
Under review as a conference paper at ICLR 2022

Appendices
A ADDITIONAL VISUALIZATIONS AND EXPERIMENTS FOR DR3

In this section, we provide visualizations and diagnostic experiments evaluating various aspects of
feature co-adaptation and the DR3 regularizer. We first provide more empirical evidence showing
the presence of feature co-adaptation in modern deep offline RL algorithms. We will also visualize
DR3 inspired from the implicit regularizer term in TD-learning alleviates rank collapse discussed in
Kumar et al. (2021). We will compare the efficacies of the explicit regularizer induced for different
choices of the noise covariance matrix M (Equation 4), understand the effect of dropping the stop
gradient term in ou practical regularizer and finally, perform diagnostic experiments visualizing if the
Q-networks learned with DR3 resemble more like neural networks trained via supervised learning,
measured in terms of sensitivity and robustness to layer reinitialization (Zhang et al., 2019).

A.1 MORE EMPIRICAL EVIDENCE OF FEATURE CO-ADAPTATION

In this section, we provide more empirical evidence demonstrating the existence of the feature co-
adaptation issue in modern offline RL algorithms such as DQN and CQL. As shown below in Fig-
ure A.1, while the average dataset Q-value for both CQL and DQN exhibit a flatline trend, the
dot product similarity for consecutive state-action tuples generally continues to increase throughout
training and does not flatline. While DQN eventually diverges in Seaquest, the dot products increase
with more gradient steps even before divergence starts to appear.

0 50 100
Gradient Updates (x 62.5k)

0

2000

4000

6000

D
ot

 P
ro

du
ct

 S
im

ila
rit

y Asterix

0 50 100
Gradient Updates (x 62.5k)

0

500

1000
Breakout

0 50 100
Gradient Updates (x 62.5k)

0

200

400

Pong

0 50 100
Gradient Updates (x 62.5k)

0

2000

4000

Q*Bert

0 50 100
Gradient Updates (x 62.5k)

0

5000

10000

Seaquest

CQL DQN

0 100 200
Gradient Updates (x 62.5k)

0

10

20

Av
er

ag
e

Q
-v

al
ue

s

Asterix

0 100 200
Gradient Updates (x 62.5k)

0

5

Breakout

0 100 200
Gradient Updates (x 62.5k)

0

2

4

6

Pong

0 100 200
Gradient Updates (x 62.5k)

0

20

40
Q*Bert

0 100 200
Gradient Updates (x 62.5k)

0

100

200

Seaquest

CQL DQN

Figure A.1: Demonstrating feature co-adaptation on five Atari games with standard offline DQN and
CQL, averaged over 3 seeds. Observe that the feature dot products continue to rise with more training for
both CQL and DQN, indicating the presence of co-adaptation. On the other hand, the average Q-values exhibit
a converged trend, except on Seaquest. Further, note that the dot products continue to increase for CQL even
though CQL explicitly corrects for out-of-distribution action inputs.

A.2 LAYER-WISE STRUCTURE OF A Q-NETWORK TRAINED WITH DR3

To understand if DR3 indeed makes Q-networks behave as if they were trained via supervised learn-
ing, utilizing the empirical analysis tools from Zhang et al. (2019), we test the robustness/sensitivity
of each layer in the learned network to re-initialization, while keeping the other layers fixed. This
tests if a particular layer is critical to the predictions of the learned neural network and enables us to
reason about generalization properties (Zhang et al., 2019; Chatterji et al., 2019). We ran CQL and
REM and saved all the intermediate checkpoints. Then, as shown in Figure A.2, we first loaded a
checkpoint (x-axis), and computed policy performance (shaded color; colorbar) by re-initializing a
given layer (y-axis) of the network to its initialization value before training for the same run.

Note in Figure A.2, that while almost all layers are absolutely critical for the base CQL algorithm,
utilizing DR3 substantially reduces sensitivity to the latter layers in the Q-network over the course of

13

Under review as a conference paper at ICLR 2022

Figure A.2: CQL vs CQL + DR3 and REM vs REM + DR3. Average robustness of the learned Q-function
to re-initialization of all layers to different checkpoints over the course of training created based on the protocol
from Zhang et al. (2019). The colors in the heatmap indicate performance of the reinitialized checkpoint,
normalized w.r.t. the checkpoint without any change to layers. Note that while CQL and REM are more
sensitive (i.e., less robust) to reinitialization of all the layers especially the last layer, CQL + DR3 and REM +
DR3 behave closer to supervised learning, in the sense that they are more robust to reinitialization of layers of
the network, especially the last layer.

training. This is similar to what Zhang et al. (2019) observed for supervised learning, where the ini-
tial layers of a network were the most critical, and the latter layers primarily performed near-random
transformations without affecting the performance of the network. This indicates that utilizing DR3
alters the internal layers of a Q-network trained with TD to behave closer to supervised learning.

A.3 RANK COLLAPSE IS ALLEVIATED WITH DR3

0 50 100 150 200
Gradient Updates (x62.5k)

0

100

200

300

400

500

sr
an

k
(

),
=

0.
01

Asterix
Without DR3
With DR3

0 50 100 150 200
Gradient Updates (x62.5k)

0

100

200

300

400

500
Seaquest

Without DR3
With DR3

0 50 100 150 200
Gradient Updates (x62.5k)

0

100

200

300

400

500
Breakout

Without DR3
With DR3

0 50 100 150 200
Gradient Updates (x62.5k)

0

100

200

300

400

500
Pong

Without DR3
With DR3

0 50 100 150 200
Gradient Updates (x62.5k)

0

100

200

300

400

500
Qbert

Without DR3
With DR3

Figure A.3: Comparing the feature ranks for CQL and CQL + DR3. Observe that utilizing DR3 success-
fully alleviates the rank collapse issue noted in prior work without explicitly correcting for it.

Prior work (Kumar et al., 2021) has shown that implicit regularization in TD-learning can lead to
a feature rank collapse phenomenon in the Q-function, which hinders the Q-function from using
its full representational capacity. Such a phenomenon is absent in supervised learning, where the
feature rank does not collapse. Since DR3 is inspired by mitigating the effects of the term in the
implicit regularizer (Equation 4) that only appears in the case of TD-learning, we wish to understand
if utilizing DR3 also alleviates rank collapse. To do so, we compute the effective rank srankδ(ϕ)

14

Under review as a conference paper at ICLR 2022

Table A.1: Normalized interquartile mean performance with 95% stratified bootstrap CIs (Agarwal et al.,
2021) across 17 Atari games of REM, REM + ∆′(Φ) (Stop gradient in DR3), REM + DR3 after 6.5M gradient
steps for the 1% setting and 12.5M gradient steps for the 5%, 10% settings. Observe that REM + ∆′(ϕ) also
improves over the base REM method significantly, by about 130%, even though ∆′(ϕ) is generally comparable
and somewhat worse than the DR3 regularizer used in the main paper.

Data REM REM + ∆′(Φ) REM+DR3

1% 4.0 (3.3, 4.8) 15.0 (13.4, 16.6) 16.5 (14.5, 18.6)

5% 25.9 (23.4, 28.8) 55.5 (50.8, 59.8) 60.2 (55.8, 65.1)

10% 53.3 (51.4, 55.3) 67.7 (64.7, 71.3) 73.8 (69.3, 78)

metric of the features learned by Q-functions trained via standard Q-learning, standard Q-learning
with DR3 explicit regularizer and offline SARSA. As shown in Figure A.3, for the case of five Atari
games, utilizing DR3 alleviates the rank collapse issue completely. This is potentially surprising,
because no term in the practical DR3 regularizer explicitly aims to increase rank: feature dot prod-
ucts can be made smaller while retaining low ranks by simply controlling the magnitude. But, as
we observe, utilizing DR3 enables learning high-rank features, thus likely indicating that correct-
ing for appropriate terms in RTD(θ) can address some of the previously observed pathologies in
TD-learning.

A.4 INDUCED IMPLICIT REGULARIZER: THEORY AND PRACTICE

In this section, we compare the performance of our practical DR3 regularizer to the regularizers
(Equation 4) obtained for different choices of M , such as M induced by noise, studied in previous
work, and also evaluate the effect of dropping the stop gradient function from the practical version
of our regularizer.

Empirically comparing the explicit regularizers for different noise covariance matrices, M .
The theoretically derived regularizer (Equation 4) suggests that for a given choice of M , the follow-
ing equivalent of feature dot products should increase over the course of training:

∆M (θ) :=
∑

s,a∈D
trace

[
Σ∗

M∇Q(s,a)∇Q(s′,a′)⊤
]
. (Generalized dot products) (A.1)

We evaluate the efficacy of the explicit regularizer that penalizes the generalized dot products,
∆M (θ), in improving the performance of the policy. While Σ∗

M must be explicitly computed by
running fixed point iteration for every parameter iterate θ found during TD-learning – which makes
this method significantly computationally expensive, we evaluated it on five Atari games. As shown
in Figure A.4, the DR3 penalty with the choice of M which corresponds to label noise, and the
dot product DR3 penalty used in the paper generally perform similarly on these domains, attaining
almost identical learning curves on 4/5 games, and clearly improving over the base algorithm. This
hints at the possibility of utilizing other noise covariance matrices to derive an explicit regularizer.

0 20 40
Gradient Updates (x 62.5k)

0

2000

4000

Av
er

ag
e

R
et

ur
n

Asterix

0 20 40
Gradient Updates (x 62.5k)

0

100

200

Breakout

0 20 40
Gradient Updates (x 62.5k)

−20

−10

0

10

20
Pong

0 20 40
Gradient Updates (x 62.5k)

0

5000

10000

Q*Bert

0 20 40
Gradient Updates (x 62.5k)

0

2000

4000

6000

8000
Seaquest

CQL + DR3 (label noise) CQL + DR3 DQN + DR3 (label noise) CQL DQN

Figure A.4: Comparing the performance of explicit penalties for two different choices of the covariance
matrix M . Observe that in all the five games the DR3 regularizer derived for the choice of M from Blanc et al.
(2020) also leads to a substantial increase in performance over the base algorithm, and in four of five games,
DR3 (label-noise) works just as well as DR3.

Effect of stop gradient. Finally, we investigate the effect of utilizing a stop gradient in the DR3
regularizer. We run a variant of DR3: ∆′(ϕ) =

∑
s,a,s′ ϕ(s,a)

⊤[[ϕ(s′,a′)]], with the stop gradient
on the second term (s′,a′) and present a comparison to the one without the stop gradient in Table A.1

15

Under review as a conference paper at ICLR 2022

for REM as the base offline method, averaged over 17 games. Note that this version of DR3, with the
stop gradient, also improves upon the baseline offline RL method (i.e., REM) by 130%. While this
performs largely similar, but somewhat worse than the complete version without the stop gradient,
these results do indicate that utilizing ∆′(ϕ) can also lead to significant gains in performance.

B EXTENDED RELATED WORK

In this section, we briefly review some extended related works, and in particular, try to connect
feature co-adaptation and implicit regularization to various interesting results pertaining to RL lower-
bounds with function approximation and self-supervised learning.

Lower-bounds for offline RL. Zanette (2020) identifies hard instances for offline TD learning of
linear value functions when the provided features are “aliased”. Note that this work does not consider
feature learning or implicit regularization, but their hardness result relies heavily on the fact the
given linear features are aliased in a special sense. Aliased features utilized in the hard instance
inhibit learning along certain dimensions of the feature space with TD-style updates, necessitating an
exponential sample size for near-accurate value estimation, even under strong coverage assumptions.
A combination of Zanette (2020)’s argument, which provides a hard instance given aliased features,
and our analysis, which studies the emergence of co-adapted/similar features in the offline deep RL
setting, could imply that the co-adaptation can lead to failure modes from the hard instance, even on
standard Offline RL problems, when provided with limited data.

Connections to self-supervised learning (SSL). Several modern self-supervised learning meth-
ods (Grill et al., 2020; Chen & He, 2020) can be viewwed as utilizing some form of bootstrapping
where different augmentations of the same input (x + Aug1,x + Aug2) serve as consecutive state-
action tuples that appear on two sides of the backup. If we may extrapolate our reasoning of feature
co-adaptation to this setting, it would suggest that performing noisy updates on a self-supervised
bootstrapping loss will give us feature representations that are highly similar for consecutive state-
action tuples, i.e., the representations for ϕ(x+Aug1)

⊤ϕ(x+Aug2) will be high. Intuitively, an easy
way for obtaining high feature dot products is for ϕ(·) to capture only that information in ·, which is
agnostic to data augmentation, thus giving rise to features that are invariant to transformations. This
aligns with what has been shown in self-supervised learning (Tian et al., 2020; 2021). Another inter-
esting point to note is that while such an explanation would indicate that highly co-adapted features
are beneficial in SSL, such features can be adverse in value-based RL as discussed in Section 3.

Preventing divergence in deep TD-learning. Finally, we discuss Achiam et al. (2019) which
proposes to pre-condition the TD-update using the inverse the neural tangent kernel (Jacot et al.,
2018) matrix so that the TD-update is always a contraction, for every θk found during TD-learning.
Intuitively, this can be overly restrictive in several cases: we do not need to ensure that TD always
contracts, but that is eventually stabilizes at good solution over long periods of running noisy TD
updates, Our implicit regularizer (Equation‘4) derives this condition, and our theoretically-inspired
DR3 regularizer shows that empirically, it suffices to penalize the dot product similarity in practice.

C PROOF OF THEOREM 3.1
In this section, we will derive our implicit regularizer RTD(θ) that emerges when performing TD
updates with a stochastic noise model with covariance matrix M . We first introduce our notation
that we will use throughout the proof, then present our assumptions and finally derive the regularizer.
Our proof utilizes the analysis techniques from Blanc et al. (2020) and Damian et al. (2021), which
analyze label-noise SGD for supervised learning, however key modifications need to be made to
their arguments to account for non-symmetric matrices that emerge in TD learning. As a result,
the form of the resulting regularizer is very different. To keep the proof concise, we will appeal to
lemmas from these prior works which will allow us to bound certain concentration terms.

C.1 NOTATION

The noisy TD-learning update for training the Q-function is given by:

θk+1 = θk − η

(∑
i

∇θQ(si,ai) (Qθ(si,ai)−(ri+γQθ(s
′
i,a

′
i)))

)
︸ ︷︷ ︸

:=g(θ)

+ηεk, εk ∼ N (0,M) (C.1)

16

Under review as a conference paper at ICLR 2022

where g(θ) denotes the parameter update. Note that g(θ) is not a full gradient of a scalar objective,
but it is a form of a “pseudo”-gradient or “semi”-gradient. Let εk denote an i.i.d.random noise that
is added to each update. This noise is sampled from a zero-mean Gaussian random variable with
covariance matrix M , i.e., N (0,M).

Let θ∗ denote a point in the parameter space such that in the vicinity of θ∗, g(θ) ≤ C , for a small
enough C . Let G(θ) denote the derivative of g(θ) w.r.t. θ: G(θ) = ∇θg(θ) and let ∇G(θ) denote
the third-order tensor ∇2

θg(θ). For notation clarity, let G = G(θ∗),∇G = ∇G(θ∗). Let ei denote
the signed TD error for a given transition (si,ai, s

′
i) ∈ D at θ∗:

ei = Qθ∗(si,ai)− (ri + γQθ∗(s′i,a
′
i)). (C.2)

Since θ∗ is a fixed point of the training TD error, ei = 0. Following Blanc et al. (2020), we will
assume that the learning rate in gradient descent, η, is small and we will ignore terms that scale
as O(η1+δ), for δ > 0. Our proof will rely on using a reference Ornstein-Uhlenbeck (OU) process
which the TD parameter iterates will be compared to. Let ζk denote the k-th iterate of an OU process,
which is defined as:

ζk+1 = (I − ηG)ζk + ηεk, εk ∼ N (0,M) (C.3)

We will drop θ from∇θ to indicate that the gradient is being computed at θ∗, and drop (si,ai) from
Q(si,ai) and instead represent it as Qi for brevity; we will represent Q(s′i,a

′
i) as Q′

i. We assume
that∇2Qi is L2-Lipschitz and∇3Qi is L3-Lipschitz throughout the parameter space Θ.

C.2 PROOF STRATEGY

For a given point θ∗ to be an attractive fixed point of TD-learning, our proof strategy would be to
derive the condition under which it mimics a given OU noise process, which as we will show stays
close to the parameter θ∗. This condition would then be interpreted as the gradient of a “induced”
implicit regularizer. If the point θ∗ is not a stationary point of this regularizer, we will show that
the movement θ is large when running the noisy TD updates, indicating that the regularizer, atleast
in part guides the dynamics of TD-learning. To show this, we would write out the gradient update,
isolate some terms that will give rise to the implicit regularizer, and bound the remaining terms us-
ing contraction and concentration arguments. The contraction arguments largely follow prior work
(though with key exceptions in handling contraction with asymmetric and complex eigenvalue ma-
trices), while the form of the implicit regularizer is different. Finally, we will interpret the resulting
update over large timescales to show that learning is indeed guided by the implicit regularizer.

C.3 ASSUMPTIONS AND CONDITIONS

Next, we present some key assumptions we will need for the proof. Our first assumption is that the
matrix G ∈ Rd×d is of maximal rank possible, which is equal to the number of datapoints n and
n≪ d, the dimensionality of the parameter space. Crucially, this assumption do not imply that G is
of full rank – it cannot be, because we are in the overparameterized regime.

Assumption A1 (G spans an n-dimensional basis.). Assume that the matrix G spans n-possible
directions in the parameter space and hence, attains the maximal possible rank it can.

The second condition we require is that the matrices
∑

i∇Qi∇Q⊤
i and M share the same n-

dimensional basis as matrix G:

Assumption A2.
∑

i∇Qi∇Q⊤
i , M , and G span identical n-dimensional subspaces.

This is a technical condition that is required. If this condition is not met, as we will show the learning
dynamics of noisy TD will not be a contraction in certain direction in the parameter space and TD-
learning will not stabilize at such a solution θ∗. In fact, we will utilize a stronger version of this
statement for TD-learning to converge, and we will discuss this shortly.

C.4 LEMMAS USED IN THE PROOF

Next, we present some lemmas that would be useful for proving the theoretical result.

17

Under review as a conference paper at ICLR 2022

Lemma C.1 (Expressions for the first and and second-order derivatives of g(θ).). The following
definitions and expansions apply to our proof:

G(θ∗) =
∑
i

∇2Qiei +
∑
i

∇Qi(∇Qi − γ∇Q′
i)

⊤

∇G(θ∗)[v,v] = 2
∑
i

∇2Qivv
⊤(∇Qi − γ∇Q′

i) +
∑
i

tr
(
(∇2Qi − γ∇2Q′

i)vv
⊤)∇Qi +∇3Qiei

Lemma C.1 presents a decomposition of the matrix G and the directional derivative of the third order
tensor ∇G[v,v] in directions v and v, which will appear in the Taylor expansion layer. Note that
at θ∗ since ei = 0, the first term in G(θ∗) and the third term in ∇G(θ∗)[v,v] vanish. Lemma C.2
derives a fixed-point recursion for the covariance matrix of the total noise accumulated in the OU-
process with covariance matrix M and this will appear in our proof.

Lemma C.2 (Covariance of the random noise process ζk). Let ζk denote the OU process satisfying:
ζk+1 = (I − ηG)ζk + ηεk, where εk ∼ N (0,M), where M ≽ 0. Then, ζk+1 ∼ N (0,Σ), where Σ
satisfies the discrete Lyapunov equation:

Σ∗
M = (I − ηG)Σ∗

M (I − ηG)⊤ + η2M.

Proof. For the OU process, ζk+1 = (I − ηG)ζk + ηεk, since εk is a Gaussian random variable, by
induction so is ζk+1, and therefore the covariance matrix of ζk+1 is given by:

Σk+1 := (I − ηG)Σk(I − ηG⊤) + η2M. (C.4)

Solving for the fixed point for Σk gives the desired expression.

In our proofs, we will require the following contraction lemmas to tightly bound the magnitude of
some zero-mean terms that will appear in the noisy TD update under certain scenarios. Unlike the
analysis in Damian et al. (2021) and Blanc et al. (2020) for supervised learning with label noise,
where the contraction terms like (I − ηG)kG are bounded by ≈ 1

kη intuitively because I − ηG

is a contraction in the subspace spanned by matrix G. However, this is not true for TD-learning
directly since terms like (I − ηG)kS appear for a different matrix S. Therefore, TD-learning will
diverge from θ∗ unless matrices G and M have their corresponding eigenvectors assigned to the top
eigenvalues be approximately “aligned”. We formalize this definition next, and then provide a proof
of the concentration guarantee.

Definition 1 ((ω,C0)-alignment). Given a positive semidefinite matrix A, let A = UAΛAU
⊤
A denote

its eigendecomposition. Without loss of generality assume that the eiegenvalues are arranged in
decreasing order, i.e., ∀i > j,ΛA(i) ≤ ΛA(j). Given another matrix B, let B = UBΛBU

H
B denote

its complex eigendecomposition, where eigenvalues in ΛB are arranged in decreasing order of their
complex magnitudes, i.e., ∀i > j, |ΛB(i)| ≤ |ΛB(j)|. Then the matrix pair (A,B) is said to be
(ω,C0)-aligned if |UH

B (i)UA(i)| ≤ ω and if ∀ i,ΛA(i) ≤ C0|ΛB(i)| for a constant C0.

If two matrices are (ω,C0)-aligned, this means that the corresponding eigenvectors when arranged
in decreasing order of eigenvalue magnitude roughly align with each other. This condition would
be crucial while deriving the implicit regularizer as it will quantify the rate of contraction of certain
terms that define the neighborhood that the iterates of noisy TD-learning will lie in with high prob-
ability. We will operate in the setting when the matrix G and

∑
i∇Qi∇Q⊤

i are (ω,C0)-aligned
with each other, and matrix M and G are also (ω,C0)-aligned (note that we can consider ω′, C ′

0),
which will not change our bounds and therefore we go for less notational clutter). Next we utilize
this notion of alignment to show a particular contraction bound that extends the weak contraction
bound in Damian et al. (2021).

Lemma C.3. Assume we are given a matrix G such that |λi(I − ηG)| ≤ ρ0 < 1 for all λi such that
λi ̸= 0. Let G = UΛUH be the complex eigenvalue decomposition of G (since almost every matrix
is complex-diagonalizable). For a positive semi-definite matrix S that is (ω,C0)-aligned with G, if
S = USΛSU

⊤
S is its eigenvalue decomposition, the following contraction bound holds:

||(I − ηG)kS|| = O
(
ωC0

ηk

)

18

Under review as a conference paper at ICLR 2022

Proof. To prove this statement, we can expand (I − ηG) using its eigenvalue decomposition only
in the subspace that is jointly shared by G and M , and then utilize the definition of ω-alignment to
bound the terms.

||(I − ηG)kS|| = ||(I − ηUΛUH)kUSΛSU
⊤
S || (C.5)

=
∣∣∣∣(UUH − ηUΛUU

H)kUSΛSU
⊤
S

∣∣∣∣ (C.6)

=
∣∣∣∣∣∣U (I − ηΛ)

k
UHUSΛSU

⊤
S

∣∣∣∣∣∣ (C.7)

≤ ω · || (I − ηΛ)
k || · ΛS (C.8)

≤ ω · C0 ·
(
max

i
|1− ηΛ(i)|k|Λ(i)|

)
(C.9)

Now we need to solve for the inner maximization term. When Λ(i) is not complex for any i, the
term above is ≲ 1/ηk using the result from Damian et al. (2021), but when Λ(i) is complex, this
bound can only hold under certain conditions. To note when this quantity is bounded, we expand
|1− ηx|k for some complex number x = r(cos θ + ι sin θ):

|1− ηx|k = |(1− ηr cos θ) + ιηr sin θ| (C.10)

=

[√
(1− ηr cos θ)

2
+ η2r2 sin2 θ

]k
=
(
1 + η2r2 − 2ηr cos θ

)k/2
(C.11)

=⇒ |1− ηx|k|x| =
(
1 + η2r2 − 2ηr cos θ

)k/2
r (C.12)

≲ 1

ηk
if η ≤ min

i

Re(Λ(i))

|Λ(i)|
and ∞ otherwise. (C.13)

Plugging back the above expression in the bound above completes the proof.

The proof of Lemma C.3 indicates that unless the learning rate η and the matrix G are such that the
|λi(I − ηG)| ≤ ρ < 1 in directions spanned by matrix S, such an expression may not converge.
This is expected since the matrix I − ηG will not contract in directions of non-zero eigenvalues if
the real part r cos θ is negative or zero. Additionally, we note that under Definition 1, we can extend
several weak-contraction bounds from Damian et al. (2021) (Lemmas 9-14 in Damian et al. (2021))
to our setting.

Next, Lemma C.4 shows that the OU noise iterates are bounded with high probability when Defini-
tion 1 holds:
Lemma C.4 (ζk is bounded with high probability). With probability atleast 1− δ and under Defini-
tion 1, ||ζk|| ≤ nω

√
ηC0 log

1
δ = O(√η).

Proof. To prove this lemma, we first bound the trace of the covariance matrix Σk+1 and then apply
high probability bounds on the Martingale norm concentration. The trace of the covariance matrix
Σk+1 can be bounded as follows (all the equations below are restricted to the dimensions of non-zero
eigenvalues of G):

tr [Σk+1] =
∑
j≤k

tr
[
(I − ηG)jM(I − ηG⊤)j

]
(C.14)

=
∑
j≤k

tr
[
(UUH − ηUΛUH)jM(UUH − ηUΛUH)j

]
(C.15)

=
∑
j≤k

tr
[
U(I − ηΛ)jUHUMΛMU⊤

MU(I − ηΛ)jUH
]

(C.16)

=
∑
j≤k

nω2C0tr
[
|I − ηΛ|j · |Λ| · |I − ηΛ|j

]
(C.17)

≤ nω2C0

∑
j≤k

n ·max
λ

(|1− ηλ|2j · |λ|) ≤ ηn2C0ω
2 (C.18)

Now, we can apply Corollary 1 from Damian et al. (2021) to obtain a bound on ||ζk|| as with high

probability, atleast 1− δ, ||ζk|| ≤
√
2tr(Σ) log 1

δ = nω
√
ηC0 log

1
δ .

19

Under review as a conference paper at ICLR 2022

C.5 MAIN PROOF OF THEOREM 3.1

In this section, we present the main proof of Theorem 3.1. The proof involves two components:
(1) the part where we derive the regularizer, and (2) bounding additional terms via concentration
inequalities. Part (1) is specific to TD-learning, while a lot of the machinery for part (2) is directly
taken from prior work (Damian et al., 2021) and Blanc et al. (2020). We focus on part (1) here.

Our strategy is to analyze the learning dynamics of noisy TD updates that originate at θ∗. In a small
neighborhood around θ∗, we can expand the noisy TD update (Equation 3) using Taylor’s expansion
around θ∗ which gives:

θk+1 = θk − ηg(θk) + ηεk, εk ∼ N (0,M) (C.19)

=⇒ θk+1 = θk − η
(
g +G(θk − θ∗)− η

2
G[θk − θ∗, θk − θ∗]

)
+ ηεk +O(η||θk − θ∗||3).

(C.20)
Denoting νk := θk − θ∗, using the fact that ||g(θ∗)|| ≤ C , we find that νk can be written as:

νk+1 = (I − ηG)νk + εk +
η

2
G[νk, νk] +O(η||νk||3 + ηC) (C.21)

Since the OU process ζk stays in the vicinity of the point θ∗, and follows a similar recursion to the
one above, our goal would be to design a regularizer so that Equation C.21 closely follows the OU
process. Thus, we would want to bound the difference between the variable νk and the variable ζk,
denoted as rk to be within a small neighborhood:

rk+1 = νk+1 − ζk+1 = (I − ηG) (νk − ζk)

rk

+
1

2
G[νk, νk] +O(η||νk||3 + ηC).

We can write down an expression for rk summing over all the terms:

rk+1 = − η

2

∑
j≤k

(I − ηG)k−j∇G[νk, νk]

term (a)

+
∑
j≤k

(I − ηG)j
[
O(η||νk||3 + ηC)

]
term (b)

. (C.22)

Term (a) in the above equation is the one that can induce a displacement in rk as k increases and
would be used to derive the regularizer, whereas term (b) primarily consists of terms that concentrate
to 0. We first analyze term (a) and then we will analyze the concentration terms later.

To analyze term (a), note that the term ∇G[νk, νk], by Lemma C.1, only depends on νk via the
covariance matrix νkν

⊤
k . So we will partition this term into two terms: (i) a term that utilizes the

asymptotic covariance matrix of the OU process and (ii) errors due to a finite k and stochasticity that
will concentrate.

2× (a) = η
∑
j≤k

(I − ηG)k−j∇G[νk, νk] (C.23)

=
∑
j≤k

(I − ηG)k−j∇G[ζ∗, ζ∗] +
∑
j≤k

(I − ηG)k−j∇G([νk, νk]− [ζ∗, ζ∗]), (C.24)

The first term is a “bias” term and doesn’t concentrate to 0, and will give rise to the regularizer. We
can break this term using Lemma C.1 as:

∇G[ζ∗, ζ∗] =2
∑
i

∇2QiΣ
∗
M (∇Qi − γ∇Q′

i) +
∑
i

tr
[
(∇2Qi − γ∇2Q′

i)Σ
∗
M

]
∇Qi (C.25)

The regularizer RTD(θ) is the function such that:

∇θRTD(θ) =
∑
i

∇2QiΣ
∗
M (∇Qi − γ∇Q′

i) (C.26)

=⇒ RTD(θ) =
∑
i

∇QiΣ
∗
M∇Q⊤

i − γ
∑
i

trace
(
Σ∗

M∇Qi[[∇Q′
i]]

⊤) , (C.27)

where [[·]] denotes the stop gradient operator. If the point θ∗ is a stationary point of the regularizer
RTD(θ), then Equations C.26 and C.27 imply that the first term of Equation C.25 must be 0. There-
fore in this case to show that θ∗ is attractive, we need to show that the other terms in Equations C.25,
C.24 and term (b) in Equation C.22 concentrate around 0 and are bounded in magnitude. The re-
maining part of the proof shown in Appendix C.7 provides these details, but we first summarize the
main takeaways in the proof to conclude the argument.

20

Under review as a conference paper at ICLR 2022

C.6 SUMMARY OF THE ARGUMENT

We will show how to concentrate terms in Equation C.26 besides the regularizer largely following
the techniques from prior work, but we first summarize the entire proof. The overall update to
the vector rk which measures the displacement between the parameter vector θk − θ∗ and the OU-
process ζk can be written as follows, and it is governed by the derivative of the implicit regularizer
(modulo error terms):

rk+1 = −η

2

∑
j≤k

(I − ηG)k−j∇θRTD(θ
∗) +O

(√
ηt · poly(C ,L2,L3, ω, C0)

)
. (C.28)

An important detail to note here is that since the regularizer consists of Σ∗
M and the size of Σ∗

M (i.e,
its eigenvalues), as shown in Lemma C.4 depends on one factor of η. So, effectively the first term
in Equation C.28 does depend on two factors of η. Using Equation C.28, we can write the deviation
between θ∗ and θk as:

νk+1 = ζk+1 −
η

2

∑
j≤k

(I − ηG)k−j∇θRTD(θ
∗) +O

(√
ηt · poly(C ,L2,L3, ω, C0)

)
. (C.29)

The OU process ζk converges to θ∗ in the subspace spanned by G, since the condition ρ(I−ηG) < 1
is active in this subspace (if the condition that ρ(I − ηG) < 1 in the subspace spanned by G is not
true, then as Ghosh & Bellemare (2020) show, TD can diverge). Now, given G satisfies this spectral
radius condition, ζk would converge to θ∗ within a timescale of O

(
1
η

)
within this subspace, which

as Blanc et al. (2020) put it is the strength of the “mean-reversion” term. On the remaining directions
(note that d≫ n), the dynamics is guided by the regularizer, although with a smaller weight of η2.

C.7 ADDITIONAL PROOF DETAILS: CONCENTRATING OTHER TERMS

We first concentrate the terms in Equation C.25. The cumulative effect of the second term in Equa-
tion C.25 is given by:

η
∑
j≤k

(I − ηG)j−k∇Qitr
[
(∇2Qi − γ∇2Q′

i)Σ
∗
M

]
(C.30)

≤ η
∑
j≤k

(I − ηG)j−k∇Qi · O (L2(1 + γ)σ) ≤ O

(
η

√
k

η
ω0C0L2(1 + γ)σ

)
, (C.31)

which follows from the fact that ∇2Qi is L2-Lipschitz, and using Lemma C.3 for contracting the
remaining terms.

Next, we turn to concentrating the second term in Equation C.24. This term corresponds to the con-
tribution of difference between the empirical covariance matrix νkν

⊤
k and the asymptotic covariance

matrix ζ∗ζ∗⊤. We expand this term below using the form of G from Lemma C.1, and bound it one
by one.∑

j≤k

(I − ηG)k−j∇G([νk, νk]− [ζ∗, ζ∗]) (C.32)

=
∑
j≤k

∑
i

(I − ηG)k−j∇2Qi

(
νkνk − ζ∗ζ∗⊤

)
(∇Qi − γ∇Q′

i) +O
(√

ηkω0C0L2(1 + γ)σ
)

(C.33)

Now, we note that the term ∆k+1 := νk+1ν
⊤
k+1 − ζ∗ζ∗⊤ can itself be written as a recursion:

∆k+1 = (I − ηG)(∆k)(I − ηG)⊤ + (I − ηG)ζkε
⊤ + εζ⊤k (I − ηG)⊤

Ak

+ εε⊤ − ηM

Bk

(C.34)

21

Under review as a conference paper at ICLR 2022

Expanding the term ∆k+1 in terms of a summation over k, and plugging it into the expression from
Equation C.35 we get∑

i

∑
j≤k

(I − ηG)k−j∇2Qi(I − ηG)j∆0(I − ηG⊤)j (C.35)

+
∑
i

∑
j≤k

∑
p≤j

(I − ηG)k−j∇2Qi(I − ηG)j−p−1(Ap +Bp)(I − ηG⊤)j−p−1

Now by noting that if G and ∇Qi are (ω,C0)-aligned, then so are G⊤ and ∇Qi, we can finish the
proof by repeating the calculations used by Damian et al. (2021) (Appendix B, Equations 67-73) to
bound the terms in Equation C.35 by O(

√
ηk), but with an additional factor of ω2C2

0 .

Term (b) in Equation C.22. When C is small enough, we can bound the term (b) using O(
√
ηk),

similar to Damian et al. (2021).

D PROOF OF PROPOSITION 3.2

In this section, we will prove Proposition 3.2. First, we refer to Proposition 3.1 in Ghosh &
Bellemare (2020), which shows that TD-learning is stable and converges if and only if the matrix
Mϕ = Φ⊤(Φ− γΦ′) has eigenvalues with all positive real entries. Now note that if,∑

s,a

ϕ(s,a)⊤ϕ(s,a) ≤ γ
∑
s,a,s′

ϕ(s′,a′)⊤ϕ(s,a) (D.1)

=⇒ trace
(
Φ⊤Φ

)
≤ γtrace

(
Φ⊤Φ′) (D.2)

=⇒ trace
[
Φ⊤ (Φ− γΦ′)

]
≤ 0. (D.3)

Since the trace of a real matrix is the sum of real components of eigenvalues, if for a given matrix
M , trace(M) ≤ 0, then there exists atleast one eigenvalue λi such that Re(λi) ≤ 0. If λi < 0, then
the learning dynamics of TD would diverge, while if λi = 0 for all i, then learning will not contract
towards the TD fixed point. This concludes the proof of this result.

E EXPERIMENTAL DETAILS OF APPLYING DR3

In this section, we discuss the practical experimental details and hyperparameters in applying our
method, DR3 to various offline RL methods. We first discuss an overview of the offline RL methods
we considered in this paper, and then provide a discussion of hyperparameters for DR3.

E.1 BACKGROUND ON VARIOUS OFFLINE RL ALGORITHMS

In this paper, we consider four base offline RL algorithms that we apply DR3 on. These methods
are detailed below:

REM. Random ensemble mixture (Agarwal et al., 2020) is an uncertainty-based offline RL algo-
rithm uses multiple parameterized Q-functions to estimate the Q-values. During the Bellman backup,
REM computes a random convex combination of the target Q-values and then trains the Q-function
to match this randomized target estimate. The randomized target value estimate provides a robust
estimate of target values, and delays unlearning and performance degradation that we typically see
with standard DQN-style algorithms in the offline setting. For instantiating REM, we follow the in-
stantiation provided by the authors and instantiate a multi-headed Q-function with 200 heads, each
of which serves as an estimate of the target value. These multiple heads branch off the last-but-one
layer features of the base Q-network. The objective for REM is given by:

min
θ

Es,a,r,s′∼D

[
Eα1,...,αK∼∆

[
ℓλ

(∑
k

αkQ
k
θ(s,a)− r − γmax

a′

∑
k

αkQ
k
θ′(s′,a′)

)]]
(E.1)

where lλ denotes the Huber loss while P∆ denotes the probability distribution over the standard (K
1)-simplex.

22

Under review as a conference paper at ICLR 2022

CQL. Conservative Q-learning (Kumar et al., 2020b) is an offline RL algorithm that learns a con-
servative value function such that the estimated performance of the policy under this learned value
function lower-bounds its true value. CQL modifies the Q-function training to incorporate a term
that minimizes the overestimated Q-values in expectation, while maximizing the Q-values observed
in the dataset, in addition to standard TD error. This CQL regularizer is typically multiplied by a
coefficient α, and we pick α = 0.1 for all our Atari experiments following Kumar et al. (2021) and
α = 5.0 for all our kitchen and antmaze D4RL experiments. Using yk(s,a) to denote the target
values computed via the Bellman backup (we use actor-critic backup for D4RL experiments and the
maxa′ backup for standard Q-learning in our Atari experiments following Kumar et al. (2020b)), the
objective for training CQL is given by:

min
Q

α

(
Es∼D

[
log
∑
a

exp(Q(s,a))

]
− Es,a∼D [Q(s,a)]

)
+
1

2
Es,a,s′∼D

[
(Q(s,a)− yk(s,a))

2
]
.

The deep Q-network utilized by us is a ReLU network with four hidden layers of size
(256, 256, 256, 256) for the D4RL experiments, while for Atari we utilize the standard convolu-
tional neural network from Agarwal et al. (2020); Kumar et al. (2021) with 3 convolutional layers
borrowed from the nature DQN network and then a hidden feedforward layer of size 512.

BRAC. Behavior-regularized actor-critic (Wu et al., 2019) is a policy-constraint based actor-critic
offline RL algorithm which regularizes the policy to stay close to the behavior policy πβ to prevent
the selection of “out-of-distribution” actions. In addition, BRAC subtracts this divergence estimate
from the target Q-values when performing the backup, to specifically penalize target values that
come from out-of-distribution action inputs at the next state (s′,a′).

Q-function: min
θ

Es,a∼D

[(
r(s,a) + γEa′∼πϕ(·|s′)[Q̄θ(s

′,a′) + β log π̂β(a
′|s′)]−Qθ(s,a)

)2]
.

Policy: max
ϕ

Es∼D,a∼πϕ(·|s) [Qθ(s,a) + β log π̂β(a|s)− α log πϕ(a|s)] . (E.2)

COG. COG (Singh et al., 2020) is an algorithmic framework for utilizing large, unlabeled datasets of
diverse behavior to learn generalizable policies via offline RL. Similar to real-world scenarios where
large unlabeled datasets are available alongside limited task-specific data, the agent is provided with
two types of datasets. The task-specific dataset consists of behavior relevant for the task, but the
prior dataset can consist of a number of random or scripted behaviors being executed in the same
environment/setting. The goal in this task is to actually stitch together relevant and overlapping parts
of different trajectories to obtain a good policy that can work from a new initial condition that was
not seen in a trajectory that actually achieved the reward. COG utilizes CQL as the base offline RL
algorithm, and following Singh et al. (2020), we fix the hyperparameter α = 1.0 in the CQL part for
both base COG and COG + DR3. All other hyperparameters including network sizes, etc are kept
fixed as the prior work Singh et al. (2020) as well.

E.2 TASKS AND ENVIRONMENTS USED

Atari 2600 games used. For all our experiments, we used the same set of 17 games utilized by
Kumar et al. (2021) to test rank collapse. In the case of Atari, we used the 5 standard games
(ASTERIX, QBERT, PONG, SEAQUEST, BREAKOUT) for tuning the hyperparameters, a strategy
followed by several prior works (Gulcehre et al., 2020; Agarwal et al., 2020; Kumar et al., 2021).
The 17 games we test on are: ASTERIX, QBERT, PONG, SEAQUEST, BREAKOUT, DOUBLE DUNK,
JAMES BOND, MS. PACMAN, SPACE INVADERS, ZAXXON, WIZARD OF WOR, YARS’ REVENGE,
ENDURO, ROAD RUNNER, BEAMRIDER, DEMON ATTACK, ICE HOCKEY.

Following Agarwal et al. (2021), we report interquartile mean (IQM) normalized scores across all
runs as mean scores can be dominated by performance on a few outlier tasks while median is inde-
pendent of performance on all except 1 task – zero score on half of the tasks would not affect the
median. IQM which corresponds to 25% trimmed mean and considers the performance on middle
50% of the runs. IQM interpolates between mean and median, which correspond to 0% and almost
50% trimmed means across runs.

D4RL tasks used. For our experiments on D4RL, we utilize the Gym-MuJoCo-v0 environments for
evaluating BRAC, since BRAC performed somewhat reasonably on these domains (Fu et al., 2020),
whereas we use the harder AntMaze and Franka Kitchen domains for evaluating CQL, since these
domains are challenging for CQL (Kumar et al., 2020b).

23

Under review as a conference paper at ICLR 2022

Table E.1: Hyperparameters used by the offline RL Atari agents in our experiments. Following
Agarwal et al. (2020), the Atari environments used by us are stochastic due to sticky actions, i.e.,
there is a 25% chance at every time step that the environment will execute the agents previous action
again, instead of the new action commanded. We report offline training results with same hyperpa-
rameters over 5 random seeds of the offline dataset, game simulator and network initialization.

Hyperparameter Setting (for both variations)

Sticky actions Yes
Sticky action probability 0.25
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Frame skip (Action repetitions) 4
Reward clipping [-1, 1]
Terminal condition Game Over
Max frames per episode 108K
Discount factor 0.99
Mini-batch size 32
Target network update period every 2000 updates
Training environment steps per iteration 250K
Update period every 4 environment steps
Evaluation ϵ 0.001
Evaluation steps per iteration 125K
Q-network: channels 32, 64, 64
Q-network: filter size 8× 8, 4× 4, 3× 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512

Robotic manipulation tasks from COG (Singh et al., 2020). These tasks consist of a 6-DoF
WidowX robot, placed in front of two drawers and a larger variety of objects. The robot can open or
close a drawer, grasp objects from inside the drawer or on the table, and place them anywhere in the
scene. The task here consists of taking an object out of a drawer. A reward of +1 is obtained when
the object has been taken out, and zero otherwise. There are two variants of this domain: (1) in the
first variant, the drawer starts out closed, the top drawer starts out open (which blocks the handle for
the lower drawer), and an object starts out in front of the closed drawer, which must be moved out
of the way before opening, and (2) in the second variant, the drawer is blocked by an object, and this
object must be removed before the drawer can be opened and the target object can be grasped from
the drawer. The prior data for this environment is collected from a collection of scripted randomized
policies. These policies are capable of opening and closing both drawers with 40-50% success rates,
can grasp objects in the scene with about a 70% success rate, and place those objects at random
places in the scene (with a slight bias for putting them in the tray).

E.3 THE DR3 REGULARIZER COEFFICIENT

We utilize identical hyperparameters of the base offline RL algorithms when DR3 is used, where
the base hyper-parameters correspond to the ones provided in the corresponding publications. DR3
requires us to tune the additional coefficient c0, that weights the DR3 explicit regularizer term. In
order to find this value on our domains, we followed the tuning strategy typically followed on Atari,
where we evaluated four different values of c0 ∈ {0.001, 0.01, 0.03, 0.3} on 5 games (ASTERIX,
SEAQUEST, BREAKOUT, PONG and SPACEINVADERS) on the 5% replay dataset settings, picked c0
that wprked best on just these domains, and used it to report performance on all 17 games, across all
dataset settings (1% replay and 10% initial replay) in Section 6. This protocol is standard in Atari
and has been used previously in Agarwal et al. (2020); Gulcehre et al. (2020); Kumar et al. (2021)
in the context of offline RL. The value of the coefficient found using this strategy was c0 = 0.001
for REM and c0 = 0.03 for CQL.

For CQL on D4RL, we ran DR3 with multiple values of c0 ∈ {0.0001, 0.001, 0.01, 0.5, 1.0, 10.0},
and picked the smallest value of c0 which did not lead to eventually divergent (either negatively
diverging or positively diverging) Q-values, in average. For the antmaze domains, this corresponded
to c0 = 0.001 and for the FrankaKitchen domains, this corresponded to c0 = 1.0.

24

Under review as a conference paper at ICLR 2022

F COMPLETE RESULTS ON ALL DOMAINS

In this section, we present the results obtained by running DR3 on the Atari and D4RL domains
which were not discussed in the main paper due to lack of space. We first understand the effect of
applying DR3 on BRAC (Wu et al., 2019), which was missing from the main paper, and then present
the per-game Atari results.

Table F.1: Normalized interquartile mean (IQM) final performance (last iteration return) of CQL, CQL +
DR3, REM and REM + DR3 after 6.5M gradient steps for the 1% setting and 12.5M gradient steps for the 5%,
10% settings. Intervals in brackets show 95% CIs computed using stratified percentile bootstrap (Agarwal et al.,
2021)

.

Data CQL CQL + DR3 REM REM + DR3

1% 44.4 (31.0, 54.3) 61.6 (39.1, 71.5) 0.0 (-0.7, 0.1) 13.1 (9.9, 18.3)

5% 89.6 (67.9, 98.1) 100.2 (90.6, 102.7) 3.9 (3.1, 7.6) 74.8 (59.6, 84.4)

10% 57.4 (53.2, 62.4) 67.0 (62.8, 73.0) 24.9 (15.0, 29.1) 72.4 (65.7, 81.7)

Table F.2: Performance of DR3 when applied in conjunction with BRAC (Wu et al., 2019). Note
that DR3 attains a larger final performance (at the end of 2M steps of training) as well as a higher
average performance (i.e. stability score) across all iterations of training.

Task Average Performance across Iterations Final Performance
BRAC BRAC + DR3 BRAC BRAC + DR3

halfcheetah-expert-v0 1.7 ± 1.9 49.9 ± 16.7 2.1 ± 3.3 71.5 ± 24.9
halfcheetah-medium-v0 43.5 ± 0.2 43.2 ± 0.2 45.1 ± 0.8 44.9 ± 0.6

halfcheetah-medium-expert-v0 17.0 ± 5.4 6.0 ± 5.5 24.8 ± 9.3 6.7 ± 7.3
halfcheetah-random-v0 24.4 ± 0.4 18.4 ± 0.3 24.9 ± 0.8 18.2 ± 1.0

halfcheetah-medium-replay-v0 44.9 ± 0.3 44.1 ± 0.4 45.0 ± 1.4 44.9 ± 0.5
hopper-expert-v0 15.7 ± 1.5 21.8 ± 3.2 16.6 ± 6.0 20.8 ± 5.3

hopper-medium-v0 32.8 ± 1.4 46.3 ± 7.1 36.2 ± 1.7 58.3 ± 13.7
hopper-medium-expert-v0 40.2 ± 5.7 37.0 ± 2.9 31.7 ± 11.8 21.8 ± 4.9

hopper-random-v0 11.7 ± 0.0 11.2 ± 0.0 12.2 ± 0.0 11.1 ± 0.0
hopper-medium-replay-v0 31.6 ± 0.3 30.3 ± 0.8 31.3 ± 1.2 36.1 ± 5.7

walker2d-expert-v0 25.5 ± 14.4 33.6 ± 11.8 54.0 ± 31.0 60.6 ± 20.2
walker2d-medium-v0 81.3 ± 0.3 80.8 ± 0.2 83.8 ± 0.2 83.4 ± 0.3

walker2d-medium-expert-v0 5.8 ± 5.2 6.4 ± 3.4 22.4 ± 22.0 39.5 ± 23.3
walker2d-random-v0 1.4 ± 0.8 1.7 ± 0.9 0.0 ± 0.1 2.9 ± 2.1

walker2d-medium-replay-v0 26.1 ± 6.4 47.4 ± 4.1 11.7 ± 7.0 38.7 ± 9.6

25

Under review as a conference paper at ICLR 2022

Table F.4: Mean evaluation returns per Atari game across 5 runs with standard deviations for
1% dataset. The coefficient for DR3 is 0.03 with a CQL coefficient of 1.0. The average performance
is computed over 20 checkpoints spaced uniformly over training for 100 iterations where 1 iteration
corresponds to 62,500 gradient updates.

Game Final Performance Average Performance across Iterations
CQL CQL + DR3 CQL CQL + DR3

Asterix 656.9 ± 91.0 821.4 ± 75.1 650.2 ± 65.3 814.1 ± 25.1
Breakout 23.9 ± 3.8 32.0 ± 3.2 23.8 ± 0.5 32.8 ± 3.1

Pong 16.7 ± 1.7 14.2 ± 3.3 15.7 ± 2.0 15.1 ± 2.3
Seaquest 449.0 ± 11.0 446.6 ± 26.9 474.5 ± 30.3 456.1 ± 17.0

Qbert 8033.8 ± 1513.2 9162.7 ± 993.6 7980.0 ± 379.9 9000.7 ± 225.2
SpaceInvaders 386.0 ± 123.2 351.9 ± 77.1 371.7 ± 47.5 440.6 ± 29.6

Zaxxon 829.4 ± 813.3 1757.4 ± 879.4 834.6 ± 504.0 1634.0 ± 673.9
YarsRevenge 11848.2 ± 2977.7 16011.3 ± 1409.0 15077.9 ± 1301.9 17741.6 ± 613.6
RoadRunner 37000.7 ± 1148.5 24928.7 ± 7484.5 35899.9 ± 653.1 32063.3 ± 1011.4
MsPacman 1869.8 ± 167.2 2245.7 ± 193.8 1991.9 ± 55.1 2224.1 ± 80.8
BeamRider 780.3 ± 64.5 617.9 ± 25.1 782.0 ± 36.1 619.9 ± 20.9
Jamesbond 558.5 ± 124.8 460.5 ± 102.0 524.6 ± 118.5 484.2 ± 89.4

Enduro 198.4 ± 34.2 253.5 ± 14.2 259.8 ± 16.4 276.1 ± 16.9
WizardOfWor 771.1 ± 358.2 904.6 ± 343.7 833.7 ± 168.4 935.2 ± 174.4

IceHockey -8.7 ± 1.3 -7.8 ± 0.9 -8.8 ± 0.9 -7.9 ± 0.7
DoubleDunk -15.1 ± 1.9 -14.0 ± 2.8 -15.3 ± 0.9 -14.5 ± 1.0
DemonAttack 1970.2 ± 161.3 386.2 ± 75.3 1338.8 ± 298.4 414.0 ± 46.0

Table F.5: Mean evaluation returns per Atari game across 5 runs with standard deviations for
5% dataset. The coefficient for DR3 is 0.03 with a CQL coefficient of 0.1. The average performance
is computed over 20 checkpoints spaced uniformly over training for 200 iterations where 1 iteration
corresponds to 62,500 gradient updates.

Game Final Performance Average Performance across Iterations
CQL CQL + DR3 CQL CQL + DR3

Asterix 1798.2 ± 168.6 3318.5 ± 301.7 1812.7 ± 64.0 3790.5 ± 218.0
Breakout 94.1 ± 44.4 166.0 ± 23.1 105.1 ± 10.4 196.5 ± 4.4

Pong 13.1 ± 4.2 17.9 ± 1.1 15.2 ± 1.3 17.4 ± 1.2
Seaquest 1815.9 ± 722.8 2030.7 ± 822.8 1382.3 ± 258.1 3722.3 ± 969.5

Qbert 10595.7 ± 1648.5 9605.6 ± 1593.5 9552.0 ± 925.6 10830.7 ± 783.1
SpaceInvaders 758.9 ± 56.9 1214.6 ± 281.8 662.0 ± 58.1 1323.7 ± 94.4

Zaxxon 1501.0 ± 1165.7 4250.1 ± 626.2 1508.8 ± 437.5 3556.5 ± 531.3
YarsRevenge 24036.7 ± 3370.6 17124.7 ± 2125.6 22733.1 ± 1175.3 18339.8 ± 1299.7
RoadRunner 40728.4 ± 3318.9 38432.6 ± 1539.7 42338.4 ± 471.4 41260.2 ± 1008.6
MsPacman 2975.9 ± 522.1 2790.6 ± 353.1 2923.6 ± 251.3 3101.2 ± 381.6
BeamRider 1897.6 ± 473.7 785.8 ± 43.5 2218.5 ± 242.4 775.9 ± 12.5
Jamesbond 108.8 ± 49.1 96.8 ± 43.2 76.5 ± 4.6 106.1 ± 34.8

Enduro 764.3 ± 168.7 938.5 ± 63.9 797.7 ± 47.8 923.2 ± 40.3
WizardOfWor 943.2 ± 380.3 612.0 ± 343.3 1004.3 ± 314.7 1007.4 ± 313.2

IceHockey -17.3 ± 0.6 -15.0 ± 0.7 -16.6 ± 0.5 -12.0 ± 0.3
DoubleDunk -18.1 ± 1.5 -16.2 ± 1.7 -17.3 ± 1.0 -16.0 ± 1.6
DemonAttack 4055.8 ± 499.7 8517.4 ± 1065.9 4062.4 ± 465.8 8396.7 ± 689.4

26

Under review as a conference paper at ICLR 2022

Table F.6: Mean returns per Atari game across 5 runs with standard deviations for initial 10%
dataset. The coefficient for DR3 is 0.03 with a CQL coefficient of 0.1. The average performance is
computed over 20 checkpoints spaced uniformly over training for 200 iterations.

Game Final Performance Average Performance across Iterations
CQL CQL + DR3 CQL CQL + DR3

Asterix 2803.9 ± 294.6 3906.2 ± 521.3 2903.2 ± 217.7 4692.2 ± 377.0
Breakout 64.7 ± 7.3 70.8 ± 5.5 65.6 ± 5.7 75.4 ± 6.0

Pong 5.3 ± 6.8 5.5 ± 6.2 7.3 ± 5.0 8.1 ± 5.2
Seaquest 222.3 ± 219.5 1313.0 ± 220.0 704.9 ± 254.5 1327.9 ± 250.0

Qbert 4803.2 ± 489.5 5395.3 ± 1003.6 4492.5 ± 240.8 4708.5 ± 463.0
SpaceInvaders 704.9 ± 121.5 938.1 ± 80.3 737.8 ± 23.8 902.1 ± 60.0

Zaxxon 231.6 ± 450.9 836.8 ± 434.7 394.4 ± 385.1 725.7 ± 370.3
YarsRevenge 13076.2 ± 2427.0 12413.9 ± 2869.7 12493.2 ± 543.6 12395.6 ± 1044.2
RoadRunner 45063.5 ± 1749.7 45336.9 ± 1366.7 45522.7 ± 1068.1 44808.0 ± 911.7
MsPacman 2459.5 ± 381.3 2427.5 ± 191.3 2528.1 ± 149.2 2488.3 ± 109.8
BeamRider 4200.7 ± 470.2 3468.0 ± 238.0 4729.5 ± 94.8 3344.3 ± 289.0
Jamesbond 84.6 ± 25.4 89.7 ± 15.6 108.7 ± 34.1 111.7 ± 10.9

Enduro 946.7 ± 289.7 1160.2 ± 81.5 1013.9 ± 29.7 1136.2 ± 32.5
WizardOfWor 520.4 ± 451.2 764.7 ± 250.0 499.8 ± 238.5 792.2 ± 101.3

IceHockey -18.1 ± 0.7 -16.0 ± 1.3 -17.6 ± 0.5 -15.2 ± 1.0
DoubleDunk -21.2 ± 1.1 -20.6 ± 1.0 -20.6 ± 0.3 -19.7 ± 0.5
DemonAttack 4145.2 ± 400.6 7152.9 ± 723.2 4839.4 ± 586.7 7278.5 ± 701.3

Table F.7: Mean returns per Atari game across 5 runs with standard deviations for 1% dataset.
The coefficient for DR3 is 0.001 while we use a multi-headed REM with 200 Q-heads (Agarwal
et al., 2020). The average performance is computed over 20 checkpoints spaced uniformly over
training for 100 iterations.

Game Final Performance Average Performance across Iterations
REM REM + DR3 REM REM + DR3

Asterix 240.4 ± 29.1 405.7 ± 46.5 304.4 ± 9.3 413.7 ± 39.6
Breakout 0.7 ± 0.7 14.3 ± 2.8 6.3 ± 1.0 10.3 ± 1.1

Pong -14.2 ± 1.7 -7.7 ± 6.3 -14.1 ± 2.2 -15.3 ± 3.0
Seaquest 81.0 ± 78.5 293.3 ± 191.5 246.6 ± 49.5 489.9 ± 128.6

Qbert 239.6 ± 133.2 436.3 ± 111.5 255.5 ± 76.0 471.0 ± 116.5
SpaceInvaders 152.8 ± 27.5 206.6 ± 77.6 188.6 ± 5.8 262.7 ± 22.4

Zaxxon 534.9 ± 731.3 2596.4 ± 1726.4 1807.9 ± 478.2 707.7 ± 577.4
YarsRevenge 1452.6 ± 1631.0 5480.2 ± 962.3 4018.8 ± 987.8 7352.0 ± 574.7
RoadRunner 0.0 ± 0.0 3872.9 ± 1616.4 1601.2 ± 637.9 14231.9 ± 2406.0
MsPacman 698.8 ± 129.5 1275.1 ± 345.6 690.4 ± 69.7 860.4 ± 57.1
BeamRider 703.0 ± 97.4 522.9 ± 42.2 745.5 ± 30.7 592.2 ± 27.7
Jamesbond 41.0 ± 27.0 157.6 ± 65.0 53.3 ± 12.1 88.8 ± 27.2

Enduro 0.5 ± 0.4 132.4 ± 16.1 21.7 ± 4.0 197.5 ± 19.1
WizardOfWor 362.5 ± 321.8 1663.7 ± 417.8 552.1 ± 253.1 1460.8 ± 194.8

IceHockey -16.7 ± 0.9 -9.1 ± 5.1 -12.1 ± 0.8 -4.8 ± 1.8
DoubleDunk -21.8 ± 1.0 -17.6 ± 1.5 -20.4 ± 0.6 -17.1 ± 1.6
DemonAttack 102.0 ± 17.3 162.0 ± 34.7 124.0 ± 10.7 145.6 ± 27.2

27

Under review as a conference paper at ICLR 2022

Table F.8: Mean returns per Atari game across 5 runs with standard deviations for the
5% dataset. The coefficient for DR3 is 0.001 while we use a multi-headed REM with 200 Q-
heads (Agarwal et al., 2020). The average performance is computed over 20 checkpoints spaced
uniformly over training for 200 iterations.

Game Final Performance Average Performance across Iterations
REM REM + DR3 REM REM + DR3

Asterix 876.8 ± 201.1 2317.0 ± 838.1 958.9 ± 50.9 1252.6 ± 395.1
Breakout 15.2 ± 4.9 33.4 ± 4.0 16.3 ± 3.4 17.7 ± 2.4

Pong 7.5 ± 5.2 -0.7 ± 9.9 -4.7 ± 3.0 -12.0 ± 3.2
Seaquest 1276.0 ± 417.3 2753.6 ± 1119.7 1484.3 ± 367.7 1602.0 ± 603.7

Qbert 2421.4 ± 1841.8 7417.0 ± 2106.7 1330.7 ± 431.0 4045.8 ± 898.9
SpaceInvaders 431.5 ± 23.3 443.5 ± 67.4 349.5 ± 22.6 362.1 ± 33.6

Zaxxon 6738.2 ± 966.6 1609.7 ± 1814.1 3630.7 ± 751.4 346.1 ± 512.1
YarsRevenge 14454.2 ± 1644.4 16930.4 ± 2625.8 14628.3 ± 1945.1 12936.5 ± 1286.0
RoadRunner 15570.9 ± 12795.6 46601.6 ± 2617.2 22740.3 ± 1977.2 33554.1 ± 1880.4
MsPacman 1272.2 ± 215.3 2303.1 ± 202.7 1147.7 ± 126.1 1438.7 ± 140.4
BeamRider 1922.5 ± 589.1 674.8 ± 21.4 886.9 ± 82.1 698.3 ± 21.5
Jamesbond 189.6 ± 77.0 130.5 ± 45.7 120.2 ± 9.3 88.6 ± 41.5

Enduro 172.7 ± 55.9 583.9 ± 108.7 236.8 ± 11.3 457.7 ± 39.3
WizardOfWor 838.4 ± 670.0 2661.6 ± 371.4 1281.3 ± 66.7 1863.7 ± 261.2

IceHockey -9.7 ± 4.2 -6.5 ± 3.1 -8.1 ± 0.7 -4.1 ± 1.5
DoubleDunk -18.4 ± 0.9 -17.6 ± 2.6 -19.6 ± 1.0 -17.8 ± 1.9
DemonAttack 507.7 ± 120.1 5602.3 ± 1855.5 581.6 ± 207.0 1452.3 ± 765.0

Table F.9: Mean returns per Atari game across 5 runs with standard deviations for initial
10% dataset. The coefficient for DR3 is 0.001 while we use a multi-headed REM with 200 Q-
heads (Agarwal et al., 2020). The average performance is computed over 20 checkpoints spaced
uniformly over training for 200 iterations.

Game Final Performance Average Performance across Iterations
REM REM + DR3 REM REM + DR3

Asterix 2254.7 ± 403.6 5122.9 ± 328.9 2684.6 ± 184.4 3432.1 ± 257.5
Breakout 81.2 ± 13.9 96.8 ± 21.2 63.5 ± 4.6 62.4 ± 6.1

Pong 8.8 ± 3.1 7.6 ± 11.1 2.6 ± 2.1 -2.5 ± 5.6
Seaquest 1540.2 ± 354.6 981.3 ± 605.9 1029.5 ± 260.6 836.2 ± 234.3

Qbert 4330.7 ± 250.2 4126.2 ± 495.7 3478.0 ± 248.0 3494.7 ± 380.3
SpaceInvaders 895.2 ± 68.3 799.0 ± 28.3 699.7 ± 31.4 653.1 ± 21.5

Zaxxon 950.7 ± 897.4 0.0 ± 0.0 490.2 ± 306.6 0.0 ± 0.0
YarsRevenge 10913.1 ± 1519.1 11924.8 ± 2413.8 11508.5 ± 290.0 10977.7 ± 1026.9
RoadRunner 45521.7 ± 2502.1 49129.4 ± 1887.9 37997.4 ± 638.6 41995.2 ± 1482.1
MsPacman 2177.4 ± 393.0 2268.8 ± 455.0 1930.5 ± 141.7 2126.6 ± 147.6
BeamRider 2921.7 ± 308.7 4154.9 ± 357.2 3727.5 ± 304.3 2871.0 ± 44.3
Jamesbond 197.8 ± 73.8 149.3 ± 304.5 149.0 ± 120.5 83.3 ± 162.4

Enduro 529.5 ± 200.7 832.5 ± 65.5 584.6 ± 85.3 801.8 ± 39.3
WizardOfWor 606.5 ± 823.2 920.0 ± 497.0 838.3 ± 343.7 926.3 ± 318.5

IceHockey -4.3 ± 0.6 -5.9 ± 5.1 -7.0 ± 1.1 -5.4 ± 3.7
DoubleDunk -17.7 ± 3.9 -19.5 ± 2.5 -16.9 ± 0.5 -16.7 ± 1.0
DemonAttack 6097.9 ± 1251.3 9674.7 ± 1600.6 4649.1 ± 514.6 5141.9 ± 361.4

28

Under review as a conference paper at ICLR 2022

Table F.10: Average returns across 5 runs for the random agent and the average performance of
the trajectories in the DQN (Nature) dataset. For Atari normalized scores reported in the paper, the
random agent is assigned a score of 0 while the average DQN replay is assigned a score of 100. Note
that the random agent scores are also evaluated on Atari 2600 games with sticky actions.

Game Random Average DQN-Replay

Asterix 279.1 3185.2
Breakout 1.3 104.9

Pong -20.3 14.5
Seaquest 81.8 1597.4

Qbert 155.0 8249.7
SpaceInvaders 149.5 1529.8

Zaxxon 10.6 1854.1
YarsRevenge 3147.7 21015.0
RoadRunner 15.5 38352.3
MsPacman 248.0 3108.8
BeamRider 362.0 4576.4
Jamesbond 27.6 560.3

Enduro 0.0 671.9
WizardOfWor 686.6 1128.5

IceHockey -9.8 -8.5
DoubleDunk -18.4 -11.3
DemonAttack 166.0 4407.5

29

	Additional Visualizations and Experiments for DR3
	More Empirical Evidence of Feature Co-Adaptation
	Layer-wise structure of a Q-network trained with DR3
	Rank Collapse is Alleviated With DR3
	Induced Implicit Regularizer: Theory And Practice

	Extended Related Work
	Proof of Theorem 3.1
	Notation
	Proof Strategy
	Assumptions and Conditions
	Lemmas Used In The Proof
	Main Proof of Theorem 3.1
	Summary of the Argument
	Additional Proof Details: Concentrating Other Terms

	Proof of Proposition 3.2
	Experimental Details of Applying DR3
	Background on Various Offline RL Algorithms
	Tasks and Environments Used
	The DR3 Regularizer Coefficient

	Complete Results on All Domains

