR3 on two
image-based robotic manipulation tasks (Singh et al.,
2020) (visualized on the right) that require composition
of skills (e.g., opening a drawer, closing a drawer, pick-
ing an obstructive object, placing an object, etc.) over
extended horizons using only a sparse 0-1 reward. As shown in Figure 3, combining DR3 with COG
not only improves over COG, but also learns faster and attains a better average performance.

Offline RL on D4RL tasks. Finally, we evaluate DR3 in conjunction with CQL on the harder
D4RL (Fu et al., 2020) domains (antmaze, kitchen domains). To assess if DR3 is stable and able to
prevent unlearning that eventually appears in CQL, we trained CQL+DR3 for 6x longer: 2M steps
with 3x higher learning rate. Observe in Table 2, that CQL + DR3 outperforms CQL, in some cases
substantially, indicating the ability to prevent unlearning that happens for more gradient steps with
DR3. Further, we also compare the effect of adding DR3 to a policy constraint method, BRAC (Wu
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Figure 5: Trend of effective rank, srank(Φ) of fea-
tures Φ learned by the Q-function when trained with
TD error (red, “Without DR3”) and with TD error +
DR3 (blue, “With DR3”) on three Atari games using
the 5% dataset. Note that DR3 alleviates rank collapse
observed by Kumar et al. (2021), without explicitly aim-
ing to. Effective rank measures the number of directions
with significant singular values (Appendix A.3).

Table 2: Performance of CQL, CQL + DR3 af-
ter 2M gradient steps with a learning rate of 3e-
4 for the Q-function averaged over 4 seeds. This
is training for 6x longer compared to CQL defaults.
Observe that CQL + DR3 outperforms CQL at 2M
steps, indicating is efficacy in inducing stability.

D4RL (-v0) Task CQL CQL + DR3

kitchen-mixed 14.6 ± 20.5 37.0 ± 8.0
kitchen-partial 29.6 ± 19.6 43.5 ± 1.9
kitchen-complete 22.3 ± 17.5 24.8 ± 15.3

antmaze-med-diverse 0.7 ± 0.1 0.9 ± 0.1
antmaze-med-play 0.5 ± 0.4 0.4 ± 0.3
antmaze-lar-diverse 0.1 ± 0.0 0.3 ± 0.16
antmaze-lar-play 0.06 ± 0.09 0.1 ± 0.01

et al., 2019). DR3 applied on BRAC improves final median normalized score performance by 13.8
and stability by 8.1 across 15 MuJoCo tasks. Numbers for BRAC can be found in Table F.2.

To summarize, these results indicate that DR3 is a versatile explicit regularizer that improves per-
formance and stability of a wide range of offline RL methods, including conservative methods (e.g,
CQL, COG), policy constraint methods (e.g., BRAC) and ensemble-based methods (e.g., REM).

DR3 allows utilizing full capacity as measured via feature ranks. Prior work (Kumar et al., 2021)
has shown that implicit regularization can lead to a rank collapse issue in TD-learning, preventing
Q-networks from using full capacity. To see if DR3 addresses the rank collapse issue, we follow
Kumar et al. (2021) and plot the effective rank of learned features with DR3 in Figure 5. While
the value of the effective rank decreases during training with naïve bootstrapping, we find that DR3
addresses this issue allowing the Q-function to use its complete representational capacity, despite no
explicit term encouraging this. Additionally, we test the robustness/sensitivity of each layer in the
learned Q-network to re-initialization (Zhang et al., 2019) during training and find that DR3 alters
the representations trained with TD to behave similarly to supervised learning (Figure A.2).

Figure 6: Comparison of the DR3 regularizer
corresponding to our simplifying choice of M and
M induced by label noise. Note that both of these
penalties when applied over CQL improve perfor-
mance, and generally perform similarly.

Comparing explicit regularizers for different
choices of noise covariance M . Finally, we inves-
tigate the behavior of different implicit regularizers
derived via two choices of M in Equation 4 and the
corresponding explicit regularizers. While the ex-
plicit regularizer we use in practice is a simplifying
choice that works well, another choice of M is the
covariance matrix induced by label noise, which re-
quires explicit computation of Σ∗

M . Observe in Fig-
ure 6 that the explicit regularizers derived for both
the choices of M are equally effective. This justifies
utilizing our simplified, heuristic choice of setting
Σ∗

M = I in practice. Results on five Atari games are
shown in Appendix A.4.

7 DISCUSSION

We characterized the implicit preference of TD-learning towards solutions that maximally co-adapt
gradients (or features) at consecutive state-action tuples that appear in Bellman backup. This reg-
ularization effect is exacerbated when out-of-sample state-action samples are used for the Bellman
backup and it can lead to poor policy performance. Inspired by the theory, we propose a practical
explicit regularizer, DR3 that aims to counteracts this implicit regularizer. DR3 yields substantial
improvements in stability and performance on a wide range of offline RL problems. We believe
that understanding the learning dynamics of deep Q-learning and the induced implicit regularization
will lead to more robust and stable deep RL algorithms. Furthermore, this understanding can help
us to predict the instability issues in value-based RL methods in advance, which can inspire cross-
validation and model selection strategies, an important, open challenge in offline RL, for which
existing off-policy evaluation techniques are not practically sufficient (Fu et al., 2021). We also note
that our analysis does not consider the online RL setting with non-stationary data distributions, and
extending our theory and DR3 to online RL is an interesting avenue for future work.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility in our empirical results, we provide complete experimental details regard-
ing methods and hyper-parameters used in the Appendix E. Additionally, we follow the recommen-
dations of Agarwal et al. (2021) for reliable evaluation in deep RL and report the statistical uncer-
tainty in reported results including aggregate performance metrics. We provide individual scores in
Appendix F and we will release scores for individual runs as well as open-source our code. For the-
oretical results, we provide explanations of all the assumptions and a complete proof of the claims
in Appendix C.
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