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APPENDIX

A PROOFS

Theorem 1 (The correctness of speculative Jacobi decoding) The token sampled in each speculative
Jacobi iteration satisfies pθ(x|x(j)

1:i−1), where x denotes a token, j denotes the index of iteration, i
denotes the token index, and θ denotes the auto-regressive model parameters.

Proof. The main process of speculative Jacobi iteration is decomposed into two cases: (a) obtaining the
token sampled in the previous iteration and then accepting it according to an acceptance probability;
(b) rejecting the sampled token and resampling a new token according to a calibrated probability. Thus,
like the proof of the vanilla speculative sampling (Leviathan et al., 2023), to prove the correctness of
speculative Jacobi decoding, we verify that the conditional probability of a token sampled following
the above two cases, alongside the manually designed acceptance and resampling probability, remains
pθ(x|x(j)

1:i−1).

For simplicity, by default, we omit the token index i and denote the token category of x(j)
i as x.

We denote the condition of token x
(j)
i at the j-th Jacobi iteration (i.e., the tokens x(j)

1:i−1 and model
weights θ) to Jj . Thus, the condition of the (j − 1)-th Jacobi iteration is denoted as Jj−1. Thus, we
can denote the probability pθ(x|x(j)

1:i−1) as p(x|Jj), and denote pθ(x|x(j−1)
1:i−1 ) as p(x|Jj−1). We use

a random boolean variable r to represent the acceptance. With these notations, the proof is as follows:

First, the acceptance probability on the token category x is manually set as follows:

p(r is true|x,Jj ,Jj−1) = min{1, p(x|Jj)
p(x|Jj−1)

}, (4)

and the calibrated resampling probability subsequent to the rejection is set as follows:

p(x|r is false,Jj ,Jj−1) =
max{0, p(x|Jj)− p(x|Jj−1)}∑
x′ max{0, p(x′|Jj)− p(x′|Jj−1)}

. (5)

Next, we make an assumption that Jj and x are conditionally independent given Jj−1:

p(Jj |x,Jj−1) = p(Jj |Jj−1) (6)

This assumption is reasonable due to the properties of the Jacobi iteration and the auto-regressive
paradigm, i.e., with the observation of the sequence x

(j−1)
1:i−1 , one of the tokens in x

(j)
1:i−1 (denoted

as x
(j)
k ) can be determined by x

(j)
k = f(x

(j−1)
1:k−1, θ) (k < i) where the function f indicates the

prediction-then-sampling of auto-regressive models, so the variable x
(j)
i is redundant as one of the

conditions in the probability p(Jj |x,Jj−1). Thus, Equ. (6) is reasonable.

Then, with Bayes rule, Equ. (6) has the following equivalence:

p(Jj |x,Jj−1) = p(Jj |Jj−1) ⇔ p(x|Jj ,Jj−1) = p(x|Jj−1) (7)

Hence, according to Equ. (4) and Equ. (7), the probability that a token category x is sampled in the
previous iteration and subsequently accepted can be computed as:

p(r is true, x|Jj ,Jj−1) = p(x|Jj ,Jj−1) · p(r is true|x,Jj ,Jj−1)

= p(x|Jj−1) ·min{1, p(x|Jj)
p(x|Jj−1)

}

= min{p(x|Jj), p(x|Jj−1)}

(8)
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Steps:  8193 → 3581 (𝟐. 𝟑 × Faster)Steps: 8193 → 3515 (𝟐. 𝟑 × Faster) Steps:  8193 → 3472 (𝟐. 𝟒 × Faster)

Figure 10: The images generated by Emu3 (BAAI, 2024) with our acceleration method.

With Equ. (8), we can calculate the probability of rejection with the law of total probability on the
token categories:

p(r is false|Jj ,Jj−1) = 1− p(r is true|Jj ,Jj−1)

= 1−
∑
x′

p(r is true, x′|Jj ,Jj−1)

=
∑
x′

p(x′|Jj)−min{p(x′|Jj), p(x′|Jj−1)}

=
∑
x′

max{0, p(x′|Jj)− p(x′|Jj−1)}.

(9)

Then, with Equ. (5) and Equ. (9), we get the following equation:

p(x|r is false,Jj ,Jj−1) · p(r is false|Jj ,Jj−1)

=
max{0, p(x|Jj)− p(x|Jj−1)}∑
x′ max{0, p(x′|Jj)− p(x′|Jj−1)}

·
∑
x′

max{0, p(x′|Jj)− p(x′|Jj−1)}

= max{0, p(x|Jj)− p(x|Jj−1)}.

(10)

Since

∀a ∈ R, b ∈ R, a = min{a, b}+max{0, a− b}, (11)

we can decompose p(x|Jj) as follows:

p(x|Jj) = min{p(x|Jj), p(x|Jj−1)}+max{0, p(x|Jj)− p(x|Jj−1)}. (12)

With Equ. (8), Equ. (10) and Equ. (12), we can compute:

p(x|Jj) = min{p(x|Jj), p(x|Jj−1)}+max{0, p(x|Jj)− p(x|Jj−1)}
= p(x|Jj−1) · p(r is true|x,Jj ,Jj−1)

+ p(r is false|Jj ,Jj−1) · p(x|r is false,Jj ,Jj−1).

(13)

According to Equ. (13), the conditional distribution p(x|Jj) can exactly represent (a) obtaining the
token sampled in the previous iteration and then accepting it according to an acceptance probability;
(b) rejecting the sampled token and resampling a new token according to a calibrated probability. In
conclusion, the token sampled in each speculative Jacobi iteration satisfies pθ(x|x(j)

1:i−1).

B MORE QUALITATIVE RESULTS

In Fig. 11, we showcase more generated images with Lumina-mGPT accelerated by our method.
These results illustrate that our method functions well on the image contents including humans,
animals, and landscapes. Recently, a new powerful auto-regressive model, Emu3 (BAAI, 2024), has
been released. We also explore our method on Emu3 for text-to-image generation, and we find it
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Figure 11: The images generated by Lumina-mGPT (Liu et al., 2024b) with our acceleration method.

still leads to great step compression, shown in Fig. 10. We leave the quantitative results of Emu3 for
future work.

We have included additional qualitative results for Lumina-mGPT and Anole in the supplementary
material of the revised paper, specifically in Fig. 15 and Fig. 16, and we report both the steps
and latency. According to the reported latency and step compression in these figures, our SJD
outperforms other decoding methods while maintaining visual quality. Furthermore, spatial token
initialization can further enhance the acceleration of our SJD. Additionally, we observe that Anole
exhibits significantly higher image diversity compared to Lumina-mGPT. Despite the fixed random
seed, it remains challenging for Anole to generate similar images due to the differences among the
decoding methods.

C INFERENCE LATENCY

100.70

47.36

156.76

76.53

0.00

50.00

100.00

150.00

Baseline Ours

La
te

nc
y 

(s
)

768

1024

Figure 12: The latency of Lumina-mGPT
on generating 768× 768 and 1024× 1024
images without or with our method.

In addition to reporting the step compression ratio, we
also report the practical latency of SJD on servers. We
set the batch size as 1 for testing, and report the latency
of the accelerated Lumina-mGPT 7B excluding the pre-
and post-processing operations. For 768× 768 image
generation (the number of generated tokens is at least
2357), we perform the experiments on one RTX 4090
GPU. For 1024× 1024 image generation (the number
of generated tokens is at least 4165), we perform the
experiments on one A100 GPU. In these settings, the
latency of Lumina-mGPT with and without our method
is presented in Fig. 12. Our method significantly accel-
erates the auto-regressive image generation.
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Table 3: The evaluation of LlamaGen (Sun et al., 2024a) with or without our method on
MSCOCO2017 (Lin et al., 2014) and Parti-prompt (Yu et al., 2022).

Dataset Configuration Acceleration (↑) FID (↓) CLIP-Score (↑)Latency Step

COCO

LlamaGen-stage1 1.00× 1.00× 28.54 30.87
LlamaGen-stage1 + Ours 1.56× 1.63× 29.00 30.82
LlamaGen-stage2 1.00× 1.00× 56.21 28.26
LlamaGen-stage2 + Ours 1.54× 1.63× 57.02 28.33

Parti

LlamaGen-stage1 1.00× 1.00× - 30.22
LlamaGen-stage1 + Ours 1.57× 1.73× - 30.29
LlamaGen-stage2 1.00× 1.00× - 28.14
LlamaGen-stage2 + Ours 1.62× 1.69× - 28.16

D MORE QUANTITATIVE RESULTS

More Results. We further compare SJD to other decoding methods on Anole (Chern et al., 2024).
As shown in Tab. 4 and Tab. 5, consistent with the results on Lumina-mGPT, SJD with spatial token
initialization can create larger acceleration ratios than other decoding methods on Anole, and the
cost of visual quality is small. In addition to Anole (Chern et al., 2024) and Lumina-mGPT (Liu
et al., 2024b), we evaluate our method with the text-to-image LlamaGen (Sun et al., 2024a). This
model adopts a two-stage training strategy: (a) stage1: LlamaGen is first trained on a subset of
LAION-COCO (LAION, 2022) (50M 256× 256 images); (b) stage2: it is then fine-tuned on 10M
high aesthetic quality internal data with a resolution of 512× 512. In Tab. 3, we evaluate our method
with the two versions of LlamaGen. The results show that our method can still accelerate this model
without sacrificing the visual quality. However, in comparison to the experiments conducted on
Lumina-mGPT and Anole, the acceleration ratios on LlamaGen are lower. We hypothesize that
this discrepancy is attributed to the model size, as some existing works for multi-token prediction
demonstrate that the model size has a great influence on the effectiveness of acceleration (Gloeckle
et al., 2024). We leave this investigation to future work.

More results about visual quality. We take the CLIP-Score and the human preference
score (HPSv2) (Wu et al., 2023) as the metrics for evaluating the visual quality for our ablation studies
(the step compression ratios are reported in Sec. 5.4). We present the results in Tab. 7, Tab. 8, Tab. 9,
and Tab. 10. From Tab. 7, given any K values in the top-K sampling strategies, we can observe that
the human preferences are also not much different among the original auto-regressive decoding, the
original Jacobi decoding, and our SJD.

Perplexity. We also compare the perplexities between SJD and other decoding methods on Lumina-
mGPT, as detailed in Tab. 6. Since the perplexities are influenced by the sampling strategies (Hu
et al., 2023), we report the perplexities under various K values. Given an identical K value, the
perplexities between our method and other decoding methods are close. Furthermore, we note that
K = 2000 results in a perplexity higher than that of large language models (Gu & Dao, 2023; Yang
et al., 2024b) on language processing tasks. Despite this high value, the text-to-image auto-regressive
model can still generate high-quality images. This indicates that image generation can tolerate a wide
range of image tokens.

Statistics of model outputs. We compute the statistics of the logarithm of the token probability
for both auto-regressive decoding and our method. The average and standard deviation of all image
tokens are presented in Tab. 11. The results demonstrate that the image tokens accepted by our method
exhibit similar statistics to those accepted by the original auto-regressive decoding. Consequently,
our method generally does not mistakenly accept tokens with lower probabilities.

E VISUALIZATION OF ACCELERATION IN 2D SPACE

We visualize the impact of multi-token prediction in a 2D space. As illustrated in Fig. 13, the
color of each long strip area represents the length of accepted tokens from that area, with darker
colors indicating longer sequences of accepted tokens, i.e., higher acceleration. We observe that
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Figure 13: The visualization of the accelerated tokens on 2D space.

high acceleration tends to occur in the background, particularly on the left and right sides of images.
Additionally, while some high acceleration is observed on foreground objects, it is relatively sparse
in 2D space.

F ANALYSIS ON THE EFFECTIVENESS OF OUR METHOD

This section analyzes the acceleration mechanism of our speculative Jacobi decoding in image
generation. We empirically find that this acceleration stems from the resampling of unaccepted tokens.
Specifically, some tokens are continuously resampled (i.e., their positions within the entire sequence
are reused for multiple forward passes) according to Equ. (3) over iterations until they are accepted.
For clarity and simplicity, we refer to this process of a token being continuously resampled by Equ. (3)
(except the possible rejection resampling) as refinement, following the terminology in fixed-point
iteration (Bai et al., 2019; 2022; Wang et al., 2023). Consequently, Equ. (3) is the main operation of
every refinement step. In the following paragraphs, we explore the influences of this refinement.

The acceleration originates from the refinement of unaccepted tokens. In our verification
phase, there are three treatments for the tokens: acceptance, rejection, and refinement, corresponding
to Equ. (1), Equ. (2), and Equ. (3), respectively. We empirically find that only the first two treatments
are insufficient to support acceleration. We conduct the following experiment to demonstrate that our
method makes it hard to achieve acceleration without refinement: when we deactivate the refinement
(i.e., using the newly initialized tokens to replace the unaccepted tokens as the draft tokens in the
next iterations), we observe that the model requires over two thousand forward passes to generate
images rather than one thousand forward passes. Although our token initializations with spatial
prior (e.g., horizontal repeat) are slightly better than the random token initialization in replacing the
unaccepted tokens, its performance is still much worse than directly refining the unaccepted tokens.
The examples of the generated images under such setting are shown in Fig. 14. This phenomenon
illustrates that the acceleration of our method originates from refining unaccepted tokens.

G QUALITATIVE ANALYSIS OF IMAGE RANDOMNESS ON OUR METHOD

Like Fig. 2, we also examine the image randomness with both the auto-regressive decoding and
our speculative Jacobi decoding. As shown in Fig. 17, first, we find that SJD does introduce some
randomness into image generation (the random variable r in Equ. (1)), so the images generated with
auto-regressive decoding cannot exactly align those generated with SJD, even when the random seed
is fixed. Therefore, in Fig. 17, given a column, two images with the same K value cannot be exactly
identical. However, in general, the diversity of the set of images is not influenced much. In Fig. 17,
we present the images generated based on three textual prompts. Given the same prompt and K
value from top-K sampling, the model with different decoding methods generates images with many
similarities. For example, when K = 2000, for the first prompt “an apple of a strange color”, the
images in the identical columns show the apples with similar color patterns and styles. Also, for the
third prompt “pumpkin on the table”, the frequency of faces carved on the pumpkins is similar for
these two decoding methods.

Moreover, the K value in top-K sampling still dominates the image randomness in terms of texture,
color, and local structure details. With larger K, the image details about textures, colors, and local
structures increase. Such image randomness still largely comes from the random token sampling.
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Latency: 107.35s 
Steps: 2356

Latency: 107.49s 
Steps: 2356

Latency: 107.96s 
Steps: 2357

Latency: 107.64s 
Steps: 2355

Latency: 107.80s 
Steps: 2357

Examples of Images Generated (Without Refinement; With random initialization)

Latency: 99.25s 
Steps: 2273

Latency: 93.88s 
Steps: 2254

Latency: 95.08s 
Steps: 2285

Latency: 95.60s 
Steps: 2300

Latency: 95.42s 
Steps: 2291

Examples of Images Generated (Without Refinement; With horizontal repeat initialization)

Latency: 42.49s 
Steps: 1032

Latency: 42.52s 
Steps: 1049

Latency: 41.95s 
Steps: 969

Latency: 41.23s 
Steps: 947

Latency: 42.44s 
Steps: 1029

Examples of Images Generated (With Refinement; With horizontal repeat initialization only for New Tokens)

Figure 14: Ablation studies on acceleration mechanism: examples of images generated by our SJD
without or with refining unaccepted tokens. When the refinement defined by Equ. (3) is NOT applied
(i.e., using the newly initialized tokens to replace the unaccepted tokens as the draft tokens in the
next iterations), there is almost no acceleration (though one of our token initializations with spatial
prior, horizontal repeat, can slightly reduce the steps in these images). This illustrates that refining
unaccepted tokens are essential to the acceleration mechanism in SJD.

H ANALYSIS ON FAILURE CASES

As shown in Fig. 18, when generating the images with exquisite details, although auto-regressive
decoding can produce artifacts, SJD seems to generate continuous tokens that cause the artifacts, as
highlighted by the red boxes in this figure. The pre-trained auto-regressive model is not sufficiently
robust to handle such complex images. Consequently, it may mistakenly accept a sequence of draft
tokens that contain artifacts.

I LIMITATION AND FUTURE WORK

Since our speculative Jacobi decoding is training-free, the accelerated model itself is still not spe-
cialized for multi-token prediction. Therefore, the acceleration ratio has the potential to be further
improved. In the future, we believe that fine-tuning the auto-regressive models for fast image genera-
tion is a promising direction. Also, acceleration is important for long-sequence generation, like video
generation. Since videos contain more redundancy than images, the initialization of candidate tokens
should be carefully designed if applying our speculative Jacobi decoding to video generation.
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Table 4: The evaluation of Anole on the validation set of MSCOCO2017. JD: Jacobi decoding. ISP:
initialization with spatial prior. SJD: Speculative Jacobi decoding.

Configuration Average Acceleration (↑) FID (↓) CLIP-Score (↑)Latency (↓) Latency Step

A Anole (Chern et al., 2024) 48.96s 1.00× 1.00× 28.87 30.59
B w. JD (Song et al., 2021) 47.60s 1.03× 1.06× 29.34 30.64
C w. SJD 27.08s 1.81× 1.94× 29.04 30.54
D w. SJD (ISP) 26.18s 1.87× 1.97× 29.14 30.61

Table 5: The evaluation of Anole on the validation set of Parti-prompt. JD: Jacobi decoding. ISP:
initialization with spatial prior. SJD: Speculative Jacobi decoding.

Configuration Average Acceleration (↑) CLIP-Score (↑)Latency (↓) Latency Step

A Anole (Chern et al., 2024) 48.24s 1.00× 1.00× 30.46
B w. JD (Song et al., 2021) 44.65s 1.08× 1.14× 30.57
C w. SJD 26.77s 1.80× 2.00× 30.55
D w. SJD (ISP) 25.12s 1.92× 2.11× 30.48

J BROADER IMPACTS

Image generation offers extensive utility in helping users, designers, and artists produce fantastic
content. Nonetheless, these models could be exploited to create deceptive content. Thus, it is crucial
for the users including researchers and developers to acknowledge the potential negative social impact
of image generation models.
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Table 6: The comparison of perplexity on Lumina-mGPT.

Configuration Perplexity with Top-K sampling
K = 10 K = 100 K = 2000

A Lumina-mGPT (Liu et al., 2024b) 7.31 43.37 204.06
B w. JD (Song et al., 2021) 7.20 43.85 197.64
C w. SJD 7.34 43.87 217.96
D w. SJD (ISP) 7.26 44.03 199.70

Table 7: CLIP-Score of various decoding methods on Lumina-mGPT with different top-K values.
The image qualities for Jacobi Decoding and our method correspond to Fig. 6. The image qualities
for Auto-regression are only for the comparison in this table. Note that the image quality score with
greedy sampling is extremely poor, as this setting leads to meaningless images for a lot of prompts
(analyzed in Fig. 2).

Decoding Methods Sampling CLIP-Score HPSv2

Auto-regression Top-1 Sampling 26.40 0.1976
Auto-regression Top-10 Sampling 32.83 0.2950
Auto-regression Top-100 Sampling 32.41 0.3020
Auto-regression Top-2000 Sampling 32.00 0.2965

Jacobi Decoding Top-1 Sampling 26.34 0.1413
Jacobi Decoding Top-10 Sampling 32.75 0.2960
Jacobi Decoding Top-100 Sampling 32.46 0.3089
Jacobi Decoding Top-2000 Sampling 31.68 0.3103

Ours Top-1 Sampling 26.16 0.1695
Ours Top-10 Sampling 32.27 0.2942
Ours Top-100 Sampling 32.65 0.2977
Ours Top-2000 Sampling 31.83 0.3020

Table 8: CLIP-Scores on Lumina-mGPT with various resolutions. The image qualities of our method
under different settings correspond to Fig. 7. The image qualities for Auto-regression are only for the
comparison in this table.

Decoding Methods Resolutions CLIP-Score HPSv2

Auto-regression 512 29.49 0.2503
Auto-regression 768 32.00 0.2965
Auto-regression 1024 31.41 0.2961

Ours 512 29.69 0.2558
Ours 768 31.83 0.3020
Ours 1024 31.11 0.2935

Table 9: CLIP-Score of our method on
Lumina-mGPT with various Jacobi win-
dow sizes. The image qualities correspond
to Fig. 8.

Window Size CLIP-Score HPSv2

1 32.00 0.2965
4 31.91 0.3046

16 31.83 0.3020
32 31.55 0.3045

Table 10: CLIP-Score of our method on Lumina-
mGPT with various token initialization when gen-
erating images with simple patterns. The image
qualities correspond to Fig. 9.

Token Initialization CLIP-Score HPSv2

Horizontal Sample 31.52 0.2567
Vertical Sample 30.91 0.2622
Horizontal Repeat 31.17 0.2616
Vertical Repeat 31.15 0.2651
Random 31.37 0.2681
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Original Jacobi 
Decoding

Speculative Jacobi 
Decoding

Speculative Jacobi 
Decoding + Spatial Init

Latency: 91.58s
Steps: 2357

Latency: 91.15s (1.0 × Faster)
Steps: 2293 (1.0 × Fewer)

Latency: 47.13s (1.9 × Faster)
Steps: 1115 (2.1 × Fewer)

Latency: 45.97s ( 𝟐. 𝟎 ×  Faster)
Steps: 1094 (𝟐. 𝟐 × Fewer)

Prompt: A giant golden-haired lion with an indigo face roars at the gate of heaven

Latency: 90.05s
Steps: 2357

Latency: 88.31s (1.0 × Faster)
Steps: 2240 (1.1 × Fewer)

Latency: 43.09s (2.1 × Faster)
Steps: 1031 (2.3 × Fewer)

Latency: 41.75s ( 𝟐. 𝟐 ×  Faster)
Steps: 996 (𝟐. 𝟒 × Fewer)

Prompt: Portrait of the most beautiful Asian woman, Wearing a dress and headdress decorated with peacock feathers

Latency: 90.60s
Steps: 2357

Latency: 89.74s (1.0 × Faster)
Steps: 2270 (1.0 × Fewer)

Latency: 43.26s (2.1 × Faster)
Steps: 1009 (2.3 × Fewer)

Latency: 40.39s ( 𝟐. 𝟐 × Faster)
Steps: 962 (𝟐. 𝟓 × Fewer)

Prompt: An oil painting of a lady

Latency: 92.47s
Steps: 2357

Latency:  89.84s (1.0 × Faster)
Steps: 2293 (1.0 × Fewer)

Latency: 42.31s (2.3 × Faster)
Steps: 1003 (2.3 × Fewer)

Latency: 41.95s ( 𝟐. 𝟑 × Faster)
Steps: 969 (𝟐. 𝟒 × Fewer)

Prompt: One lynx in the forest is illuminated by a gloomy strong light, the most Professional high-quality 8K photograph

Latency: 93.63s
Steps: 2357

Latency: 92.00s (1.0 × Faster)
Steps: 2304 (1.0 × Fewer)

Latency: 42.14s (2.3 × Faster)
Steps: 1015 (2.3 × Fewer)

Latency: 41.23s ( 𝟐. 𝟑 × Faster)
Steps: 947 (𝟐. 𝟓 × Fewer)

Prompt: Atlantis, the most Fantasy high-quality photos

Figure 15: The qualitative comparison of different decoding methods on Lumina-mGPT (Liu et al.,
2024b).
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Original Jacobi 
Decoding

Speculative Jacobi 
Decoding

Speculative Jacobi 
Decoding + Spatial Init

Latency: 47.90s
Steps: 1026

Latency: 46.36s (1.0 × Faster)
Steps: 955 (1.1 × Fewer)

Latency: 24.14s (2.0 × Faster)
Steps: 483 (2.1 × Fewer)

Latency: 23.55s ( 𝟐. 𝟎 ×  Faster)
Steps: 463 (𝟐. 𝟐 × Fewer)

Prompt: Generate an image of a cute Beagle dog.

Latency: 47.54s
Steps: 1026

Latency: 46.63s (1.0 × Faster)
Steps: 969 (1.1 × Fewer)

Latency: 26.71s (1.8 × Faster)
Steps: 548 (1.9 × Fewer)

Latency: 21.38s ( 𝟐. 𝟐 × Faster)
Steps: 428 (𝟐. 𝟒 × Fewer)

Prompt: Generate an image of a square box of cookies.

Latency: 47.40s
Steps: 1026

Latency:  46.21s (1.0 × Faster)
Steps: 966 (1.1 × Fewer)

Latency: 25.91s (1.8 × Faster)
Steps: 526 (2.0 × Fewer)

Latency: 25.05s ( 𝟏. 𝟗 × Faster)
Steps: 505 (𝟐. 𝟎 × Fewer)

Prompt: Generate an image of a blue Porsche 356 parked in front of a yellow brick wall.

Figure 16: The qualitative comparison of different decoding methods on Anole (Chern et al., 2024).
Considering the high image diversity of Anole, although the random seed is fixed, it is still hard for
Anole to generate similar images with different decoding methods.

Table 11: The comparison of token statistics on Lumina-mGPT.

Decoding Methods Logarithm of Token Probability
Average Standard Deviation

Auto-regression -4.8950 2.3457
Ours -4.9007 2.3275
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K=2000

K=100

K=10

Speculative Jacobi Decoding with Top-K sampling

Auto-regressive Decoding with Top-K sampling

"There is an apple of a strange color on the table" “A beautiful cat on the pillow" “Pumpkin on the table, Halloween"

K=2000

K=100

K=10

Figure 17: Comparing our method to the original auto-regressive decoding on the image randomness.
First, considering the random variable in SJD, given a column, two images with the same K value
cannot be exactly identical. Second, changing the decoding method from auto-regression to SJD
has little influence on the image diversity for each prompt (e.g., given K = 2000 for each decoding
method, the color patterns and styles of the generated apples are similar, and the frequency of the
carved faces on pumpkins is also similar). Third, the top-K sampling still dominates the image
randomness about texture, color, and local structure details. The images in each column share a single
random seed.

Speculative Jacobi Decoding

Prompt:        Image of a bustling downtown street in Tokyo at night, with neon signs, crowded 
sidewalks, and tall skyscrapers.

Figure 18: Failure Cases. In complex image scenarios, our method generates some continuous
tokens that result in artifacts, as highlighted by the red boxes. The pre-trained model inaccurately
accepts a large sequence of the tokens that cause the artifacts.
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