
A Full Environment and Evaluation Protocol Details584

In this section, we provide detailed descriptions of our SIMPLER environments along with our585

simulation and real-world evaluation protocols.586

For the RT-1 Robot, we adopt the following language-conditioned tasks:587

• “pick coke can”. The robot is instructed to grasp the empty coke can on the table and lift588

it up. In the default setting, no distractors are added to the scene. We place the coke can589

in 3 different orientations: horizontally laying, vertically laying, and standing. For each590

orientation, we place the coke can at 25 grid positions within a rectangle on the tabletop,591

yielding 25 trials per orientation and 75 trials in total.592

• “move {obj1} near {obj2}”. We place a triplet of objects on the tabletop in a triangle593

pattern. In each trial, one object serves as the source object, one serves as the target, and the594

other serves as the distractor (this creates 6 trials for each triplet and each triangle pattern).595

We randomly choose 5 triplets of objects among a total of 8 objects (blue plastic bottle,596

pepsi can, orange, 7up can, apple, sponge, coke can, redbull can), and adopt 2 triangle597

patterns (upright and inverted). This creates a total of 5× 2× 6 = 60 trials. The 5 triplets598

chosen are:599

– blue plastic bottle, pepsi can, orange600

– 7up can, apple, sponge601

– coke can, redbull can, apple602

– sponge, blue plastic bottle, 7up can603

– orange, pepsi can, redbull can604

• “(open / close) (top / middle / bottom) drawer”. The robot is positioned in front of a605

cabinet that contains 3 drawers and instructed to open / close a specific drawer, testing its606

ability to manipulate articulated objects. We place the robot at 9 grid positions within a607

rectangle on the floor, yielding a total of 9× 3× 2 = 54 trials.608

• “open top drawer; place apple into top drawer”. The robot opens the top drawer and609

places the apple from the cabinet top into the top drawer, testing its ability to perform610

longer-horizon tasks. We place the robot at 3 different positions on the floor and the apple611

at 9 different positions within a grid on the cabinet top, yielding a total of 3×9 = 27 trials.612

Initially, the policies receive the “open top drawer” instruction. We switch to the “place613

apple into top drawer” instruction once the robot outputs the “terminate” token or after half614

of the time limit has elapsed.615

For the WidowX + Bridge (with WidowX-250 6DOF robot), we adopt the following tasks:616

• “put the spoon on the towel”. We place the spoon on a vertex of a square (with edge617

length 15cm) on the tabletop, and we place the towel on another vertex. The spoon’s initial618

orientation switches between horizontal and vertical, requiring the robot to perform gripper619

reorientation. This creates a total of 2× 12 = 24 trials.620

• “put carrot on plate”. We adopt a similar setup as “put the spoon on the towel”, replacing621

the spoon with carrot and the towel with plate.622

• “stack the green block on the yellow block”. We place a green block on a vertex of623

a square on the tabletop, and we position a yellow block on another vertex. The block624

dimensions are 3cm. We also adopt two differently-sized squares (edge length 10cm and625

20cm). This creates a total of 2× 12 = 24 trials.626

• “put eggplant into yellow basket”. We place an eggplant on the right basin of a sink,627

and we place a yellow basket on the left basin. The eggplant is dropped into the sink at a628

random position and orientation, and we ensure that the eggplant is directly graspable (i.e.,629

not too close to the edges of the sink basin). We perform a total of 24 trials.630
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Algorithm 1 RT-1 Robot Controller in Simulation
Require: (1) Current end-effector action (xa, Ra), along with sensed arm joint positions and velocities

qarm, varm; (2) Current gripper action ga, along with sensed gripper joint position and velocity qgrip, vgrip;
(3) Simulation frequency Hsim (501 in our implementation), action output frequency (control frequency)
Hctrl (3 in our implementation following [1]); (4) Arm velocity, acceleration, and jerk limits Larm (equal to
1.5, 2.0, 50.0 respectively); (5) Gripper velocity, acceleration, and jerk limits Lgrip (equal to 1.0, 7.0, 50.0
respectively); (6) Current action timestep T within an episode; (7) A planner that takes goal and initial
joint positions and velocities as input (along with velocity, acceleration, and jerk constraints), and outputs
a time-parametrized trajectory.

1: # Arm motion planning
2: (x, R) = ForwardKinematics(qarm)
3: (xgoal, Rgoal) = (xa + x, Ra ·Rarm)
4: (qgoal, vgoal) = (InverseKinematics(xgoal, Rgoal, qarm), 0.0)
5: ArmPlan = Planner(qgoal, vgoal, qarm, varm, Larm)
6: # Gripper motion planning
7: if T = 0 then ▷ At the beginning of episode
8: qlastplan,grip, vlastplan,grip = qgrip, 0.0
9: qlastgoal,grip = qgrip

10: end if
11: if |ga| < 0.01 then ▷ Small action filtering
12: qgoal,grip = qlastgoal,grip
13: else
14: qgoal,grip = qlastplan,grip + ga
15: end if
16: vgoal,grip = 0.0
17: GripPlan = Planner(qgoal,grip, vgoal,grip,

qlastplan,grip, vlastplan,grip, Lgrip)
18: # Execute arm and gripper plans at each simulation step
19: for each i = 1 · · · Hsim

Hctrl
do

20: t = i
Hsim

21: qlastplan, = ArmPlan(t)
22: SetArmJointPosTarget(qlastplan)
23: qlastplan,grip, vlastplan,grip = GripPlan(t)
24: SetGripperJointPosTarget(qlastplan,grip)
25: SetGripperJointVelTarget(vlastplan,grip)
26: end for each
27: qlastgoal,grip = qgoal,grip
28: T = T + 1

For Octo simulated evaluations, since the model involves a non-deterministic diffusion head, we631

average its success rates across three different random seeds to produce a lower-variance estimate of632

the policy’s simulation performance. Additionally, for RT-1 Robot simulated evaluations, we aver-633

age results over four versions of robot arm and gripper colors to account for changes in arm texture634

during real robot rollouts (see Section 4.2). For the WidowX environments, given the consistent635

black color of the arm and gripper across videos, we skip this step.636

The number of evaluation trials we present above pertain to the real-world evaluation setup. For637

our “Variant Aggregation” simulation evaluation setup, the number of trials is multiplied by the638

number of simulation environment variants. For our “Visual Matching” simulation evaluation setup,639

the number of trials is multiplied by the number of tuned robot arm colors for the RT-1 Robot640

evaluation setup, along with the number of seeds for the Octo policies.641

B More Implementation Details of Our Real-to-Sim Evaluation System642

B.1 Robot Controllers643

RT-1 Robot Given translation, rotation, and gripper action output from a model, we adopt Algo-644

rithm 1 in simulator to execute the action commands. The simulation frequency in the algorithm645

refers to the number of simulation steps per second, while the control frequency refers to the num-646
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Algorithm 2 WidowX Controller in Simulation
Require: (1) Current end-effector action (xa, Ra), along with sensed arm joint positions qarm; (2) Current

gripper action ga, along with sensed gripper joint position qgrip; (3) Simulation frequency Hsim (500 in our
implementation), action output frequency (control frequency) Hctrl (5 in our implementation following);
(4) Current action timestep T within an episode; (5) A function S that maps a R3 position vector and a 3x3
SO(3) rotation matrix to a 4x4 SE(3) matrix.

1: if T = 0 then ▷ At the beginning of episode
2: qlastgoal = qarm
3: end if
4: (x, R) = ForwardKinematics(qlastgoal)
5: (xgoal, Rgoal) = S−1(S(x, I) · S(xa, Ra)·

S(−x, I) · S(x, Rarm))
6: qgoal = InverseKinematics(xgoal, Rgoal, qarm)
7: qgoal,grip = ga
8: SetArmJointPosTarget(qgoal)
9: SetGripperJointPosTarget(qgoal, grip)

10: qlastgoal = qgoal
11: T = T + 1

ber of control commands (policy action outputs) per second. We use the open-source library Ruckig1647

for time-optimal joint motion planning with velocity, acceleration, and jerk constraints. Note that648

the duration of planned trajectories may exceed the interval between two control commands.649

WidowX We present our WidowX controller implementation in Algorithm 2.650

B.2 Robot and Object Assets651

Robots For RT-1 Robot, we convert the publically-released MuJoCo .mjcf robot description to652

URDF robot description. We also refine the collision mesh of the robot base link from the original653

assets to prevent erroneous mesh penetrations. For WidowX, we directly export the URDF robot654

descriptions from the official Interbotix repository using ROS. To simulate the RT-1 Robot, we655

find that the Projected Gauss-Seidel solver in PhysX causes mesh penetration behaviors during the656

process of object grasping. Thus, we enable the Temporal Gauss-Seidel solver in both SAPIEN and657

Isaac Sim’s simulation backends to produce correct grasping behaviors.658

The RT-1 Robot uses a customized egocentric camera mounted on the robot head, while the WidowX659

+ Bridge V2 setup uses a Logitech C920 third-view camera. We use known robot camera intrinsics660

if possible, and when they are unknown, we obtain them from real evaluation video frames using661

efficient interactive GUI tools such as fSpy.662

Objects We adopt the following procedure to obtain object assets. Except creating precise models663

for articulated objects like cabinets, the process does not involve heavy manual effort.664

• Obtain raw 3D object models from public repositories (e.g., Objaverse [60]), from 3D665

scanning of objects purchased from Amazon, from single-view 3D generation (e.g., One-666

2-3-45++ [61]), or from manual modeling based on precise measurements of real-world667

counterparts (we only used the last technique for articulated objects like cabinets since this668

requires the most human effort; we highlight the acceleration of articulated asset curation669

process through approaches like multi-view [62] or interactive [63] articulated object gen-670

eration as an avenue for future work).671

• Process 3D object models in Blender such that the dimensions of objects are similar to672

those used in the real world, and that the object meshes do not contain too many vertices673

(to limit the sizes of object meshes).674

• Optionally, use our Visual Matching approach (see below) to improve the texture of 3D675

object models.676

1https://github.com/pantor/ruckig
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Figure 5: Subset of environment variations under our “Variant Aggregation” evaluation setup, visualized in
SAPIEN from RT-1 Robot’s egocentric view. The variations cover different lightings, backgrounds and table
textures and are modified from ReplicaCAD [17] scenes.

• Export visual mesh and collision mesh of objects. For collision mesh, further perform677

CoACD [64] to obtain watertight and locally convex collision meshes. Optionally, simplify678

the resulting collision mesh and perform minor modifications using Blender (e.g., make the679

bottom of cans or bottles flat).680

• Set the object to have a simple uniform density by querying their common material density681

in GPT-4 or google search, or (for objects with non-uniform densities like empty coke can),682

querying their mass and dividing by their visual mesh volume.683

To perform visual matching of object textures, we adopt the following steps: (1) Crop the target684

object in a real image using SAM [56]; (2) Perform a coarse estimation of object pose by importing685

it into the simulation and adjusting its position such that its simulation segment mask overlaps with686

the real one; (3) Employ differential rendering (using Nvdiffrast) to optimize the simulation asset’s687

pose such that it precisely aligns with the real object’s segmentation mask; (4) “Unproject” the real688

object’s RGB texture values onto the simulation object mesh; (5) Optionally, generate the remaining689

views of the object through a diffusion model (Zero123++ [65]), and refine the poses of novel views690

using a rendering loss with the existing object view. Finally, unproject the novel view textures691

onto the simulation object mesh. This whole process is semi-automatic, and can thus be completed692

efficiently. We commit to release a convenient command-line python script for this process.693

B.3 SIMPLER-Variant Aggregation694

A common approach for addressing visual gaps in sim-to-real policy training is domain random-695

ization. By performing training across a range of randomized parameters, such as textures and696

lighting, prior works aim to obtain policies that are robust to visual distribution shifts in the real-697

world [40, 41]. Similarly, in real-to-sim evaluation, we can aggregate evaluation results across a698

range of visual simulator characteristics to obtain a more faithful signal for the policy’s perfor-699

mance. In practice, we implement this SIMPLER-“Variant Aggregation” approach as an alternative700

to SIMPLER-Visual Matching, described in Section 4.2. Concretely, we create a “base” version701

of our simulation environment and then creating “variants” of this environment along four axes of702

visual variation: background, lighting, distractors, and table texture. For each axis, we construct 2703

variations of the base setup similar to [59], covering backgrounds from different rooms, lighter and704

darker lighting, fewer and more distractors, and solid color and complex table textures. We visual-705

ize an example of such simulator variations for various table-top tasks in Fig. 5. We average policy706

performance in simulation across all variants of an environment to obtain our final performance707

estimate.708
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RT-1 Robot
Evaluation Setup Policy

Pick Coke Can Move Near Open / Close Drawer Open Top Drawer
and Place Apple

Horizontal
Laying

Vertical
Laying Standing Average Average Open Close Average Average

Real Eval

RT-1 (Converged) 0.960 0.880 0.720 0.853 0.633 0.815 0.926 0.870 0.185
RT-1 (15%) 1.000 0.960 0.800 0.920 0.583 0.704 0.889 0.796 0.185
RT-1-X 0.880 0.560 0.840 0.760 0.450 0.519 0.741 0.630 0.407
RT-2-X 0.920 0.800 1.000 0.907 0.733 0.333 0.630 0.481 0.074
Octo-Base 0.440 0.200 0.240 0.293 0.350 0.148 0.519 0.333 0.000
RT-1 (Begin) 0.200 0.000 0.200 0.133 0.017 0.000 0.000 0.0002 0.000

SIMPLER Eval
(Variant Aggregation)

RT-1 (Converged) 0.969 0.760 0.964 0.898 0.500 0.270 0.376 0.323 0.026
RT-1 (15%) 0.920 0.704 0.813 0.813 0.446 0.212 0.323 0.267 0.021
RT-1-X 0.569 0.204 0.698 0.490 0.323 0.069 0.519 0.294 0.101
RT-2-X 0.822 0.754 0.893 0.823 0.792 0.333 0.372 0.353 0.206
Octo-Base 0.005 0.000 0.013 0.006 0.031 0.000 0.021 0.011 0.000
RT-1 (Begin) 0.022 0.013 0.031 0.022 0.040 0.005 0.132 0.069 0.000

MMRV↓ 0.093 0.133 0.140 0.084 0.111 0.303 0.3213 0.321 0.148
Pearson r↑ 0.947 0.937 0.933 0.960 0.887 0.629 0.613 0.737 0.235

SIMPLER Eval
(Visual Matching)

RT-1 (Converged) 0.960 0.900 0.710 0.857 0.442 0.601 0.861 0.730 0.065
RT-1 (15%) 0.860 0.790 0.480 0.710 0.354 0.463 0.667 0.565 0.130
RT-1-X 0.820 0.330 0.550 0.567 0.317 0.296 0.891 0.597 0.213
RT-2-X 0.740 0.740 0.880 0.787 0.779 0.157 0.343 0.250 0.037
Octo-Base 0.210 0.210 0.090 0.170 0.042 0.009 0.444 0.227 0.000
RT-1 (Begin) 0.050 0.000 0.030 0.027 0.050 0.000 0.278 0.139 0.000

MMRV↓ 0.027 0.027 0.053 0.031 0.111 0.000 0.123 0.055 0.000
Pearson r↑ 0.981 0.964 0.942 0.976 0.855 0.983 0.768 0.915 0.969

Table 2: Real-world and SAPIEN evaluation results across different policies on RT-1 Robot tasks. We present
success rates for the “Variant Aggregation” and “Visual Matching” approaches in Sec. 4.2. We calculate the
Mean Maximum Rank Violation (“MMRV”, lower is better) and the Pearson correlation coefficient (“Pearson
r”, higher is better) to assess the alignment between simulation and real-world relative performances across
different policies.

WidowX+Bridge
Evaluation Setup Policy

Put Spoon on Towel Put Carrot on Plate Stack Green Block on Yellow Block Put Eggplant in Yellow Basket

Grasp Spoon Success Grasp Carrot Success Grasp Green Block Success Grasp Eggplant Success

Real Eval
RT-1-X 0.042 0.000 0.167 0.000 0.000 0.000 0.033 0.000
Octo-Base 0.500 0.333 0.500 0.250 0.292 0.000 0.400 0.233
Octo-Small 0.542 0.417 0.208 0.083 0.583 0.125 0.700 0.433

SIMPLER Eval
(Visual Matching)

RT-1-X 0.167 0.000 0.208 0.042 0.083 0.000 0.000 0.000
Octo-Base 0.347 0.125 0.528 0.083 0.319 0.000 0.667 0.431
Octo-Small 0.778 0.472 0.278 0.097 0.403 0.042 0.875 0.569

MMRV↓ 0.000 0.000 0.000 0.111 0.000 0.000 0.000 0.000
Pearson r↑ 0.778 0.827 0.995 0.575 0.964 1.000 0.995 0.990

Table 3: Real-world and SAPIEN simulation evaluation results for the WidowX + Bridge setup. We report both
the final success rate (“Success”) along with partial success (e.g., “Grasp Spoon”).

C Full Results for Real-and-Sim Relative Policy Performance Correlation709

Experiments710

In Table 2 and Table 3, we present full evaluation results for our experiments in Sec. 5.2, which711

demonstrate that SIMPLER environments show strong performance relationship correlations with712

real-world evaluations.713

D Full Results for Real-and-Sim Policy Behavior Correlation Experiments714

under Environment Distribution Shifts715

In Table 4, Table 5, and Table 6, we present full evaluation results for our experiments in Sec. 5.3,716

which demonstrate that SIMPLER environments show strong policy behavior correlations with real-717

world evaluations under different environment distribution shifts.718

2After running 2 real evaluation trials, robot operators decided that since this policy would potentially
damage the robot on the Drawer tasks, the real evaluation was terminated.

3As real evaluation was terminated due to risk of damaging the robot, we expect the MMRV to be less than
this number if real evaluation were to continue.
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Policy Distribution Shift
Pick Coke Can Move Near Avg. Real TableTop [59]

|∆ Success| MMRV↓ r ↑ |∆ Success| MMRV↓ r ↑ |∆ Success| MMRV↓ r ↑ |∆ Success|

RT-1
w/o Aug

Background 0.013

0.000 0.779

0.083

0.055 0.939

0.048

0.000 0.831

0.028
Lighting 0.040 0.075 0.057 0.083
Distractors 0.027 0.133 0.080 0.111
Table Texture 0.113 0.175 0.144 0.389
Camera Pose 0.753 0.192 0.473 0.458

RT-1
+Aug

Background 0.153

0.041 0.984

0.092

0.125 0.721

0.123

0.041 0.970

0.167
Lighting 0.033 0.117 0.075 0.042
Distractors 0.033 0.084 0.059 0.083
Table Texture 0.220 0.159 0.189 0.167
Camera Pose 0.613 0.175 0.394 0.375

Table 4: Impact of various distribution shifts on the tabletop manipulation performance of RT-1 policies trained
with and without image augmentation. SIMPLER evaluations accurately track the policies’ robustness to dis-
tribution shifts, exhibiting low Mean Maximum Rank Violation (“MMRV”) and high Pearson correlation coef-
ficient (“r”) with the real world evaluations [59].

Policy Robustness Factor Pick Coke Can Move Near

RT-1
w/o Aug

Base Setup 0.920 0.467
Background 0.933/0.907 0.533/0.567
Lighting 0.960/0.960 0.483/0.600
Distractors 0.880/0.901 0.600a

Table Texture 0.867/0.747 0.550/0.200
Camera Pose 0.053/0.280 0.117/0.433

RT-1
+Aug

Base Setup 0.800 0.383
Background 0.747/0.547 0.483/0.467
Lighting 0.760/0.773 0.517/0.483
Distractors 0.813/0.747 0.467
Table Texture 0.667/0.493 0.450/0.133
Camera Pose 0.267/0.107 0.200/0.217

aThe base setup environment already contains dis-
tractors, so we construct environment variants without
distractors.

Table 5: Success rates of different out-of-distribution generalization factors on the tabletop manipulation per-
formance of RT-1 policies in the SAPIEN simulator. “a/b” denote results on different environment variants
(lighting: darker / brighter; table texture: solid color / contrastively patterned; camera pose: oriented lower /
higher).

E Full Results for Main Paper Ablation Experiments719

We present detailed results for our main paper’s ablations in Table 7, Table 8, and Table 9.720

Policy Sim Success Range Real Success
Orig Arm Texture OOD Arm Texture

RT-1-X [0.507, 0.653] 0.760 0.520
Octo-Base [0.000, 0.293] 0.293 0.000

Table 6: Impact of arm textures on the success rates of “Pick Coke Can” task in the SAPIEN simulator (Visual
Matching evaluation setup) and in the real-world. The ranges of simulation success rates across multiple (tuned
and untuned) robot arm colors can predict policy sensitivity to real-world OOD arm textures.
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Components Open Drawer Close Drawer

Background Drawer Robot RT-1 (Converged) RT-1 (15%) RT-1-X MMRV↓ RT-1 (Converged) RT-1 (15%) RT-1-X MMRV↓

Real Real Real 0.815 0.704 0.519 N/A 0.926 0.889 0.741 N/A
GreenScreen Curated Curated 0.703 0.556 0.333 0.000 0.889 0.667 0.851 0.099
GreenScreen Curated Original 0.444 0.444 0.259 0.111 0.741 0.630 0.926 0.173
GreenScreen Original Original 0.593 0.519 0.148 0.000 0.852 0.778 0.963 0.173
ReplicaCAD Curated Curated 0.407 0.259 0.111 0.000 0.667 0.481 0.778 0.173
ReplicaCAD Curated Original 0.630 0.407 0.074 0.000 0.630 0.593 0.667 0.173
ReplicaCAD Original Curated 0.556 0.296 0.074 0.000 0.667 0.704 0.815 0.173
ReplicaCAD Original Original 0.556 0.333 0.074 0.000 0.704 0.556 0.741 0.173

Table 7: Impact of real-to-sim visual gaps on real-and-sim performance correlations. We report the success
rates of 3 different policies on 2 tasks: Open Drawer and Close Drawer. The settings with the smallest MMRV
and the smallest absolute performance gap with the real performance are highlighted. Using a combination of
“green-screened” background and curated foreground object and robot assets provides the best correlation.

Gripper Friction Coefficient

Coke Can Mass 0.25 0.50 1.0 2.0

10 g 0.957 0.967 0.971 0.978
20 g 0.969 0.975 0.978 0.977
40 g 0.963 0.976 0.976 0.976
80 g 0.962 0.962 0.975 0.990

(a) Pearson r between real and SIMPLER evaluations on the Pick Coke Can task under different settings of can
mass and gripper friction coefficient. The MMRV is 0.031 in all cases. The use of empty coke cans follows the
setup from the RT-1 Robot demonstration dataset and the RT-1 paper [1].

Cabinet Joint Friction 0.0125 0.025 0.05 0.10 0.15 0.20

MMRV↓ 0.055 0.055 0.055 0.055 0.105 0.055
Pearson r↑ 0.930 0.941 0.915 0.923 0.903 0.928

(b) MMRV and Pearson r between real and SIMPLER evaluations on the Open/Close Drawer tasks under
different settings of cabinet joint friction.

Table 8: SIMPLER is robust to imprecisely estimated physical simulation parameters such as object mass and
friction coefficients, as indicated by the low MMRV and high Pearson r in both ablation studies. We use the 6
policies from our RT-1 Robot experiments in these ablations.

RT-1 Robot
Evaluation Setup Policy

Pick Coke Can Move Near

Horizontal
Laying

Vertical
Laying Standing Avg. Success Avg. Success

Real Eval

RT-1 (Converged) 0.960 0.880 0.720 0.853 0.633
RT-1 (15%) 1.000 0.960 0.800 0.920 0.583
RT-1-X 0.880 0.560 0.840 0.760 0.450
Octo-Base 0.440 0.200 0.240 0.293 0.350
RT-1 (Begin) 0.200 0.000 0.200 0.133 0.017

SIMPLER Eval
(Isaac, Variant Aggre.)

RT-1 (Converged) 0.418 0.377 0.436 0.410 0.150
RT-1 (15%) 0.428 0.306 0.590 0.441 0.100
RT-1-X 0.340 0.182 0.618 0.380 0.125
Octo-Base 0.015 0.020 0.010 0.015 0.020
RT-1 (Begin) 0.036 0.040 0.054 0.044 0.000

MMRV↓ 0.096 0.112 0.016 0.064 0.053
Pearson r↑ 0.961 0.949 0.989 0.973 0.865

Table 9: Real-world and Isaac Sim evaluation results for the RT-1 Robot setup. The findings on Isaac Sim are
consistent with the findings on the SAPIEN simulator.
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Task Validation Action MSE Sim Eval (Visual Matching)

Pick Coke Can 0.412 / 0.464 0.031 / 0.976
Move Near 0.408 / 0.230 0.111 / 0.855
Open / Close Drawer 0.346 / 0.264 0.055 / 0.915
Open Drawer & Place Apple 0.265 / 0.198 0.000 / 0.969
Put Spoon on Towel 0.389 / -0.951 0.000 / 0.827
Put Carrot on Plate 0.194 / -0.342 0.111 / 0.575
Stack Block 0.125 / -0.857 0.000 / 1.000
Put Eggplant in Basket 0.366 / -1.000 0.000 / 0.990

Table 10: MMRV / Pearson correlation comparison between our Visual Matching simulation evaluation ap-
proach and the simulation-free approach that assesses the MSE between predicted and ground-truth actions
on validation trajectories. For the latter approach, we calculate the MMRV / Pearson correlation between the
negative MSE and the real policy performance. Our approach yields significantly better real-and-sim policy
performance correlations.

Policy Avg. Real Success Avg. Sim Success
(Visual Matching)

RT-1 (Converged) 0.853 0.857
RT-1 (15%) 0.920 0.710
RT-1 (Single Task Policy) 0.680 0.403
RT-1-X 0.760 0.567
RT-2-X 0.907 0.787
Octo-Base 0.293 0.170
RT-1 (Begin) 0.133 0.027

MMRV↓ 0.027
Pearson r↑ 0.959

Table 11: Real-world and simulated evaluation results on the Pick Coke Can task, after adding an RT-1 policy
trained solely on the Pick Coke Can demonstrations. Our simulated evaluation remains effective, exhibiting
low MMRV and high Pearson correlation coefficient with real evaluations.

F More Experiment Results721

F.1 More Ablations722

Simulated vs. simulation-free evaluation approaches: To evaluate and select real-world robot ma-723

nipulation policies, a widely-adopted approach involves calculating the MSE loss between predicted724

and ground-truth actions on a set of held-out validation demonstration trajectories. We are thus in-725

terested in the following question: Does simulated evaluation produce significantly better real-to-726

sim relative performance correlation than simulation-free approaches? We conduct an experiment727

where we calculate the action-prediction MSE loss on the RT-1 Robot dataset and the Bridge dataset.728

For the Bridge dataset, we randomly select 25 trajectories from the validation demonstration split.729

For the RT-1 Robot dataset, as a validation split is not publicly available, we randomly select 25730

trajectories from the training demonstrations.731

We report the results in Table 10. We find that SIMPLER evaluation produces significantly bet-732

ter correlations between real-and-sim performances across different policies, as highlighted by a733

substantially-lower MMRV and a substantially-higher Pearson correlation coefficient. Furthermore,734

as demonstrated in Sec. 5.3 of the main paper, SIMPLER evaluation reveals finegrained policy735

behavior modes, such as robustness to visual distribution shifts, offering insights beyond policy736

performance comparisons, unlike simulation-free evaluations.737

Is simulated evaluation still effective on single-task policies? Previously in the main paper, we738

focused our simulated evaluation on policies trained on multi-task datasets, such as the RT-1 Robot739

RT-1 dataset and the Open-X-Embodiment dataset, which contain ≥80k demonstrations. In this740

section, we further ask the question: Is SIMPLER evaluation still effective on policies trained on741

smaller-scale data, which are potentially more sensitive to real-to-sim visual and control gaps? To742

this end, we conduct an experiment where we train RT-1 only with the “pick coke can” demon-743

strations and evaluate its real and simulation performance. We also compare the MMRV and the744
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RT-1 Robot
Evaluation Setup Metric

Pick Coke Can Move Near Open / Close Drawer Open Top Drawer
and Place Apple

Horizontal
Laying

Vertical
Laying Standing Avg. Success Avg. Success Open Close Avg. Success Avg. Success

SIMPLER (VisMatch) Kruskal-#Policy p<0.05 0 0 2 3 3 1 2 2 0

(a)

WidowX+Bridge
Evaluation Setup Metric

Put Spoon on Towel Put Carrot on Plate Stack Green Block on Yellow Block Put Eggplant in Yellow Basket

Grasp Spoon Success Grasp Carrot Success Grasp Green Block Success Grasp Eggplant Success

SIMPLER (VisMatch) Kruskal-#Policy p<0.05 0 0 0 0 0 0 1 0

(b)

Table 12: For our Visual Matching evaluation approach, we conduct Kruskal-Wallis test to assess whether
simulation and real-world policy evaluations exhibit significant distribution shift, even though we do not expect
to obtain an exact reproduction of real-world performance.

Pearson correlation before and after incorporating this single-task policy into the RT-1 Robot exper-745

iments. Results are shown in Table 11. We find that our simulated evaluation effectively reflects the746

performance rankings of the newly-added single-task policy, with the MMRV remaining low and747

the Pearson Coefficient remaining high. This demonstrates SIMPLER evaluation’s versatility across748

policies trained on diverse data scales.749

F.2 Other Metrics: Kruskal Wallis750

In our previous analysis, we primarily focused on metrics that measure real-to-sim relative per-751

formance alignment between policies. As we match real-to-sim visual input appearance in our752

Visual Matching evaluation approach, it also becomes meaningful to measure the simulation distri-753

bution shift of absolute performance from real-world evaluations, even though we do not expect754

the real-to-sim absolute performances to exactly match. Let the real-world evaluation results of N755

policies be r = {r1, r2, . . . , rN}, where ri = (rij)
Ntrial
j=1 is the indicator of each trial’s success in756

the real-world. Let the corresponding simulation evaluation results be s = {s1, s2, . . . , sN}, where757

si = (sij)
Ntrial
j=1 . We perform Kruskal-Wallis test for each individual policy (i.e., between each ri and758

si) to measure whether simulation evaluations exhibit significant distribution shift from real evalua-759

tions. We then report the number of policies with significant distribution shift (which we denote as760

“Kruskal-#Policy p<0.05”).761

We present the Kruskal-Wallis results in Tab. 12. We find that with the Visual Matching evalua-762

tion approach, the simulation trial success distribution is not significantly different from the real763

results (p ≥ 0.05) across many tasks and policies, demonstrating the effectiveness of our simulation764

evaluation tool. We also note that our MMRV and the Kruskal metrics complement each other’s765

limitations, with the former providing a real-to-sim relative performance alignment perspective, and766

the latter providing an absolute performance alignment perspective.767
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