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Abstract

Real world applications such as economics and policy making often involve solv-
ing multi-agent games with two unique features: (1) The agents are inherently
asymmetric and partitioned into leaders and followers; (2) The agents have dif-
ferent reward functions, thus the game is general-sum. The majority of existing
results in this field focuses on either symmetric solution concepts (e.g. Nash
equilibrium) or zero-sum games. It remains open how to learn the Stackelberg
equilibrium—an asymmetric analog of the Nash equilibrium—in general-sum
games efficiently from noisy samples. This paper initiates the theoretical study of
sample-efficient learning of the Stackelberg equilibrium, in the bandit feedback
setting where we only observe noisy samples of the reward. We consider three
representative two-player general-sum games: bandit games, bandit-reinforcement
learning (bandit-RL) games, and linear bandit games. In all these games, we
identify a fundamental gap between the exact value of the Stackelberg equilibrium
and its estimated version using finitely many noisy samples, which can not be
closed information-theoretically regardless of the algorithm. We then establish
sharp positive results on sample-efficient learning of Stackelberg equilibrium with
value optimal up to the gap identified above, with matching lower bounds in the
dependency on the gap, error tolerance, and the size of the action spaces. Overall,
our results unveil unique challenges in learning Stackelberg equilibria under noisy
bandit feedback, which we hope could shed light on future research on this topic.

1 Introduction

Real-world problems such as economic design and policy making can often be modeled as multi-
agent games that involves two levels of thinking: The policy maker—as a player in this game—
needs to reason about the other player’s optimal behaviors given her decision, in order to inform
her own optimal decision making. Consider for example the optimal taxation problem in the AI
Economist [53], a game modeling a real-world social-economic system involving a leader (e.g. the
government) and a group of interacting followers (e.g. citizens). The leader sets a tax rate which
determines an economics-like game for the followers; the followers then play in this game with
the objective to maximize their own reward (such as individual productivity). However, the goal
of the leader is to maximize her own reward (such as overall equality) which is in general different
from the followers’ rewards, making these games general-sum [38]. Such two-level thinking appears
broadly in other applications as well such as in automated mechanism design [11, 12], optimal
auctions [10, 14], security games [43], reward shaping [25], and so on.
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Another key feature in such games is that the players are asymmetric, and they act in turns: the leader
first plays, then the follower sees the leader’s action and then adapts to it. This makes symmetric
solution concepts such as Nash equilibrium [30] not always appropriate. A more natural solution
concept for these games is the Stackelberg equilibrium: the leader’s optimal strategy, assuming the
followers play their best response to the leader [42, 13]. The Stackelberg equlibrium is often the
desired solution concept in many of the aforementioned applications. Furthermore, it is of compelling
interest to understand the learning of Stackelberg equilibria from samples, as it is often the case
that we can only learn about the game through interactively deploying policies and observing the
(noisy) feedback from the game [53]. This may be the case even when the game rules are perfectly
known but not yet represented in a desired form, as argued in the line of work on empirical game
theory [50, 48, 20].

Despite the motivations, theoretical studies of learning Stackelberg equilibria in general-sum games
remain open, in particular when we can only learn from noisy samples of the rewards. A line of work
provides guarantees for finding Stackelberg equilibria in general-sum games, but restricts attention to
either the full observation setting (so that the exact game is observable) or with an exact best-response
oracle [13, 27, 47, 34]. These results lay out a foundation for analyzing the Stackelberg equilibrium,
but do not generalize to the bandit feedback setting in which the game can only be learned from
random samples of the rewards. Another line of work considers the sample complexity of learning
the Nash equilibrium in Markov games [35, 4, 5, 28, 51, 52], which also do not imply algorithms
for finding the Stackelberg equilibrium in these games as the Nash is in general different from the
Stackelberg equilibrium in general-sum games.

In this work, we study the sample complexity of learning Stackelberg equilibrium in general-sum
games. We focus on general-sum games with two players (one leader and one follower), in which
we wish to learn an approximate Stackelberg equilbrium for the leader from random samples. Our
contributions can be summarized as follows.

• As a warm-up, we consider bandit games in which the two players play an action in turns and
observe their own rewards. We identify a fundamental gap between the exact Stackelberg value
and its estimated version from finite samples, which cannot be closed information-theoretically
regardless of the algorithm (Section 3.1). We then propose a rigorous definition gapε for this gap,
and show that it is possible to sample-efficiently learn the (gapε + ε)-approximate Stackelberg
equilibrium with Õ(AB/ε2) samples, where A,B are the number of actions for the two players.
We further show a matching lower bound Ω(AB/ε2) (Section 3.2). We also establish similar
results for learning Stackelberg in simultaneous matrix games (Appendix B).

• We consider bandit-RL games in which the leader’s action determines an episodic Markov
Decision Process (MDP) for the follower. We show that a (gapε + ε) approximate Stackelberg
equilibrium for the leader can be found in Õ(H5S2AB/ε2) episodes of play, where H,S are
the horizon length and number of states for the follower’s MDP, and A,B are the number of
actions for the two players (Section 4). Our algorithm utilizes recently developed reward-free
reinforcement learning techniques to enable fast exploration for the follower within the MDPs.

• Finally, we consider linear bandit games in which the action spaces for the two players can be
arbitrarily large, but the reward is a linear function of a d-dimensional feature representation of
the actions. We design an algorithm that achieves Õ(d2/ε2) sample complexity upper bound
for linear bandit games (Section 5). This only depends polynomially on the feature dimension
instead of the size of the action spaces, and has at most an Õ(d) gap from the lower bound.

1.1 Related work

Since the seminal paper of [46], notions of equilibria in games and their algorithmic computation
have received wide attention [see, e.g., 9, 41]. For the scope of this paper, this section focuses on
reviewing results that related to learning Stackelberg equilibria.

Learning Stackelberg equilibria in zero-sum games The first category of results study two-
player zero-sum games, where the rewards of the two players sum to zero. Most results along this line
focus on the bilinear or convex-concave setting [see, e.g., 21, 32, 31, 37, 16], where the Stackelberg
equilibrium coincide with the Nash equilibrium due to Von Neumann’s minimax theorem [46].
Results for learning Stackelberg equilibria beyond convex-concave setting are much more recent,
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with Rafique et al. [36], Nouiehed et al. [33] considering the nonconvex-concave setting, and Fiez et al.
[15], Jin et al. [19], Marchesi et al. [29] considering the nonconvex-nonconcave setting. Marchesi et al.
[29] provide sample complexity results for learning Stackelberg with infinite strategy spaces, using
discretization techniques that may scale exponentially in the dimension without further assumptions
on the problem structure.

We remark that a crucial property of zero-sum games is that any two strategies giving similar rewards
for the follower will also give similar rewards for the leader. This is no longer true in general-sum
games, and prevents most statistical results for learning Stackelberg equilibria in the zero-sum setting
from generalizing to the general-sum setting.

Learning Stackelberg equilibria in general-sum games The computational complexity of finding
Stackelberg equilibria in games with simultaneous play (“computing optimal strategy to commit to”)
is studied in [13, 26, 47, 22, 1, 7]. These results assume full observation of the payoff function, and
show that several versions of matrix games and extensive-form (multi-step) games admit polynomial
time algorithms. Vasal [45] designs computationally efficient algorithms for computing Stackelberg
in certain “conditionally independent controlled” Markov games.

Another line of work considers learning Stackelberg with a “best response oracle” [27, 6, 34], that
returns the follower’s exact best response strategy when a leader’s strategy is queried. This oracle
and the noisy reward oracle we assume are in general incomparable (cannot simulate each other
regardless of the number of queries), and thus our sample complexity results do not imply each other.
The recent work of Sessa et al. [39] proposes the StackelUCB algorithm to sample-efficiently learn a
Stackelberg game where the opponent’s response function has a linear structure in a certain kernel
space, and the observation noise is added in the action space instead of the reward (thus a different
noisy feedback model from ours).

Lastly, Fiez et al. [15] study the local convergence of first-order algorithms for finding Stackelberg
equilibria in general-sum games. Their result also assumes exact feedback and do not allow sampling
errors. The AI Economist [53] studies the optimal taxation problem by learning the Stackelberg
equilibrium via a two-level reinforcement learning approach.

Learning equilibria in Markov games A recent line of results [4, 5, 51, 52] consider learning
Markov games [40]—a generalization of Markov decision process to the multi-agent setting. We
remark that all three settings studied in this paper can be cast as special cases of general-sum Markov
games, which is studied by [28]. In particular, Liu et al. [28] provides sample complexity guarantees
for finding Nash equilibria, correlated equilibria, or coarse correlated equilibria of the general-sum
Markov games. These Nash-finding algorithms are related to our setting, but do not imply results for
learning Stackelberg (see Section 3.2 and Appendix C.5 for detailed discussions).

2 Preliminaries

Bandit games A general-sum two-player bandit game can be described by a tuple M =
(A,B, r1, r2), which defines the following game played by two players, a leader and a follower:

• The leader plays an action a ∈ A, with |A| = A.
• The follower sees the action played by the leader, and plays an action b ∈ B, with |B| = B.
• The follower observes a (potentially random) reward r2(a, b) ∈ [0, 1]. The leader also observes

her own reward r1(a, b) ∈ [0, 1].

Note that this is a special case of a general-sum turn-based Markov game with two steps [40, 4]. This
game is also a turn-based variant of the simultaneous matrix game considered in [13, 27] (for which
we also provide results in Appendix B).

Best response, Stackelberg equilibrium Let µi(a, b) := E[ri(a, b)] (i = 1, 2) denote the mean
rewards. For each leader action a, the best response set BR0(a) is the set of follower actions that
maximize µ2(a, ·):

BR0(a) :=

{
b : µ2(a, b) = max

b′∈B
µ2(a, b′)

}
. (1)
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Given the best-response set BR0(a), we define the function φ0 : A → [0, 1] as the leader’s value
function when the follower plays the worst-case best response (henceforth the“exact φ-function”):

φ0(a) := min
b∈BR0(a)

µ1(a, b), (2)

This is the value function for the leader action a, assuming the follower plays the best response to a
and breaks ties in the best response set against the leader’s favor. This is known as pessimistic tie
breaking and provides a worst-case guarantee for the leader [13]. We remark that here restricting
b to pure strategies (deterministic actions) is without loss of generality, as there is at least one pure
strategy that maximizes µ2(a, ·) and (among the maximizers) minimize µ1(a, ·), among all mixed
strategies.

The Stackelberg Equilibrium (henceforth also “Stackelberg”) for the leader is the “best response to
the best response”, i.e. any action a? that maximizes φ0 [42]:

a? ∈ arg max
a∈A

φ0(a). (3)

We are interested in finding approximate solutions to the Stackelberg equilibrium, that is, an action â
that approximately maximizes φ0(a). Note that as the leader’s action is seen by the follower, it suffices
to only consider pure strategies for the leader too (this is equivalent to the “optimal committment to
pure strategies” problem of [13]). We also remark that, while we consider pessimistic tie breaking
(definition (2)) in this paper, similar results hold in the optimistic setting as well in which the follower
breaks ties in favor of the leader. We defer the statements and proofs of these results to Appendix A.

Real-world example (AI Economist): Consider the following (simplified) optimal taxation problem
in the AI Economist [53] as an example of a bandit game. The government (leader) determines the
tax rate a ∈ A for the follower. The citizen (follower) then chooses the amount of labor b ∈ B
she wishes to perform. The rewards for the two players are different in general: For example, the
citizen’s reward r2(a, b) can be her post-tax income per labor, and the government’s reward r1(a, b)
can be a weighted average of its tax income and some measure of the citizen’s welfare (e.g. not too
much labor). We remark that the actual AI Economist is more similar to a bandit-RL game where the
follower plays sequentially in an MDP determined by the leader, which we study in Section 4.

Sample-efficient learning with bandit feedback In this paper we consider the bandit feedback
setting, that is, the algorithm cannot directly observe the mean rewards µ1(·, ·) and µ2(·, ·), and can
only query (a, b) and obtain random samples (r1(a, b), r2(a, b)). Our goal is to determine the number
of samples in order to find an approximate maximizer of φ0(a).

Note that the bandit feedback setting assumes observation noise in the rewards. As we will see in
Section 3, this noise turns out to bring in a fundamental challenge for learning Stackelberg equilibria
that is not present in (and thus not directly solved by) existing work on learning Stackelberg, which
assumes either exact observation of the mean rewards [13, 26], or the best-response oracle that can
query a and obtain the exact best response set BR0(a) [27, 34].

Markov decision processes We also present the basics of a Markov Decision Processes (MDPs),
which will be useful for the bandit-RL games in Section 4. We consider episodic MDPs de-
fined by a tuple (H,S,B, d1,P, r), where H is the horizon length, S is the state space, B is
the action space1, P = {Ph(·|s, b) : h ∈ [H], s ∈ S, b ∈ B} is the transition probabilities, and
r = {rh : S × B → [0, 1], h ∈ [H]} are the (potentially random) reward functions. A policy
π =

{
πbh(·|s) ∈ ∆B : h ∈ [H], s ∈ S

}
for the player is a set of probability distributions over actions

given the state.

In this paper we consider the exploration setting as the protocol of interacting with MDPs, similar
as in [3, 17]. The learning agent is able to play episodes repeatedly, where in each episode at step
h ∈ {1, . . . ,H}, the agent observes state sh ∈ S, takes an action bh ∼ πh(·|sh), observes her
reward rh = rh(sh, bh) ∈ [0, 1], and transits to the next state sh+1 ∼ Ph(·|sh, bh). The initial state
is received from the MDP: s1 ∼ d1(·). The overall value function (return) of a policy π is defined as
V (π) := Eπ

[∑H
h=1 rh(sh, bh)

]
.

1The notation B indicates that the MDP is played by the follower (cf. Section 4); we reserve A as the leader’s
action space in this paper.
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3 Warm-up: bandit games

3.1 Hardness of maximizing φ0 from samples

Given the exact φ-function φ0 (2), a natural notion of approximate Stackelberg equilibrium is to find
an action â that is ε near-optimal for maximizing φ0:

φ0(â) ≥ max
a∈A

φ0(a)− ε. (4)

However, the following lower bound shows that, in the worst case, it is hard to find such â from finite
samples.

Theorem 1 (Ω(1) lower bound for maximizing φ0). For any sample size n and any algorithm for
maximizing φ0 that outputs an action â ∈ A, there exists a bandit game with A = B = 2 on which
the algorithm must suffer from Ω(1) error with probability at least 1/3:

φ0(â) ≤ max
a∈A

φ0(a)− 1/2.

Theorem 1 shows that, no matter how large the sample size n is, any algorithm in the worst-case have
to suffer from an Ω(1) lower bound for maximizing φ0 (i.e. determining the Stackelberg equilibrium
for the leader). This result stems from a hardness of determining the best response BR0(a) exactly
from samples. (See Table 2 for the construction of the hard instance and Appendix C.1 for the
full proof of Theorem 1.) This is in stark contrast to the standard 1/

√
n type learning result in

finding other solution concepts such as the Nash equilibrium [4, 28], and suggests a new fundamental
challenge to learning Stackelberg equilibrium from samples.

3.2 Learning Stackelberg with value optimal up to gap

The lower bound in Theorem 1 shows that approximately maximizing φ0 is information-theoretically
hard. Motivated by this, we consider in turn a slightly relaxed notion of optimality, in which we
consider maximizing φ0 only up to the gap between φ0 and its counterpart using ε-approximate best
responses. More concretely, define the ε-approximate versions of the best response set and φ-function
as

φε(a) := min
b∈BRε(a)

µ1(a, b),

BRε(a) :=

{
b ∈ B : µ2(a, b) ≥ max

b′
µ2(a, b′)− ε

}
.

0 ε0 1ε

1

m
ax

a
φ
ε(
a

) }gapε0

Figure 1: Illustration of maxa∈A φε(a) and
gapε as a function of ε. The quantity gapε0
can be Ω(1) for arbitrarily small ε0.

These definitions are similar to the vanilla BR0 and φ0

in (1) and (2), except that we allow any ε-approximate
best response to be considered as a valid response to
the leader action. Observe we always have BRε(a) ⊇
BR0(a) and φε(a) ≤ φ0(a). We then define the gap of
the game for any ε ∈ (0, 1) as

gapε := max
a∈A

φ0(a)−max
a∈A

φε(a) ≥ 0. (5)

This gapε is discontinuous in ε in general, and can
be as large as Θ(1) for any ε > 0 without additional
assumptions on the relation between µ1 and µ2

2. See
Figure 1 for an illustration for a typical maxa∈A φε(a)
against ε.

With the definition of the gap, we are now ready to
state our main result, which shows that it is possible to
sample-efficiently learn Stackelberg Equilibria with value up to (gapε + ε). The proof can be found
in Appendix C.3.

2This gapε could be small when µ1 and µ2 have certain relations, such as zero-sum or cooperative structure.
See Appendix C.6 for more discussions.
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Algorithm 1 Learning Stackelberg in bandit games
Require: Target accuracy ε > 0.
set N ← C log(AB/δ)/ε2 for some constant C > 0.

1: Query each (a, b) ∈ A× B for N times and obtain {r(j)
1 (a, b), r

(j)
2 (a, b)}Nj=1.

2: Construct empirical estimates of the means µ̂i(a, b) = 1
N

∑N
j=1 r

(j)
i (a, b) for i = 1, 2.

3: Construct approximate best response sets and values for all a ∈ A:

φ̂3ε/4(a) := min
b∈B̂R3ε/4(a)

µ̂1(a, b), where B̂R3ε/4(a) :=

{
b : µ̂2(a, b) ≥ max

b′∈B
µ̂2(a, b′)− 3ε/4

}
.

4: Output (â, b̂), where â = arg maxa∈A φ̂3ε/4(a), b̂ = arg min
b∈B̂R3ε/4(â)

µ̂1(â, b).

Theorem 2 (Learning Stackelberg in bandit games). For any bandit game and ε ∈ (0, 1), Algorithm 1
outputs (â, b̂) such that with probability at least 1− δ,

φ0(â) ≥ φε/2(â) ≥ max
a∈A

φ0(a)− gapε − ε,

µ2(â, b̂) ≥ max
b′∈B

µ2(â, b′)− ε

with n = Õ
(
AB/ε2

)
samples, where Õ(·) hides log factors. Further, the algorithm runs in O(n) =

Õ(AB/ε2) time.

Implications; Overview of algorithm Theorem 2 shows that it is possible to learn â that maxi-
mizes φ0(a) up to (gapε + ε) accuracy, using Õ(AB/ε2) samples. The quantity gapε is not bounded
and can be as large as Θ(1) for any ε (see Lemma C.1 for a formal statement); however the gap is
non-increasing as we decrease ε. In the situation where for every a the best follower action for µ2(a, ·)
is at least ε0-better than the second best action, then for ε < ε0 we have gapε = 0 and Theorem 2
implies an ε-optimal Stackelberg guarantee. In general, Theorem 2 presents a “best-effort” positive
result for learning Stackelberg under this relaxed notion of optimality. To the best of our knowledge,
this is the first result for sample-efficient learning of Stackelberg equilibrium in general-sum games
with noisy bandit feedbacks. We remark that Theorem 2 also provides a near-optimality guarantee
for φε/2(â) which is slightly stronger than φ0 (since φε/2(â) ≤ φ0(â)), and guarantees the learned b̂
is indeed an ε-approximate best response of â.

From a more practical point of view, Theorem 2 (and our later results on bandit-RL games and linear
bandit games) spells out concretely the sample size required to learn an ε-approximate Stackelberg,
in terms of the scaling with problem parameters. For instance, in the AI Economist example, A is the
number of tax rate choices for the government, and B is the number of actions for the citizen, and
our results show that there exist an algorithm with sample complexity polynomial in A, B, and 1/ε.

The main step in Algorithm 1 is to construct approximate best response sets B̂R3ε/4(a) for all a ∈ A
based on the empirical estimates of the rewards. Through concentration, we argue that B̂R3ε/4(a) is a
good approximation of the true best response sets in the sense that BRε/2(a) ⊆ B̂R3ε/4(a) ⊆ BRε(a)
holds for all a ∈ A, from which the Stackelberg guarantee follows.

Irreducibility to Nash-finding algorithms We also remark that our bandit game is equivalent to a
turn-based general-sum Markov game with two steps, A states, and (A,B) actions [4]. Further, the
Stackelberg equilibrium a? along with a follower policy that plays the best response (with pessimistic
tie-breaking) constitutes a Nash equilibrium for that Markov game (see Appendix C.5 for a formal
statement and proof). However, existing Nash-finding algorithms for general-sum Markov games
such as Multi-Nash-VI [28] do not imply an algorithm for finding the Stackelberg equilibrium. This
is because general-sum games have multiple Nash equilibria (with different values) in general [38],
and these existing Nash-finding algorithms cannot pre-specify which Nash to output.

Lower bound We accompany Theorem 2 by an Ω(AB/ε2) sample complexity lower bound,
showing that Theorem 2 achieves the optimal sample complexity up to logarithmic factors.
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Theorem 3 (Lower bound for bandit games). There exists an absolute constant c > 0 such that
the following holds. For any ε ∈ (0, c), g ∈ [0, c), any A,B ≥ 3, and any algorithm that queries
N ≤ c

[
AB/ε2

]
samples and outputs an estimate â ∈ A, there exists a bandit game M on which

gapε = g and the algorithm suffers from (g + ε) error:

φε/2(â) ≤ φ0(â) ≤ max
a∈A

φ0(a)− g − ε

with probability at least 1/3.

This lower bound shows the tightness of Theorem 2, and suggests that (gapε + ε) suboptimality is
perhaps a sensible learning goal, as for any algorithm and any value of g ≥ 0 there exists a game
with gapε = g, on which the algorithm has to suffer from (g + ε) error, if the number of samples is
at most O(AB/ε2). The proof of Theorem 3 is deferred to Appendix C.4.

4 Bandit-RL games

In this section, we investigate learning Stackelberg equilibrium in bandit-RL games, in which each
leader’s action determines an episodic Markov Decision Process (MDP) for the follower. This setting
extends the two-player bandit games by allowing the follower to play sequentially, and has strong
practical motivations in particular in policy making problems involving sequential plays for the
follower, such as the optimal taxation problem in the AI Economist [53].

Setting A bandit-RL game is described by the leader’s action set A (with |A| = A), and a
family of MDPs M = {Ma : a ∈ A}. Each leader action a ∈ A determines an episodic MDP
Ma = (H,S,B,Pa, r1,h(a, ·, ·), r2,h(a, ·, ·)) that contains H steps, S states, B actions, with two
reward functions r1 and r2. In each episode of play,

• The leader plays action a ∈ A.
• The follower sees this action and enters the MDP Ma. She observes the deterministic3 initial

state s1, and plays in Ma with exploration feedback for one episode.
• While the follower plays in the MDP, she observes reward r2,h(a, sh, bh), whereas the leader

also observes her own reward r1,h(a, sh, bh).

We let πb denote a policy for the follower, and let V1(a, πb) and V2(a, πb) denote its value functions
(in Ma) for the leader and the follower respectively.

Similar as in bandit games, we define the ε-approximate best-response set BRε(a) and the ε-
approximate φ-function φε(a) for all ε ≥ 0 as

φε(a) := min
πb∈BRε(a)

V1(a, πb), where BRε(a) :=

{
πb : V2(a, πb) ≥ max

π̃b
V2(a, π̃b)− ε

}
.

Define gapε = maxa∈A φ0(a)−maxa∈A φε(a) similarly as in (5). We are interested in the number
of episodes in order to find a (gapε + ε) near-optimal Stackelberg equilibrium.

4.1 Algorithm description

At a high level, our algorithm for bandit-RL games is similar as for bandit games – query each leader
action a ∈ A sufficiently many times, let the follower learn the best response (i.e. best policy for the
MDP Ma) for each a ∈ A, and then choose the leader action that maximizes the best response value
function. This requires solving

arg max
a∈A

φ3ε/4(a) := arg max
a∈A

min
πb∈B̂R3ε/4(a)

V̂1(a, πb),

B̂R3ε/4(a) :=

{
πb : V̂2(a, πb) ≥ max

π̃b
V̂2(a, π̃b)− 3ε/4

}
,

(6)

3The general case where s1 is stochastic reduces to the deterministic case by adding a step h = 0 with a
single deterministic initial state s0, which only increases the horizon of the game by 1.
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Algorithm 2 Learning Stackelberg in bandit-RL games
Require: Target accuracy ε > 0.

1: for a ∈ A do
2: Let the leader pull arm a ∈ A and the follower run the Reward-Free RL-Explore algorithm

for N ← Õ(H5S2B/ε2 +H7S4B/ε) episodes, and obtain model estimate M̂a.
3: Let (V̂1(a, ·), V̂2(a, ·)) denote the value functions for the model M̂a.
4: Compute the empirical best response value V̂ ?2 (a) := maxπb V̂2(a, πb) by any optimal plan-

ning algorithm (e.g. value iteration) on the empirical MDP M̂a.
5: Solve the following program

minimizeπb V̂1(a, πb) s.t. πb ∈ B̂R3ε/4(a) :=
{
πb : V̂2(a, πb) ≥ V̂ ?2 (a)− 3ε/4

}
(7)

by subroutine (π̂b,(a), φ̂3ε/4(a))← WorstCaseBestResponse(M̂a, V̂ ?2 (a)− 3ε/4).
output (â, π̂b) where â← arg maxa∈A φ̂3ε/4(a) and π̂b ← π̂b,(â).

where V̂1 and V̂2 are empirical estimates of the true value functions.

Two technical challenges emerge as we instantiate (6). First, the follower not only needs to find her
own best policy during the exploration phase, but also has to accurately estimate both her own and the
leader’s reward over the entire approximate best response set B̂R3ε/4 so as to make sure the estimates
V̂i(a, π

b) (i = 1, 2) reliable. Standard fast PAC-exploration algorithms such as those in [3, 17] do
not provide such guarantees. We resolve this by applying the reward-free learning algorithm of Jin
et al. [18] for the follower to explore the environment efficiently while providing value concentration
guarantees for multiple rewards and policies. We remark that we slightly generalize the guarantees
of [18] to the situation where the rewards are random and have to be estimated from samples.

Second, the problem min
πb∈B̂R3ε/4(a)

V̂1(a, πb) in (6) requires minimizing a value function over the
near-optimal policy set of another value function. We build on the linear programming reformulation
in the constrained MDP literature [2] to translate (6) into a linear program WorstCaseBestResponse,
which adopts efficient solution in poly(HSB) time [8]. (the description of this subroutine can be
found in Algorithm 8 in Appendix D.1). Our full algorithm is described in Algorithm 2.

4.2 Main result

We now state our theoretical guarantee for Algorithm 2. The proof can be found in Appendix D.2.
Theorem 4 (Learning Stackelberg in bandit-RL games). For any bandit-RL game and sufficiently
small ε ≤ O(1/H2S2), Algorithm 2 with n = Õ(H5S2AB/ε2 +H7S4AB/ε) episodes of play can
return (â, π̂b) such that with probability at least 1− δ,

φ0(â) ≥ φε/2(â) ≥ max
a∈A

φ0(a)− gapε − ε,

V2(â, π̂b) ≥ max
π̃b

V2(â, π̃b)− ε,

where Õ(·) hides log(HSAB/δε) factors. Further, the algorithm runs in poly(HSAB/δε) time.

Sample complexity, relationship with reward-free RL Theorem 4 shows that for bandit-RL
games, the approximate Stackelberg Equilibrium (with value optimal up to gapε+ε) can be efficiently
found with polynomial sample complexity and runtime. In particular, (for small ε) the leading term
in the sample complexity scales as Õ(H5S2AB/ε2). Since bandit-RL games include bandit games
as a special case, the Ω(AB/ε2) lower bound for bandit games (Theorem 3) apply here and implies
that the A,B dependence in Theorem 4 is tight, while the H dependence may be slightly suboptimal.

We also remark the learning goal for the follower in our bandit-RL game is a new RL setting in between
the single-reward setting and the full reward-free setting, for which the optimal S dependence is
currently unclear. In the single-reward setting, existing fast exploration algorithms such as UCBVI [3]
only require linear in S episodes for finding a near-optimal policy. In contrast, in the full reward-free
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Algorithm 3 Learning Stackelberg in linear bandit games
Require: Target accuracy ε > 0.

1: Find (K, ρ)← CoreSet(Φ) (cf. (10)). Let K = {(aj , bj) : 1 ≤ j ≤ K} where K = |K|.
2: Query each (aj , bj) for N = O(d log(d/δ)/ε2) times. Let (µ̂1,j , µ̂2,j) denote the empirical

mean of the observed rewards over the N queries.
3: Estimate (θ?1 , θ

?
2) via weighted least squares

θ̂i := arg min
θ∈Rd

K∑
i=1

ρ(aj , bj)
(
φ(aj , bj)

>θi − µ̂i,j
)2
, i = 1, 2. (9)

4: Construct approximate best response sets and values for all a ∈ A:

B̂R3ε/4(a) :=

{
b : φ(a, b)>θ̂2 ≥ max

b′∈B
φ(a, b′)>θ̂2 − 3ε/4

}
,

φ̂3ε/4(a) := min
b∈B̂R3ε/4(a)

φ(a, b)>θ̂1.

5: Output (â, b̂), where â = arg maxa∈A φ̂3ε/4(a), b̂ = arg min
b∈B̂R3ε/4(â)

φ(â, b)>θ̂1.

setting (follower wants accurate estimation of any reward), it is known Ω(S2) is unavoidable [18].
Our setting poses a unique challenge in between: The follower wishes to accurately estimate both
r1, r2 on all near-optimal policies for r2. This further renders recent linear in S algorithms for
reward-free learning with finitely many rewards [28] not applicable here, as they only guarantee
accurate estimation of each reward on near-optimal policies for that reward. We believe the optimal
sample complexity for bandit-RL games is an interesting open question.

5 Linear bandit games

Setting We consider a bandit game with action space A, B that are finite but potentially arbitrarily
large, and assume in addition that the reward functions has a linear form

r1(a, b) = φ(a, b)>θ?1 + z1, r2(a, b) = φ(a, b)>θ?2 + z2, (8)

where φ : A × B → Rd is a d-dimensional feature map, θ?1 , θ
?
2 ∈ Rd are unknown ground truth

parameters for the rewards, and z1, z2 are random noise which we assume are mean-zero and 1-sub-
Gaussian. Let Φ := {φ(a, b) : (a, b) ∈ A× B} denote the set of all possible features. For linear
bandit games, we define gapε same as definition (5) for bandit games.

Algorithm and guarantee We present our algorithm for linear bandit games in Algorithm 3.
Compared with our Algorithm 1 for bandit games, Algorithm 3 takes advantage of the linear structure
through the following important modifications: (1) Rather than querying every action pair, we only
query (a, b) in a core set K found through the following subroutine

CoreSet(Φ) := (K, ρ) where K ⊂ A× B, ρ ∈ ∆K, such that

max
φ∈Φ

φ>
( ∑

(a,b)∈K

ρ(a, b)φ(a, b)φ(a, b)>
)−1

φ ≤ 2d and K = |K| ≤ 4d log log d+ 16. (10)

Such a core set is guaranteed to exist for any finite Φ [24, Theorem 4.4], and can be found efficiently
in O(ABd2) steps of computation [44, Lemma 3.9]. (2) Rather than estimating the reward at every
(a, b) in a tabular fashion, we use a weighted least-squares (9) to obtain estimates (θ̂1, θ̂2) which are
then used to approximate the true reward for all (a, b).

We now state our main guarantee for Algorithm 3. The proof can be found in Appendix E.1.
Theorem 5 (Learning Stackelberg in linear bandit games). For any linear bandit game, Algorithm 3
outputs a (gapε + ε)-approximate Stackelberg equilibrium (â, b̂) with probability at least 1− δ:

φ0(â) ≥ φε/2(â) ≥ max
a∈A

φ0(a)− gapε − ε,

in at most n = Õ(d2/ε2) queries.
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Sample complexity; computation Theorem 5 shows that Algorithm 3 achieves Õ(d2/ε2) sample
complexity for learning Stackelberg equilibria in linear bandit games. This only depends polynomially
on the feature dimension d instead of the size of the action spaces A,B, which improves over
Algorithm 1 when A,B are large and is desired given the linear structure (8). This sample complexity
has at most a Õ(d) gap from the lower bound: An Ω(d/ε2) lower bound for linear bandit games
can be obtained by directly adapting Ω(AB/ε2) lower bound for bandit games in Theorem 3 (see
Appendix E.2 for a formal statement and proof). We also note that, while the focus of Theorem 5
is on the sample complexity rather than the computation, Algorithm 3 is guaranteed to run in
poly(A,B, d, 1/ε2) time, since the CoreSet subroutine, the weighted least squares step (9), and the
final optimization step in approximate best-response sets can all be solved in polynomial time.

6 Conclusion

This paper provides the first line of sample complexity results for learning Stackelberg equilibria
in general-sum games with bandit feedback of the rewards and sampling noise. We identify a
fundamental gap between the exact and estimated versions of the Stackelberg value, and design
sample-efficient algorithms for learning Stackelberg with value optimal up to this gap, in several
representative two-player general-sum games. We believe our results open up a number of interesting
future directions, such as the optimal sample complexity for bandit-RL games and linear-bandit
games, learning Stackelberg in more general Markov games, or further characterizations on what
kinds of games admit a small gap.
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Algorithm 4 Learning Stackelberg in bandit games with optimistic tie-breaking
Require: Target accuracy ε > 0.
set N ← C log(AB/δ)/ε2 for some constant C > 0.

1: Query each (a, b) ∈ A× B for N times and obtain {r(j)
1 (a, b), r

(j)
2 (a, b)}Nj=1.

2: Construct empirical estimates of the means µ̂i(a, b) = 1
N

∑N
j=1 r

(j)
i (a, b) for i = 1, 2.

3: Construct approximate best response sets and values for all a ∈ A:

B̂R3ε/4(a) :=

{
b : µ̂2(a, b) ≥ max

b′∈B
µ̂2(a, b′)− 3ε/4

}
,

ψ̂3ε/4(a) := max
b∈B̂R3ε/4(a)

µ̂1(a, b).

4: Output (â, b̂) where â = arg maxa∈A ψ̂3ε/4(a), b̂ = arg max
b∈B̂R3ε/4(â)

µ̂1(â, b).

A Results with optimistic tie-breaking

In this section, we present alternative versions of our main results where the Stackelberg equilibrium
is defined via optimistic tie-breaking.

A.1 Bandit games

The setting is exactly the same as in Section 3, except that now we consider optimistic versions of the
φ-functions that take the max over best-response sets (henceforth the ψ-functions):

ψε(a) := max
b∈BRε(a)

µ1(a, b), (11)

for all ε ≥ 0. Notice that now ψε ≥ ψ0, and we consider the following new definition of gap:

g̃apε := max
a∈Aε

[ψε(a)− ψ0(a)], where

Aε :=

{
a ∈ A : ψε(a) ≥ max

a∈A
ψ0(a)− ε

}
.

Our desired optimality guarantee is

ψ0(â) ≥ max
a∈A

ψ0(a)− g̃apε − ε.

We now state our sample complexity upper bound for learning Stackelberg in bandit games under
optimistic tie-breaking. The proof can be found in Section F.1.
Theorem A.1 (Bandit games with optimistic tie-breaking). For the two-player bandit game and any
ε ∈ (0, 1), Algorithm 4 outputs (â, b̂) such that with probability at least 1− δ,

ψ0(â) ≥ max
a∈A

ψ0(a)− g̃apε − ε,

µ2(â, b̂) ≥ max
b′∈B

µ2(â, b′)− ε

with n = Õ
(
AB/ε2

)
samples, where Õ(·) hides log factors. Further, the algorithm runs in O(n) =

Õ(AB/ε2) time.

Intuitions about new gap We provide some intuitions about why—in contrast to the gapε defined
in Section 3—our sample complexity depends on this newly defined g̃apε here. Observe that, g̃apε
measures the max gap between ψε(a)− ψ0(a), over all possible a’s whose ψε can compete with the
best ψ0. For any of these a’s, statistically (if we only have O(AB/ε2) samples), the best response
set BRε(a) is indistinguishable from BR0(a), and we may well pick these a’s as the Stackelberg
equilibrium. However, their true ψ0 can be (much) lower than the ψε, and thus picking one of these
a’s we may have to suffer from the so-defined gapε in the worst case.
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Algorithm 5 Learning Stackelberg in bandit-RL games with optimistic tie-breaking
Require: Target accuracy ε > 0.
set N ← Õ(H5S2B/ε2 +H7S4B/ε).

1: for a ∈ A do
2: Let the leader pull arm a ∈ A and the follower run the Reward-Free RL-Explore algorithm

for N episodes, and obtain model estimate M̂a.
3: Let (V̂1(a, ·), V̂2(a, ·)) denote the value functions for the model M̂a.
4: Compute the empirical best response value V̂ ?2 (a) := maxπb V̂2(a, πb) by any optimal plan-

ning algorithm (e.g. value iteration) on the empirical MDP M̂a.
5: Solve the following program

maximizeπb V̂1(a, πb)

s.t. πb ∈ B̂R3ε/4(a) :=
{
πb : V̂2(a, πb) ≥ V̂ ?2 (a)− 3ε/4

} (12)

by subroutine (π̂b,(a), ψ̂3ε/4(a))← BestCaseBestResponse(M̂a, V̂ ?2 (a)− 3ε/4).
output (â, π̂b), where â← arg maxa∈A ψ̂3ε/4(a) and π̂b ← π̂b,(â).

A.2 Bandit-RL games

The setting is exactly the same as in Section 4, except the definition of the ψ-functions takes the max
over best-response sets:

ψε(a) := max
πb∈BRε(a)

V1(a, πb),

for all ε ≥ 0. Similar as in Section A.1, we consider the following new definition of gap:

g̃apε := max
a∈Aε

[ψε(a)− ψ0(a)], where

Aε :=

{
a ∈ A : ψε(a) ≥ max

a∈A
ψ0(a)− ε

}
.

We now state our sample complexity upper bound for learning Stackelberg in bandit-RL games under
optimistic tie-breaking. The proof is analogous to Theorem 4, and can be found in Section F.2.

Theorem A.2 (Learning Stackelberg in bandit-RL games with optimistic tie-breaking). For any
bandit-RL game and sufficiently small ε ≤ O(1/H2S2), Algorithm 5 with n = Õ(H5S2AB/ε2 +
H7S4AB/ε) episodes of play can return (â, π̂b) such that with probability at least 1− δ,

ψ0(â) ≥ max
a∈A

ψ0(a)− g̃apε − ε,

V2(â, π̂b) ≥ max
π̃b

V2(â, π̃b)− ε,

where Õ(·) hides log(HSAB/δε) factors. Further, the algorithm runs in poly(HSAB/δε) time.

B Matrix game with simultaneous play

In this section, we consider a variant of the two-player bandit game, in which the leader and follower
instead play a matrix game simultaneously, and the follower cannot see the leader’s action. The
problem of finding Stackelberg in this setting is also known as learning the “optimal strategy to
commit to” [13].

Setting A general-sum matrix game with simultaneous play can be described asM = (A,B, r1, r2)
with |A| = A, |B| = B, and r1, r2 : A× B → [0, 1], which defines the following game:

• The leader pre-specifies a policy πa ∈ ∆A and reveals this policy to the follower.
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• The leader plays a ∼ πa, and the follower plays an action b ∈ B simultaneously without seeing
a.

• The leader receives reward r1(a, b) and the follows receives reward r2(a, b).

(Above, ∆A denotes the probability simplex on A.) Let µi(πa, b) =
∑
a′∈A π

a(a′)E[ri(a
′, b)],

i = 1, 2 denote the mean rewards (for mixed policies), and

φε(π
a) := min

b∈BRε(πa)
µ1(πa, b),

BRε(π
a) :=

{
b ∈ B : µ2(πa, b) ≥ max

b′
µ2(πa, b′)− ε

}
denote the ε-approximate best response sets and best response values for any ε ≥ 0, similar as in
bandit games. We also overload notation to let φε(a1) := φε(δa1) to denote the φε value at pure
strategies (δa is the pure strategy of always taking a).

The main difference between this setting and bandit games is that now the Stackelberg equilibrium
for the leader may be achieved at mixed strategies only, so that we can no longer restrict attention to
pure strategies a ∈ A for the leader. To see why this is true, consider 2x2 game of [13] shown in
Table 1. In this game, the two pure strategies {a1, a2} achieve φ0(a1) = 2 (since the best response is
b1) and φ0(a2) = 3 (since the best response is b2). However, if we take πap = pδa1 + (1− p)δa2 , then
the follower’s best response is b2 whenever p < 1/2. Taking p → (1/2)−, the leader can achieve
value φ0(πap) = 4p+ 3(1− p)→ 3.5, which is higher than both pure strategies. For p ≥ 1/2, the
follower’s best response is b1, and φ0(πap) ≤ 2. Therefore the Stackelberg equilibrium for the leader
is to take πap with p→ (1/2)−

4.

µ1, µ2 b1 b2
a1 2, 1 4, 0
a2 1, 0 3, 1

Table 1: Example of matrix game with simultaneous play, where the Stackelberg strategy for the
leader is mixed.

B.1 Main result

Let gapε := supπa∈∆A φ0(πa)− supπa∈∆A φε(π
a) denote the gap. The following result shows that

Õ(AB/ε2) samples suffice for learning the Stackelberg up to (gapε + ε) in simultaneous matrix
games, similar as in bandit games. The proof can be found in Appendix G.1.
Theorem B.1 (Learning Stackelberg in simultaneous matrix games). For any matrix game with
simultaneous play, Algorithm 6 queries for n = O(AB log(AB/δ)/ε2) = Õ(AB/ε2) samples, and
outputs (π̂a, b̂) such that with probability at least 1− δ,

φ0(π̂a) ≥ φε/2(π̂a) ≥ sup
πa∈∆A

φ0(πa)− gapε − ε,

µ2(π̂a, b̂) ≥ max
b′∈B

µ2(π̂a, b′)− ε.

Theorem B.1 implies that Õ(AB/ε2) samples is also enough for determining the approximate (up
to gap) Stackelberg equilibrium in simultaneous games. Also, as we assumed bandit feedback,
Theorem B.1 extends the results of Letchford et al. [27], Peng et al. [34] which studied the sample
complexity assuming a best response oracle (can query BR0(πa) for any πa ∈ ∆A).

Comparison between learning Stackelberg and Nash We compare Theorem B.1 with existing
results on learning Nash equilibria in general-sum matrix games. On the one hand, when we have
Õ(AB/ε2) samples, with only a (gapε + ε) near-optimal Stackelberg equilibrium, but we can learn

4The reason why the optimal policy can only be approached instead of exactly achieved is because of the
pessimistic tie-breaking at p = 1/2, and is resolved if we take optimistic tie-breaking.
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Algorithm 6 Learning Stackelberg in matrix games with simultaneous play
Require: Target accuracy ε > 0.
set N ← C log(AB/δ)/ε2 for some constant C > 0.

1: Query each (a, b) ∈ A× B for N times and obtain {r(j)
1 (a, b), r

(j)
2 (a, b)}Nj=1.

2: Construct empirical estimates µ̂i(πa, b) =
∑
a′∈A π

a(a′) 1
N

∑N
j=1 r

(j)
i (a′, b) for i = 1, 2.

3: Construct approximate best response sets and values for all πa ∈ ∆A:

B̂R3ε/4(πa) :=

{
b : µ̂2(πa, b) ≥ max

b′∈B
µ̂2(πa, b′)− 3ε/4

}
,

φ̂3ε/4(πa) := min
b∈B̂R3ε/4(πa)

µ̂1(πa, b).

4: Output (π̂a, b̂) such that

φ̂3ε/4(π̂a) ≥ sup
πa∈∆A

φ̂3ε/4(πa)− ε/2, (13)

b̂ = arg min
b∈B̂R3ε/4(π̂a)

µ̂1(π̂a, b).

an ε-approximate Nash equilibrium [28]. On the other hand, the Stackelberg value is uniquely
defined (as the max of φ0), whereas there can be multiple Nash values [38] for general-sum games.
Additionally, at the Stackelberg equilibrium, the leader’s payoff is guaranteed to be at least as good
as any Nash value (the leader can pre-specify any Nash policy). This makes Stackelberg a perhaps
better solution concept in asymmetric games where the learning goal focuses more on the leader.

Runtime In Algorithm 6, the step of approximately maximizing φ̂3ε/4(πa) in (13) requires op-
timizing a discontinuous function over a continuous domain. It is unclear whether this program
can be reformulated to be solved efficiently in polynomial time56. However, we remark that this
is special to the pessimistic tie-breaking we assumed [27]. Learning the Stackelberg equilibrium
with optimistic tie-breaking has the same Õ(AB/ε2) sample complexity while admitting an efficient
polynomial-time algorithm via linear programming (see Section B.2 for the formal statement and
proof).

B.2 Optimistic tie-breaking

We also study simultaneous matrix games with optimistic tie-breaking. The setting is exactly the
same as above except the definition of the ψ-functions takes the max over best-response sets:

ψε(π
a) := max

b∈BRε(πa)
µ1(πa, b),

for all ε ≥ 0. Similar as in bandit games (Section A.1), we consider the following new definition of
gap:

g̃apε := max
πa∈Aε

[ψε(π
a)− ψ0(πa)], where

Aε :=

{
πa ∈ ∆A : ψε(π

a) ≥ max
πa∈∆A

ψ0(πa)− ε
}
.

5This program has a finite-time solution by the following strategy (which utilizes the specific structure of
this program): First partition ∆A according to which subsets of B are 3ε/4 best response, and then within each
partition solve an linear program (over πa) to a fixed accuracy (e.g. ε/10). However, the runtime is exponential
because there are 2B subsets induced by the partition.

6We also remark that [47, Theorem 9 & Proposition 10] provides an efficient reformulation of the pessimistic
Stackelberg problem in simultaneous matrix games. However, their reformulation relies crucially on the best
response set being exact, and does not generalize to our setting which requires to solve the pessimitic Stackelberg
problem with approximate best response sets.
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Algorithm 7 Learning Stackelberg in matrix games with simultaneous play (optimistic tie-breaking
version)
Require: Target accuracy ε > 0.
set N ← C log(AB/δ)/ε2 for some constant C > 0.

1: Query each (a, b) ∈ A× B for N times and obtain {r(j)
1 (a, b), r

(j)
2 (a, b)}Nj=1.

2: Construct empirical estimates µ̂i(πa, b) =
∑
a′∈A π

a(a′) 1
N

∑N
j=1 r

(j)
i (a′, b) for i = 1, 2.

3: Construct approximate best response sets and values for all πa ∈ ∆A:

B̂R3ε/4(πa) :=

{
b : µ̂2(πa, b) ≥ max

b′∈B
µ̂2(πa, b′)− 3ε/4

}
,

φ̂3ε/4(πa) := max
b∈B̂R3ε/4(πa)

µ̂1(πa, b).

4: Output

π̂a = arg max
πa∈∆A

φ̂3ε/4(πa), (14)

b̂ = arg max
b∈B̂R3ε/4(π̂a)

µ̂1(π̂a, b).

By calling the subroutine (π̂a, b̂)← BestMixedLeaderStrategy(µ̂1, µ̂2).

Theorem B.2 (Learning Stackelberg in simultaneous matrix games with optimistic tie-breaking).
For any matrix game with simultaneous play, Algorithm 7 queries for n = O(AB log(AB/δ)/ε2) =

Õ(AB/ε2) samples, and outputs (π̂a, b̂) such that with probability at least 1− δ,

ψ0(π̂a) ≥ max
πa∈∆A

ψ0(πa)− g̃apε − ε,

µ2(π̂a, b̂) ≥ max
b′∈B

µ2(π̂a, b′)− ε.

Further, the algorithm runs in poly(n) time.

The proof can be found in Section G.2.

Efficient runtime Theorem B.2 shares the same sample complexity Õ(AB/ε2) as its pessimistic
tie-breaking counterpart (Theorem B.1), albeit with a slightly different definition of the gap. However,
an additional advantage of the optimistic version is that it is guaranteed to have a polynomial runtime.
The core reason behind this is that with optimistic tie-breaking now (π̂a, b̂) solves a max-max problem
(instead of a max-min problem), for which we can exchange the order of maximization. Concretely,
we can now first maximize over πa for each b, which admits a linear programming formulation (cf.
the BestMixedLeaderStrategy subroutine in Algorithm 10, also in [13]).

C Proofs for Section 3

C.1 Proof of Theorem 1

To prove Theorem 1, we will construct a pair of hard instances, and use Le Cam’s method [49,
Section 15.2] to reduce the estimation error into a testing problem between the two hard instances.
Consider the following two games M1 and M−1, where the rewards follow Bernoulli distributions:
ri(a, b) ∼ Ber(µi(a, b)) with means shown in Table 2, where δ ∈ (0, 1) is a parameter to be
determined:

Based on Table 2, it is straightforward to check that φM1
0 (a1) = 1, φM−1

0 (a1) = 0, and φM1
0 (a2) =

φ
M−1

0 (a2) = 1/2. Further, aM1
? = a1 and aM−1

? = a2.

For any algorithm that outputs a (possibly randomized) estimator â ∈ A of the Stackelberg
equilibrium, let π denotes its querying policy, that is, given prior queries and observations
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r1, r2 b1 b2

a1 1, 1+δ
2 0, 1−δ

2

a2
1
2 , 1 1

2 , 1

r1, r2 b1 b2

a1 1, 1−δ
2 0, 1+δ

2

a2
1
2 , 1 1

2 , 1

Table 2: Pair of hard instances M1 (left) and M−1 (right). Each table lists µ1(a, b), µ2(a, b) for
a ∈ {a1, a2}, b ∈ {b1, b2}.

{
a(i), b(i), r

(i)
1 , r

(i)
2

}k−1

i=1
, π(k)(a, b|

{
a(i), b(i), r

(i)
1 , r

(i)
2

}k−1

i=1
) denotes the distribution of the next

query. Let PM1,π and PM−1,π denote the distribution of all n observations generated by the querying
policy π. For these two instances, we have

sup
M∈{M1,M−1}

PM
(

max
a∈A

φM0 (a)− φM0 (â) ≥ 1

2

)
= sup
M∈{M1,M−1}

PM
(
â 6= arg max

a∈A
φM0 (a)

)
≥ 1

2

(
PM1

(â 6= a1) + PM−1
(â 6= a2)

)
≥ 1

2

(
1− TV

(
PM1,π,PM−1,π

))
≥ 1

2

(
1−

√
1

2
KL
(
PM1,π‖PM−1,π

))
,

where the second-to-last step used Le Cam’s inequality, and the last step used Pinsker’s inequality. To
upper bound the KL distance between PM1,π and PM−1,π, we apply the divergence decomposition
of [23, Lemma 15.1] and obtain that

KL(PM1,π‖PM−1,π) ≤
∑

(a,b)∈A×B

EM1,π[Ta,b(n)] ·KL
(
Pa,bM1
‖Pa,bM−1

)
≤ n · max

(a,b)∈A×B
KL
(
Pa,bM1
‖Pa,bM−1

)
,

where Ta,b(n) denotes the number of queries to (a, b) among the n queries, and Pa,bMi
denote the distri-

bution of the observation (r1(a, b), r2(a, b)) in problem Mi, i = 1, 2. We have KL(Pa,bM1
‖Pa,bM−1

) = 0

for (a, b) = (a2, b1) and (a, b) = (a2, b2) since these (a, b) yield exactly the same reward distri-
butions. For (a, b) = (a1, b1) and (a, b) = (a1, b2), using the bound KL(Ber( 1+δ

2 )‖Ber( 1−δ
2 )) =

δ log 1+δ
1−δ ≤ 3δ2 for δ ≤ 1/2 (and the same bound for KL(Ber( 1−δ

2 )‖Ber( 1+δ
2 ))). Therefore, we get

KL
(
PM1,π‖PM−1,π

)
≤ 3nδ2.

Choosing δ = 1/
√

(27/2)n, the above is upper bounded by 2/9, and thus plugging back to the
preceding bound yields

sup
M∈{M1,M−1}

P
(
â 6= arg max

a∈A
φM0 (a)

)
≥ 1

2

(
1−

√
1

2
KL
(
PM1,π‖PM−1,π

))
≥ 1

3
.

Therefore, choosing the problem class to beMn = {M1,M−1} with δ = 1/
√

(27/2)n, the above
is the desired lower bound.

C.2 A Lemma on the gap

Lemma C.1 (Gap can be Ω(1)). For any 0 ≤ ε1 < ε2 < 1, there exists a two-player bandit game
M = Mε1,ε2 with A = B = 2, such that

max
a∈A

φε1(a)−max
a∈A

φε2(a) ≥ 1

2
,

max
a∈A

φε1(a)− φε1
(

arg max
a′∈A

φε2(a′)

)
≥ 1

2
.
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In particular, (taking ε1 = 0), for any ε there exists a game in which gapε = maxa∈A φ0(a) −
maxa∈A φε(a) ≥ 1/2.

Proof. Let 0 ≤ ε1 < ε2. We construct the problem M = Mε1,ε2 as follows: A = {a1, a2} and
B = {b1, b2}, and the rewards {r1(a, b), r2(a, b)}a∈A,b∈B are all deterministic and valued as in the
following table:

r1, r2 b1 b2

a1 1, ε1+ε2
2 0, 0

a2
1
2 , 1 1

2 , 1

Table 3: Construction of r1(a, b), r2(a, b) for a ∈ {a1, a2}, b ∈ {b1, b2}.

For the arm a2, actions b1 and b2 are exactly the same, so we have φε(a2) = 1
2 for all ε. For

the arm a1, observe that ε1 < ε1+ε2
2 < ε2, and thus BRε1(a1) = {b1} and φε1(a1) = 1, but

BRε2(a1) = {b1, b2} and φε2(a1) = 0. Therefore,

max
a∈A

φε1(a) = max

{
1,

1

2

}
= 1,

max
a∈A

φε2(a) = max

{
0,

1

2

}
=

1

2
,

φε1

(
arg max
a′∈A

φε2(a′)

)
= φε1(a2) =

1

2
.

This shows the desired result.

C.3 Proof of Theorem 2

Algorithm 1 pulled each arm (a, b) for N = O(log(AB/δ)/ε2) times, and µ̂1(a, b), µ̂2(a, b) are the
empirical means of the observed rewards. By the Hoeffding inequality and union bound over (a, b),
with probability at least 1− δ, we have

max
(a,b)∈A×B

|µ̂i(a, b)− µi(a, b)| ≤ ε/8 for i = 1, 2. (15)

Properties of B̂R3ε/4(a) On the uniform convergence event (22), we have the following: for any
b ∈ BRε/2(a), we have

µ̂2(a, b) ≥ µ2(a, b)− ε/8 ≥ max
b′∈B

µ2(a, b′)− 5ε/8 ≥ max
b′∈B

µ̂2(a, b′)− 3ε/4,

and thus b ∈ B̂R3ε/4(a). This shows that BRε/2(a) ⊆ B̂R3ε/4(a). Similarly we can show that
B̂R3ε/4(a) ⊆ BRε(a). In other words,

BRε(a) ⊇ B̂R3ε/4(a) ⊇ BRε/2(a) for all a ∈ A.

Notably, this implies that b̂ ∈ B̂R3ε/4(â) ∈ BRε(â), the desired near-optimality guarantee for b̂.

Near-optimality of â On the one hand, because â maximizes µ̂1(a, b̂(a)), we have for any a ∈ A
that

min
b′∈B̂R3ε/4(â)

µ̂1(â, b′)
(i)
= µ̂1(â, b̂) ≥ µ̂1(a, b̂(a))

(ii)

≥ min
b∈BRε(a)

µ̂1(a, b),

where (i) is because b̂ minimizes µ̂1(â, ·) within B̂R3ε/4(â), and (ii) is because b̂(a) ∈ B̂R3ε/4(a) ⊆
BRε(a). By the uniform convergence (22), we get that

min
b′∈B̂R3ε/4(â)

µ1(â, b′) ≥ min
b∈BRε(a)

µ1(a, b)− 2 · ε/8 ≥ φε(a)− ε.
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Since the above holds for all a ∈ A, taking the max on the right hand side gives

max
a∈A

φε(a)− ε ≤ min
b′∈B̂R3ε/4(â)

µ1(â, b′)
(i)

≤ min
b′∈BRε/2(â)

µ1(â, b′) = φε/2(â),

where (i) is because B̂R3ε/4(â) ⊇ BRε/2(a). This yields that

φε/2(â) ≥ max
a∈A

φε(a)− ε = max
a∈A

φ0(a)− gapε − ε,

which is the first part of the bound for â.

On the other hand, since φε(a) is increasing as we decrease ε, we directly have

φε/2(â) ≤ φ0(â) ≤ max
a∈A

φ0(a).

This is the second part of the bound for â.

C.4 Proof of Theorem 3

Suppose ε ∈ (0, c) and g ∈ [0, c) where c > 0 is an absolute constant to be determined. For any
algorithm that outputs an estimator â ∈ A, let π denote its (sequential) querying policy, and PM,π

denote the joint distribution of the N observed rewards (r1(a(i), b(i)), r2(a(i), b(i)))Ni=1 under game
M . We will rely on the divergence decomposition of [23, Lemma 15.1]:

KL(PM,π‖PM ′,π) ≤
∑

(a,b)∈A×B

EM1,π[Ta,b(N)] ·KL
(
Pa,bM ‖Pa,bM ′

)
, (16)

where P a,bM denotes the distribution of observation (r1(a, b), r2(a, b)) under game M , and Ta,b(N)
denotes the number of queries of (a, b) using algorithm π (which is a random variable). We will also
use the fact that

KL(Ber(1/2)‖Ber(1/2 + δ)) =
1

2
log

1/2

1/2 + δ
+

1

2
log

1/2

1/2− δ =
1

2
log

1

1− 4δ2
≤ 1

2
· 8δ2 ≤ 4δ2

(17)

whenever 4δ2 ≤ 1/2, i.e. |δ| ≤ 1/2
√

2.

Construction of hard instance In our construction below, the rewards follow Bernoulli distribu-
tions: ri(a, b) ∼ Ber(µi(a, b)), so that it suffices to specify µi(a, b). Without loss of generality
assume B/3 is an integer, and let B = [B] = {1, . . . , B} for notational simplicity.

We define a family of games Ma?,b1?,b
2
?

indexed by a? ∈ A and b1?, b
2
? ∈ B. Each game Ma?,b1?,b

2
?

is
defined as follows:

• µ1(a, b) = 1/2 + g + ε for all a ∈ A and 1 ≤ b ≤ B/3;
• µ1(a, b) = 1/2 + ε for all a ∈ A and B/3 + 1 ≤ b ≤ 2B/3;
• µ1(a, b) = 1/2 for all a ∈ A and 2B/3 + 1 ≤ b ≤ B.
• µ2(a?, b

1
?) = 1/2 + 2ε, where b1? ∈ {1, . . . , B/3}.

• µ2(a?, b
2
?) = 1/2 + 5ε/4, where b2? ∈ {B/3 + 1, . . . , 2B/3}.

• µ2(a?, b
′) = 1/2 for all b′ 6= b1?, b

2
?.

• µ2(a′, b) = 1/2 for all a′ 6= a? and b ∈ B.

For this game, we have φ0(a?) = 1/2 + g + ε, φε(a?) = 1/2 + ε, and φ0(a′) = φε(a
′) = 1/2 for

all a′ 6= a?. Therefore,

gapε = max
a∈A

φ0(a)−max
a∈A

φε(a) = g.

Further, notice that as long as â 6= a?, we have φ0(â) = maxa φ0(a)− (g + ε).

Define PM as the mixture of over the prior of Ma?,b1?,b
2
?

where the prior samples a? ∼ Unif(A),
b1? ∼ Unif({1, . . . , B/3}), and b2? ∼ Unif({B/3 + 1, . . . , 2B/3}). Define M0 as the “null-game”
where all the r2 are 1/2, and r1 has the same configuration as in the above game.
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Proof of lower bound Under the mixture PM , we have

PM
(
φ0(â) ≤ max

a∈A
φ0(a)− (g + ε)

)
= PM (â 6= a?)

=
1

A(B2/9)

∑
a?

B/3∑
b1?=1

2B/3∑
b2?=B/3+1

PMa?,b1?,b
2
?
(â 6= a?)

≥ 1

A(B2/9)

∑
a?

B/3∑
b1?=1

2B/3∑
b2?=B/3+1

P0(â 6= a?)−
1

A(B2/9)

∑
a?

B/3∑
b1?=1

2B/3∑
b2?=B/3+1

TV
(
P0,π,PMa?,b1?,b

2
?
,π

)

≥ 1

A

∑
a?

P0(â 6= a?)−
1

A(B2/9)

∑
a?

B/3∑
b1?=1

2B/3∑
b2?=B/3+1

√
1

2
KL
(
P0,π‖PMa?,b1?,b

2
?
,π

)

≥ 1− 1

A
− 1

A(B2/9)

∑
a?

B/3∑
b1?=1

2B/3∑
b2?=B/3+1

√
1

2
KL
(
P0,π‖PMa?,b1?,b

2
?
,π

)
︸ ︷︷ ︸

(?)

.

We now show that (?) ≤ 1/3 if N ≤ c[AB/ε2] for some small absolute constant c > 0. Using the
divergence decomposition (16), we have

(?) ≤ 1

A(B2/9)

∑
a?

B/3∑
b1?=1

2B/3∑
b2?=B/3+1

√
1

2

∑
a,b

E0,π[Ta,b(N)]KL
(
Pa,b0 ‖Pa,bMa?,b1?,b

2
?

)
(i)
=

1

A(B2/9)

∑
a?

B/3∑
b1?=1

2B/3∑
b2?=B/3+1

(
1

2
E0,π

[
Ta?,b1?(N)

]
KL
(
Pa?,b

1
?

0 ‖Pa?,b
1
?

Ma?,b1?,b
2
?

)
+

1

2
E0,π

[
Ta?,b2?(N)

]
KL
(
Pa?,b

2
?

0 ‖Pa?,b
2
?

Ma?,b1?,b
2
?

))1/2

≤ 1

A(B2/9)

∑
a?

B/3∑
b1?=1

∑
b2?=B/3+1

√
1

2
E0,π

[
Ta?,b1?(N)

]
KL
(
Pa?,b

1
?

0 ‖Pa?,b1?Ma?,b1?,b
2
?

)

+

√
1

2
E0,π

[
Ta?,b2?(N)

]
KL
(
Pa?,b

2
?

0 ‖Pa?,b2?Ma?,b1?,b
2
?

)
(ii)

≤ 1

A(B/3)

∑
a?

B/3∑
b1?=1

√
1

2
E0,π

[
Ta?,b1?(N)

]
· 4 · (2ε)2 +

1

A(B/3)

∑
a?

B/3∑
b2?=1

√
1

2
E0,π

[
Ta?,b2?(N)

]
· 4 · (5ε/4)2

(iii)

≤

√√√√ 1

A(B/3)

∑
a?

B∑
b1?=1

E0,π

[
Ta?,b1?(N)

]
· 8ε2 +

√√√√ 1

A(B/3)

∑
a?

B∑
b2?=1

E0,π

[
Ta?,b2?(N)

]
· 8ε2

= 2

√
24Nε2

AB
.

Above, (i) used the fact that for the null game M0 and the game Ma?,b1?,b
2
?
, only the actions (a?, b

1
?)

and (a?, b
2
?) will lead to different observation distributions. (ii) used the fact that r2(a?, b

1
?) has mean

1/2 + 2ε under Ma?,b1?,b
2
?

and mean 1/2 under M0 (and the other Bernoulli means correspondingly),
and the fact that r1(a, b) are equally distributed in the two games and thus do not contribute to the
KL, and finally the KL bound (17) for small enough ε such that 2ε < 1/2

√
2. (iii) used the power

mean inequality and the equality
∑
a?,b?

Ta?,b?(N) = N for any algorithm.
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The above implies that, as long as ε < 1/4
√

2 and g ≤ 1/4, for N ≤ AB/(864ε2), we have
(?) ≤ 1/3, and thus

PM
(
φ0(â) ≤ max

a∈A
φ0(a)− (g + ε)

)
=

1

A(B2/9)

∑
a?,b1?,b

2
?

PMa?,b1?,b
2
?

(
φ0(â) ≤ max

a∈A
φ0(a)− (g + ε)

)

≥ 1− 1

A
− 1

3
≥ 1

3
.

Therefore there must exist a game Ma?,b1?,b
2
?

on which the error probability is at least 1/3. This is the
desired lower bound.

C.5 Equivalence to turn-based Markov game

We consider the following general-sum turn-based Markov game7 with two steps and state space
S = {sa : a ∈ A}:
• (h = 1) Leader receives deterministic initial state s1 and plays action a ∈ A. No reward for both

players.
• (h = 2) The game transits deterministically to sa. The follower plays action b ∈ B and observes

reward r2(sa, b) = r2(a, b). The leader observes reward r1(sa, b) = r1(a, b).
• The game terminates.

It is straightforward to see that the bandit game M = (A,B, r1, r2) is equivalent to the above
turn-based Markov game. Note that the Markov game has |S| = A states.

Now, let a? be the leader’s exact Stackelberg equilibrium (as defined in (3)). For any a, let b?(a) =
arg minb∈BR0(a) µ1(a, b) be the best response of a with the worst µ1. Define the deterministic
follower policy πb? as πb?(sa) = b?(a) for all sa ∈ S.

We claim that (a?, π
b
?) is a Nash equilibrium of the above Markov game. Indeed, πb? is clearly a?’s

best response on the follower’s reward. Also, if we fix πb?, then a? is also the leader’s best response
to πb?, as we have

µ1(sa, π
b
?(sa)) = µ1(a, b?(a)) = min

b∈BR0(a)
µ1(a, b) = φ0(a),

and thus the leader’s best response is exactly the argmax of φ0(a), i.e. a?.

C.6 Additional discussions on the gap

Here we show that for bandit games, gapε is small for two special kinds of games: zero-sum games
and cooperative games.

Zero-sum games Here r1 ≡ −r2 and thus µ1 ≡ −µ2. In such games, by definition we have
φε(a) = min

b∈BRε(a)
µ1(a, b),

BRε(a) =

{
b ∈ B : µ1(a, b) ≤ min

b′
µ1(a, b′) + ε

}
.

Notice that now the minimum over b ∈ BRε(a) is always taken at the exact minimizer of b 7→
µ1(a, b). Therefore we have φε(a) = minb∈B µ1(a, b) does not depend on ε, and thus gapε =
maxa∈A φ0(a)−maxa∈A φε(a) = 0.

Cooperative games Here r1 ≡ r2 and thus µ1 ≡ µ2. In such games, by definition we have
φε(a) = min

b∈BRε(a)
µ1(a, b),

BRε(a) =

{
b ∈ B : µ1(a, b) ≥ max

b′
µ1(a, b′)− ε

}
.

Thus for each a ∈ A, the difference between µ1(a, b) for any b ∈ BR0(a) and any b ∈ BRε(a) is at
most ε. This shows that φ0(a)− φε(a) ≤ ε for all a ∈ A and thus gapε ≤ ε.

7The formal definition of turn-based Markov games can be found in [4].
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D Proofs for Section 4

D.1 Subroutine WorstCaseBestResponse

We describe the WorstCaseBestResponse subroutine in Algorithm 8.

Algorithm 8 Subroutine WorstCaseBestResponse(M,V 2)

Require: MDP M = (H,S,B,Ph(·|·, ·), r1,h(·, ·), r2,h(·, ·)). Initial state s1 ∈ S. Target value V 2.
1: Solve the following linear program over {dh(s, b) : h ∈ [H], s ∈ S, b ∈ B}:

minimize

H∑
h=1

∑
s∈S,b∈B

dh(s, b)r1,h(s, b)

s.t.

H∑
h=1

∑
s∈S,b∈B

dh(s, b)r2,h(s, b) ≥ V 2,∑
s∈S,b∈B

dh(s, b)Ph(s′|s, b) =
∑
b′∈B

dh+1(s′, b′) for all 1 ≤ h ≤ H − 1, s′ ∈ S,

d1(s1, ·) ∈ ∆B, d1(s′1, ·) = 0 for all s′ 6= s1.

(18)

Above, ∆B denotes the probability simplex on B (which is a set of B + 1 linear constraints).
Let dh denote the solution and V 1 denote the value of the above program.

2: Set πbh(b|s)← dh(s, b)/
∑
b∈B dh(s, b) for all (h, s, b) (with the convention 0/0 = 1/B).

output (πb, V 1).

D.2 Proof of Theorem 4

Correctness of subroutine We first show that the WorstCaseBestResponse subroutine (Algo-
rithm 8) with input (M̂a, V̂ ?2 (a)− 3ε/4) indeed solves the nominal problem (7). To see this, observe
that in the nominal problem (7), both the objective function and the constraint are linear functions
of the visitation distribution

{
Pπbh (s, b)

}
induced by πb. Therefore, maximizing over all visitation

distributions is equivalent to maximizing over all πb. To ensure that a general {dh(s, b)}h,s,b is a
visitation distribution, it suffices for it to satisfy the constraints d1(s1, ·) ∈ ∆B, d1(s′1, ·) = 0 for
s′1 6= s1, and at each h ≥ 2 and each state s′ the in-flow is equal to the out-flow, meaning that∑

s∈S,b∈B

dh(s, b)Ph(s′|s, b) =
∑
b∈B

dh+1(s′, b)

for all h ≥ 1, s′ ∈ S. These are exactly the constraints specified in the linear program (18). Finally,
for a visitation distribution dh, notice that πbh(b|s) = dh(s, b)/

∑
b∈S dh(s, b) (with the convention

0/0 = 1/B) defines a policy πb whose visitation distribution is exactly dh. This shows that the linear
program (18) is indeed a correct algorithm for solving (7).

Properties of reward-free exploration For each a ∈ A, Algorithm 2 played the Reward-Free
RL-Explore algorithm of Jin et al. [18] forN = Õ(H5S2B/ε2 +H7S4B/ε) episodes and obtained
an estimate of the transition dynamics P̂a. (More specifically, it ran N0 = Õ(H7S4B/ε) episodes in
its exploration phase and Ndata = Õ(H5S2B/ε2) episodes in its data-gathering phase.) Further, let
{r̂1,h(a, s, b), r̂2,h(a, s, b)} denote the empirical mean of the observed rewards in the data-gathering
phase.

Let Ṽ1(a, πb) and Ṽ2(a, πb) denote the value functions of the empirical MDPs (Pa, r̂1) and (Pa, r̂2)
(note that these MDPs combine the true models and the empirical rewards). With our choice N ,
by [18, Theorem 3.1], we have with probability at least 1− δ that

sup
πb

∣∣∣V̂i(a, πb)− Ṽi(a, πb)∣∣∣ ≤ ε/16 for i = 1, 2. (19)
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We now argue that the Reward-Free RL-Explore algorithm can correctly estimate the rewards,
along with estimating transitions. Indeed, we have the following
Lemma D.1. Suppose we run the Reward-Free RL-Explore algorithm where the data gathering
phase contains Ndata ≥ Õ(H3S2B/ε2) trajectories, and we in addition receive (stochastic) reward
signals r1,h, r2,h along the trajectories. Then with probability at least 1− δ, the empirical reward
estimates r̂1,h, r̂2,h and the associated value functions Ṽ1 and Ṽ2 satisfy that

sup
πb

∣∣∣Ṽi(a, πb)− Vi(a, πb)∣∣∣ ≤ ε for i = 1, 2.

We defer the proof of Lemma D.1 to Appendix D.3. As we have Ndata = Õ(H5S2B/ε2), we can
apply Lemma 6 and get (by choosing a large absolute constant in the choice of Ndata) that

sup
πb

∣∣∣Ṽi(a, πb)− Vi(a, πb)∣∣∣ ≤ ε/16 for i = 1, 2. (20)

Combining (19) and (20) (and noticing those are true for all a ∈ A), we get

sup
a∈A,πb

∣∣∣V̂i(a, πb)− Vi(a, πb)∣∣∣ ≤ ε/8 for i = 1, 2. (21)

Guarantees on BR3ε/4(a) Now, for any a ∈ A, recall Algorithm 2 constructed the empirical
best-response set (cf. (7))

B̂R3ε/4(a) :=

{
πb : V̂2(a, πb) ≥ max

π̃b
V̂2(a, π̃b)− 3ε/4

}
.

We claim that

BRε(a) ⊇ B̂R3ε/4(a) ⊇ BRε/2(a) for all a ∈ A.
Indeed, fixing any a ∈ A, let π? denote the optimal policy for V2(a, ·) and π̂? denote the optimal
policy for V̂2(a, ·) (dropping dependence on a for notational simplicity). Suppose π′b ∈ B̂R3ε/4(a),
then we have

V2(a, π?)− V2(a, π′b)

≤ V2(a, π?)− V̂2(a, π?)︸ ︷︷ ︸
≤ε/8

+ V̂2(a, π?)− V̂2(a, π̂?)︸ ︷︷ ︸
≤0

+ V̂2(a, π̂?)− V̂2(a, π′b)︸ ︷︷ ︸
≤3ε/4

+ V̂2(a, π′b)− V2(a, π′b)︸ ︷︷ ︸
≤ε/8

≤ 3ε/4 + 2 · ε/8 ≤ ε.

This shows that B̂R3ε/4(a) ⊆ BRε(a). Notably, this implies that the output π̂b ∈ BRε(â), the desired
optimality guarantee for π̂b.

Similar as above, take any π′b ∈ BRε/2(a), we have

V̂2(a, π̂?)− V̂2(a, π′b)

≤ V̂2(a, π̂?)− V2(a, π̂?)︸ ︷︷ ︸
≤ε/8

+V2(a, π̂?)− V2(a, π?)︸ ︷︷ ︸
≤0

+V2(a, π?)− V2(a, π′b)︸ ︷︷ ︸
≤ε/2

+V2(a, π′b)− V̂2(a, π′b)︸ ︷︷ ︸
≤ε/8

≤ ε/2 + 2 · ε/8 ≤ 3ε/4.

This shows that BRε/2(a) ⊆ B̂R3ε/4(a), the other part of the claim.

Stackelberg guarantee for â Finally, we show the Stackelberg guarantee for â. This part is similar
as in the proof of Theorem 2. First, because â maximizes φ̂3ε/4(a) = min

πb∈B̂R3ε/4(a)
V̂1(a, πb), we

have for any a ∈ A that

min
π̃b∈B̂R3ε/4(â)

V̂1(â, π̃b) = φ̂3ε/4(â) ≥ φ̂3ε/4(a) = min
π̃b∈B̂R3ε/4(a)

V̂1(a, π̃b)
(i)

≥ min
π̃b∈BRε(a)

V̂1(a, π̃b)
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where (i) is because B̂R3ε/4(a) ⊆ BRε(a) for all a. By the uniform convergence (21), we get

min
π̃b∈B̂R3ε/4(â)

V1(â, π̃b) ≥ min
π̃b∈BRε(a)

V1(a, π̃b)− 2 · ε/8 ≥ φε(a)− ε.

Since the above holds for all a ∈ A, taking the max on the right hand side gives

max
a∈A

φε(a)− ε ≤ min
π̃b∈B̂R3ε/4(â)

V1(â, π̃b)
(i)

≤ min
π̃b∈BRε/2(â)

V1(â, π̃b) = φε/2(â),

where (i) is because B̂R3ε/4(â) ⊇ BRε/2(a). In other words, we have

φε/2(â) ≥ max
a∈A

φε(a)− ε = max
a∈A

φ0(a)− gapε − ε.

This is the first part of the bound for â.

On the other hand, since φε(a) is increasing as we decrease ε, we directly have

φε/2(â) ≤ φ0(â) ≤ max
a∈A

φ0(a).

This is the second part of the bound for â.

D.3 Proof of Lemma D.1

We consider estimating a single reward rh = r1,h. The bound for two rewards can be obtained by
setting δ → δ/2 and applying a union bound. Consider the MDP Ma which consists of S states, B
actions, and H steps. Let V (a, πb; r) denote the value function using the true MDP, policy πb and
reward function r, and V (a, πb; r̂) denote the value function using the estimated reward r̂. Further,
let

Sδh :=

{
s : max

πb
Pπ

b

h (s) ≥ δ
}
.

denote the set of δ-significant states. By [18], the data gathering phase of Reward-Free
RL-Explore obtains data where the h-th step is sampled i.i.d. from some policy µh, such that
for any s ∈ Sδh we have

max
πb

Pπbh (s, b)

µh(s, b)
≤ 2SBH.

We have for any πb that∣∣∣Ṽ1(a, πb)− V1(a, πb)
∣∣∣ =

∣∣V (a, πb; r)− V (a, πb; r̂)
∣∣

=

∣∣∣∣∣∣
H∑
h=1

∑
s,b

Pπ
b

h (s, b)(r̂h(s, b)− E[rh(s, b)])

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
H∑
h=1

∑
s/∈Sδh,b

Pπ
b

h (s, b)(r̂h(s, b)− E[rh(s, b)])

∣∣∣∣∣∣+

∣∣∣∣∣∣
H∑
h=1

∑
s∈Sδh,a

Pπ
b

h (s, b)(r̂h(s, b)− E[rh(s, b)])

∣∣∣∣∣∣
≤

H∑
h=1

∑
s/∈Sδh

Pπ
b

h (s) +

H∑
h=1

∣∣∣∣∣∣
∑
s∈Sδh,b

Pπ
b

h (s, b)(r̂h(s, b)− E[rh(s, b)])

∣∣∣∣∣∣︸ ︷︷ ︸
:=∆h

≤ HSδ +

H∑
h=1

∆h.
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For any h, by the Cauchy-Schwarz inequality, we have

sup
πb

∆h ≤ sup
πb

 ∑
s∈Sδh,b

Pπ
b

h (s, b)︸ ︷︷ ︸
=Pπbh (s)·πbh(b|s)

(r̂h(s, b)− E[rh(s, b)])
2


1/2

≤ sup
πb

max
ν:S→B

 ∑
s∈Sδh,b

Pπ
b

h (s)(r̂h(s, b)− E[rh(s, b)])
2
1 {b = ν(s)}

1/2

(i)

≤ max
ν:S→B

2SBH ·
∑
s∈Sδh,b

µh(s, b)(r̂h(s, b)− E[rh(s, b)])
2
1 {b = ν(s)}

1/2

(ii)

≤ max
ν:S→B

2SBH ·
∑
s∈Sδh,b

µh(s, b) · Õ
(

1

Nh(s, b)

)
· 1 {b = ν(s)}

1/2

(iii)

≤ max
ν:S→B

2SBH ·
∑
s∈Sδh,b

µh(s, b) · Õ
(

1

Nµh(s, b)

)
· 1 {b = ν(s)}

1/2

= Õ

(√
S2BH

N

)
.

Above, (i) used the fact that Pπbh (s)1 {b = ν(s)} ≤ 2SBH · µh(s, b) as
{
πbh′
}
h′≤h−1

∪ {ν} is a
valid policy. (ii) used the Hoeffding inequality (and a union bound) for the reward estimates, and
the fact that the visitation of the reward-free algorithm is independent of the observed reward. (iii)
used the multiplicative Chernoff bound for the visitation count Nh(s, b) ∼ Bin(N,µh(s, b)) and
a union bound over (s, b), which requires N ≥ O(1/mins,b µh(s, b)). Recall that Reward-Free
RL-Explore used δ = ε/2H2S and µh(s, b) ≥ ε

4H3S2B for all (s, b). Thus the requirement for N
is N ≥ O(H3S2B/ε) which is implied by our assumption that N ≥ Õ(H3S2B/ε2).

Further, plugging in the choice of N (with a sufficiently large constant) into the above bound yields

sup
πb

∆h ≤ Õ
(

S2BH

H3S2B/ε2

)
≤ ε/2H.

This further implies that∣∣∣Ṽ1(a, πb)− V1(a, πb)
∣∣∣ ≤ HS · ε/(2H2S) +H · ε/(2H) ≤ ε,

the desired result.

E Proofs for Section 5

E.1 Proof of Theorem 5

First by the guarantee (10) for the CoreSet subroutine, we have K = |K| ≤ 4d log log d+ 16. At
each j ∈ [K] and associated (aj , bj) ∈ K, as we queried the rewards for N times, the empirical
means satisfy (letting φj := φ(aj , bj) for shorthand)

µ̂i,j = φ>j θ
?
i + z̃i,j , i = 1, 2,

where z̃i,j is the empirical mean of N i.i.d. 1-sub-Gaussian noises, and thus is 1/N -sub-Gaussian.
Therefore, the weighted least squares estimator (9) can be expressed as (letting ρj := ρ(aj , bj) for
shorthand)

θ̂i = arg min
θ∈Rd

K∑
i=1

ρ(aj , bj)
(
φ(aj , bj)

>θ − µ̂i,j
)2

=

 K∑
j=1

ρjφjφ
>
j

−1
K∑
j=1

ρjφj · µ̂i,j
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=

 K∑
j=1

ρjφjφ
>
j

−1
K∑
j=1

ρjφj
(
φ>j θ

?
i + z̃i,j

)

= θ?i +

 K∑
j=1

ρjφjφ
>
j

−1
K∑
j=1

ρjφj z̃i,j .

This implies the following guarantee (recall Φ = {φ(a, b) : (a, b) ∈ A× B}):

max
φ∈Φ

∣∣∣φ>(θ̂i − θ?i )
∣∣∣

= max
φ∈Φ

∣∣∣∣∣∣∣φ>
 K∑
j=1

ρjφjφ
>
j

−1
K∑
j=1

ρjφj z̃i,j

∣∣∣∣∣∣∣
≤ max

j
|z̃i,j | ·max

φ∈Φ

∣∣∣∣∣∣∣
K∑
j=1

ρjφ
>

 K∑
j=1

ρjφjφ
>
j

−1

φj

∣∣∣∣∣∣∣
(i)

≤ max
j
|z̃i,j | ·max

φ∈Φ

 K∑
j=1

ρjφ
>

 K∑
j=1

ρjφjφ
>
j

−1

φjφ
>
j

 K∑
j=1

ρjφjφ
>
j

−1

φ


1/2

= max
j
|z̃i,j | ·max

φ∈Φ

φ>
 K∑
j=1

ρjφjφ
>
j

−1

φ


1/2

(ii)

≤
√

2d ·max
j
|z̃i,j |.

Above, (i) uses Jensen’s inequality (over the distribution induced by ρj), and (ii) used the property (10)
of the core set. Now, as z̃i,j is 1/N -sub-Gaussian, with probability at least 1− δ, we have

max
i=1,2

max
j∈[K]

|z̃i,j | ≤
√

log(2K/δ)

N
≤ C

√
log(d/δ)

N
.

Substituting this into the preceding bound yields

max
φ∈Φ

∣∣∣φ>(θ̂i − θ?i )
∣∣∣ ≤ C√d log(d/δ)

N
.

Choosing N = Cd log(d/δ)/ε2 guarantees that maxφ∈Φ

∣∣∣φ>(θ̂i − θ?i )
∣∣∣ ≤ ε/8. When this happens,

we have for any (a, b) ∈ A× B and any i = 1, 2 that the estimated mean reward is close to the true
reward: ∣∣∣φ(a, b)>θ̂i − φ(a, b)>θ?i

∣∣∣ ≤ ε/8.
We can then proceed analogously to the proof of Theorem 2 to conclude that the output (â, b̂) satisfies
φ0(â) ≥ φε/2(â) ≥ maxa∈A φ0(a)−gapε−ε and b̂ ∈ BRε(â). Further, notice that the total amount
of queries is

NK ≤ Cd log(d/δ)/ε2 · d log log d = Õ(d2/ε2).

This proves Theorem 5.

E.2 Lower bound

We present a Ω(d/ε2) lower bound for linear bandit games. This shows that the sample complexity
upper bound in our Theorem 5 has at most an Õ(d) factor from the lower bound.
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Theorem E.1 (Lower bound for linear bandit games). There exists an absolute constant c > 0 such
that the following holds. For any ε ∈ (0, c), g ∈ [0, c), and any algorithm that queries n ≤ c[d/ε2]
samples and outputs an estimate â ∈ A, there exists a linear bandit game M with feature dimension
d, on which gapε = g and the algorithm suffers from (g + ε) error:

φε/2(â) ≤ φ0(â) ≤ max
a∈A

φ0(a)− g − ε.

Proof. This lower bound is a direct corollary of the Ω(AB/ε2) lower bound in Theorem 3. Specif-
ically, we can pick the size of the action spaces A′, B′ so that d/2 ≤ A′B′ ≤ d, and take
φ(a, b) = 1a,b ∈ Rd where 1a,b is the standard basis vector with one at index (a, b) (this in-
dex is understood as an index in [d]). This family of linear bandit games is equivalent to the family of
bandit games with A′B′ ≥ d/2, for which any algorithm has to suffer from at least (g + εε) error
if the number of queries n ≤ cd/ε2 ≤ cA′B′/ε2 by (the hard instance construction of) Theorem 3.
This proves Theorem E.1.

F Proofs for Section A

F.1 Proof of Theorem A.1

Recall that Algorithm 4 pulled each arm (a, b) for N = O(log(AB/δ)/ε2) times, and µ̂1(a, b),
µ̂2(a, b) are the empirical means of the observed rewards. By the Hoeffding inequality and union
bound over (a, b), with probability at least 1− δ, we have

max
(a,b)∈A×B

|µ̂i(a, b)− µi(a, b)| ≤ ε/8 for i = 1, 2. (22)

Properties of B̂R3ε/4(a) On the uniform convergence event (22), we have the following: for any
b ∈ BRε/2(a), we have

µ̂2(a, b) ≥ µ2(a, b)− ε/8 ≥ max
b′∈B

µ2(a, b′)− 5ε/8 ≥ max
b′∈B

µ̂2(a, b′)− 3ε/4,

and thus b ∈ B̂R3ε/4(a). This shows that BRε/2(a) ⊆ B̂R3ε/4(a). Similarly we can show that
B̂R3ε/4(a) ⊆ BRε(a). In other words,

BRε(a) ⊇ B̂R3ε/4(a) ⊇ BRε/2(a) for all a ∈ A.
Notably, this implies that b̂ ∈ B̂R3ε/4(â) ∈ BRε(â), the desired near-optimality guarantee for b̂.

Near-optimality of â On the one hand, because â maximizes µ̂1(a, b̂(a)), we have for any a ∈ A
that

max
b′∈B̂R3ε/4(â)

µ̂1(â, b′)
(i)
= ψ̂3ε/4(â) ≥ ψ̂3ε/4(a)

(ii)

≥ max
b∈BRε/2(a)

µ̂1(a, b),

where (i) is by definition of ψ̂3ε/4, and (ii) is because B̂R3ε/4(a) ⊇ BRε(a). By the uniform
convergence (22), we get that

max
b′∈B̂R3ε/4(â)

µ1(â, b′) ≥ max
b∈BRε/2(a)

µ1(a, b)− 2 · ε/8 ≥ ψε/2(a)− ε.

Since the above holds for all a ∈ A, taking the max on the right hand side gives

max
a∈A

ψε/2(a)− ε ≤ max
b′∈B̂R3ε/4(â)

µ1(â, b′)
(i)

≤ max
b′∈BRε(â)

µ1(â, b′) = ψε(â),

where (i) is because B̂R3ε/4(â) ⊆ BRε(a). This yields that

ψε(â) ≥ max
a∈A

ψε/2(a)− ε ≥ max
a∈A

ψ0(a)− ε,

and thus â ∈ Aε, and we can further rewrite the above as
ψ0(â) ≥ max

a∈A
ψ0(a)− ε− [ψ0(â)− ψε(â)] ≥ max

a∈A
ψ0(a)− g̃apε − ε.

which is the desired bound for â.
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Algorithm 9 Subroutine BestCaseBestResponse(M,V 2)

Require: MDP M = (H,S,B,Ph(·|·, ·), r1,h(·, ·), r2,h(·, ·)). Initial state s1 ∈ S. Target value V 2.
1: Solve the following linear program over {dh(s, b) : h ∈ [H], s ∈ S, b ∈ B}:

maximize

H∑
h=1

∑
s∈S,b∈B

dh(s, b)r1,h(s, b)

s.t.

H∑
h=1

∑
s∈S,b∈B

dh(s, b)r2,h(s, b) ≥ V 2,∑
s∈S,b∈B

dh(s, b)Ph(s′|s, b) =
∑
b′∈B

dh+1(s′, b′) for all 1 ≤ h ≤ H − 1, s′ ∈ S,

d1(s1, ·) ∈ ∆B, d1(s′1, ·) = 0 for all s′ 6= s1.

(23)

Above, ∆B denotes the probability simplex on B (which is a set of B + 1 linear constraints).
Let dh denote the solution and V 1 denote the value of the above program.

2: Set πbh(b|s)← dh(s, b)/
∑
b∈B dh(s, b) for all (h, s, b) (with the convention 0/0 = 1/B).

output (πb, V 1).

F.2 Proof of Theorem A.2

The proof is completely analogous to that of Theorem 4 and Theorem A.1: we first establish the
uniform convergence of the form (21), and then analyze the value functions similarly as in the proof
of Theorem 4, except that we replace min over best response sets to max over best response sets,
similar as in Theorem A.1. The guarantee we get has the same form as in Theorem 4 except that we
replace φ-functions by ψ-functions, and replace gapε with g̃apε.

G Proofs for Section B

G.1 Proof of Theorem B.1

Recall that Algorithm 6 pulled each arm (a, b) ∈ A × B for N = O(log(AB/δ)/ε2) times, and
µ̂1(a, b), µ̂2(a, b) denote the empirical means of the observed rewards. By the Hoeffding inequality
and union bound over (a, b), with probability at least 1− δ, we have

max
πa∈∆A,b∈B

|µ̂i(πa, b)− µ̂i(πa, b)| = max
(a,b)∈A×B

|µ̂i(a, b)− µi(a, b)| ≤ ε/8 for i = 1, 2. (24)

Properties of B̂R3ε/4(πa) On the uniform convergence event (24), we have the following: for any
b ∈ BRε/2(πa), we have

µ̂2(πa, b) ≥ µ2(πa, b)− ε/8 ≥ max
b′∈B

µ2(πa, b′)− 5ε/8 ≥ max
b′∈B

µ̂2(πa, b′)− 3ε/4,

and thus b ∈ B̂R3ε/4(πa). This shows that BRε/2(πa) ⊆ B̂R3ε/4(πa). Similarly we can show that
B̂R3ε/4(πa) ⊆ BRε(π

a). In other words,

BRε(π
a) ⊇ B̂R3ε/4(πa) ⊇ BRε/2(πa) for all πa ∈ ∆A.

Notably, this implies that b̂ ∈ B̂R3ε/4(π̂a) ∈ BRε(π̂
a), the desired near-optimality guarantee for b̂.

Near-optimality of π̂a On the one hand, because π̂a approximately maximizes µ̂1(πa, b̂(π)a) (in
the sense of (13)), we have for any πa ∈ ∆A that

min
b′∈B̂R3ε/4(π̂a)

µ̂1(π̂a, b′) = φ̂3ε/4(π̂a) ≥ φ̂3ε/4(πa)− ε/8
(i)

≥ min
b∈BRε(πa)

µ̂1(πa, b)− ε/8,
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Algorithm 10 Subroutine BestMixedLeaderStrategy(µ̂1, µ̂2)

Require: Reward estimates µ̂1, µ̂2 : A× B → [0, 1].
1: Define vectors

v̂b = (µ̂1(a, b))a∈A ∈ [0, 1]A, ŵb = (µ̂2(a, b))a∈A ∈ [0, 1]A

for all b ∈ B.
2: for b ∈ B do
3: Solve the following linear program over πa ∈ ∆A:

maximize (πa)>v̂b

s.t. (πa)>(ŵb − ŵb′) ≥ 0 for all b′ ∈ B \ {b}.
πa ∈ ∆A.

(25)

Let π̂a(b), û(b) denote the solution and the value at the solution respectively.
4: Output b̂ = arg maxb∈B û(b) and π̂a = π̂a(̂b).

where (i) is because B̂R3ε/4(πa) ⊆ BRε(π
a). By the uniform convergence (24), we get that

min
b′∈B̂R3ε/4(π̂a)

µ1(π̂a, b′) ≥ min
b∈BRε(πa)

µ1(πa, b)− ε/4− 2 · ε/8 ≥ φε(πa)− ε.

Since the above holds for all πa ∈ ∆A, taking the max on the right hand side gives

sup
πa∈∆A

φε(π
a)− ε ≤ min

b′∈B̂R3ε/4(π̂a)

µ1(π̂a, b′)
(i)

≤ min
b′∈BRε/2(π̂a)

µ1(π̂a, b′) = φε/2(π̂a),

where (i) is because B̂R3ε/4(π̂a) ⊇ BRε/2(πa). In other words,

φε/a(πa) ≥ sup
πa∈∆A

φε(π
a)− ε = sup

πa∈∆A

φ0(πa)− gapε − ε.

This yields the first part of the bound for π̂a.

On the other hand, since φε(πa) is increasing as we decrease ε, we directly have

φε/2(π̂a) ≤ φ0(π̂a) ≤ sup
πa∈∆A

φ0(πa).

This is the second part of the bound for π̂a.

G.2 Proof of Theorem B.2

We first check that the BestMixedLeaderStrategy subroutine is a correct algorithm for solv-
ing (14). Let

V̂ = (µ̂1(a, b))A,Ba,b=1 and Ŵ = (µ̂2(a, b))A,Ba,b=1

denote the matrix of estimated rewards. Observe that (14) is equivalent to the following problem

max
πa∈∆A

max
b∈B̂R3ε/4(πa)

µ̂1(πa, b)

= max
b∈B

max
πa:B̂R3ε/4(πa)3b

(πa)>V̂ eb

= max
b∈B

max
πa∈∆A

(πa)>V̂ eb

s.t. (πa)>Ŵeb ≥ (πa)>Ŵeb′ for all b′ ∈ B,
where eb ∈ ∆B denotes the standard basis vector in B (1 at b and 0 at b′ 6= b). For each b, the
above problem is exactly the same as the linear program (25). Then, the above problem requires
maximizing the value over b ∈ B, which is done in the output step of Algorithm 10. This shows that
the BestMixedLeaderStrategy subroutine (Algorithm 10) is correct for solving (14). Note this
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also proves that the arg max in (14) is attainable (instead of the sup in Theorem B.1 which may not
be attainable in general).

The rest of the proof is analogous to Theorem B.1 where we can again establish the uniform
convergence (24) and obtain the suboptimality guarantee in terms of ψ and g̃apε instead of φ and
gapε, similar as in Theorem A.1.

32


	Introduction
	Related work

	Preliminaries
	Warm-up: bandit games
	Hardness of maximizing 0 from samples
	Learning Stackelberg with value optimal up to gap

	Bandit-RL games
	Algorithm description
	Main result

	Linear bandit games
	Conclusion
	Results with optimistic tie-breaking
	Bandit games
	Bandit-RL games

	Matrix game with simultaneous play
	Main result
	Optimistic tie-breaking

	Proofs for Section 3
	Proof of Theorem 1
	A Lemma on the gap
	Proof of Theorem 2
	Proof of Theorem 3
	Equivalence to turn-based Markov game
	Additional discussions on the gap

	Proofs for Section 4
	Subroutine WorstCaseBestResponse
	Proof of Theorem 4
	Proof of Lemma D.1

	Proofs for Section 5
	Proof of Theorem 5
	Lower bound

	Proofs for Section A
	Proof of Theorem A.1
	Proof of Theorem A.2

	Proofs for Section B
	Proof of Theorem B.1
	Proof of Theorem B.2


