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A Full Environment and Evaluation Protocol Details

In this section, we provide detailed descriptions of our SIMPLER environments along with our
simulation and real-world evaluation protocols.

For the RT-1 Robot, we adopt the following language-conditioned tasks:

» “pick coke can”. The robot is instructed to grasp the empty coke can on the table and lift
it up. In the default setting, no distractors are added to the scene. We place the coke can
in 3 different orientations: horizontally laying, vertically laying, and standing. For each
orientation, we place the coke can at 25 grid positions within a rectangle on the tabletop,
yielding 25 trials per orientation and 75 trials in total.

* “move {obj1} near {ohj2}”. We place a triplet of objects on the tabletop in a triangle
pattern. In each trial, one object serves as the source object, one serves as the target, and the
other serves as the distractor (this creates 6 trials for each triplet and each triangle pattern).
We randomly choose 5 triplets of objects among a total of 8 objects (blue plastic bottle,
pepsi can, orange, 7up can, apple, sponge, coke can, redbull can), and adopt 2 triangle
patterns (upright and inverted). This creates a total of 5 x 2 x 6 = 60 trials. The 5 triplets
chosen are:

blue plastic bottle, pepsi can, orange

7Tup can, apple, sponge

coke can, redbull can, apple

sponge, blue plastic bottle, 7up can

orange, pepsi can, redbull can

* “(open / close) (top / middle / bottom) drawer”. The robot is positioned in front of a
cabinet that contains 3 drawers and instructed to open / close a specific drawer, testing its
ability to manipulate articulated objects. We place the robot at 9 grid positions within a
rectangle on the floor, yielding a total of 9 x 3 x 2 = 54 trials.

* “open top drawer; place apple into top drawer”. The robot opens the top drawer and
places the apple from the cabinet top into the top drawer, testing its ability to perform
longer-horizon tasks. We place the robot at 3 different positions on the floor and the apple
at 9 different positions within a grid on the cabinet top, yielding a total of 3 x 9 = 27 trials.
Initially, the policies receive the “open top drawer” instruction. We switch to the “place
apple into top drawer” instruction once the robot outputs the “terminate” token or after half
of the time limit has elapsed.

For the WidowX + Bridge (with WidowX-250 6DOF robot), we adopt the following tasks:

* “put the spoon on the towel”. We place the spoon on a vertex of a square (with edge
length 15cm) on the tabletop, and we place the towel on another vertex. The spoon’s initial
orientation switches between horizontal and vertical, requiring the robot to perform gripper
reorientation. This creates a total of 2 x 12 = 24 trials.

* “put carrot on plate’’. We adopt a similar setup as “put the spoon on the towel”, replacing
the spoon with carrot and the towel with plate.

* “stack the green block on the yellow block”. We place a green block on a vertex of
a square on the tabletop, and we position a yellow block on another vertex. The block
dimensions are 3cm. We also adopt two differently-sized squares (edge length 10cm and
20cm). This creates a total of 2 x 12 = 24 trials.

* “put eggplant into yellow basket”. We place an eggplant on the right basin of a sink,
and we place a yellow basket on the left basin. The eggplant is dropped into the sink at a
random position and orientation, and we ensure that the eggplant is directly graspable (i.e.,
not too close to the edges of the sink basin). We perform a total of 24 trials.
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Algorithm 1 RT-1 Robot Controller in Simulation

Require: (1) Current end-effector action (x4, R,), along with sensed arm joint positions and velocities
Garm, Varm; (2) Current gripper action gq, along with sensed gripper joint position and velocity qgrip, Vgrip;
(3) Simulation frequency Hgim (501 in our implementation), action output frequency (control frequency)
Hewi (3 in our implementation following [1]); (4) Arm velocity, acceleration, and jerk limits L,m (equal to
1.5, 2.0, 50.0 respectively); (5) Gripper velocity, acceleration, and jerk limits Lgp, (equal to 1.0, 7.0, 50.0
respectively); (6) Current action timestep 7" within an episode; (7) A planner that takes goal and initial
joint positions and velocities as input (along with velocity, acceleration, and jerk constraints), and outputs
a time-parametrized trajectory.

: # Arm motion planning

: (x, R) = ForwardKinematics(qarm)

: (Xgoah Rgoal) = (Xa + X, R, - Rarm)

(Geoal; Veoa) = (InverseKinematics(Xgoat, Rgoal, Garm ), 0.0)

: ArmPlan = Planner(ggoal , Vgoal, Qarm, Varm, Lrarm)

: # Gripper motion planning

: if T'= 0 then > At the beginning of episode

Qlastplan,grip s Vlastplan,grip = {grip; 0.0

Qlastgoal,grip = {grip
10: end if
11: if |ga| < 0.01 then > Small action filtering
12: (goal,grip = {lastgoal,grip
13: else
14: Qgoal.grip = Qlastplan,grip T Ja
15: end if
16: Vgoatgrip = 0.0
17: GripPlan = Planner(ggoal,grip, Vsoal,grip»
Qlastplan,grip y Ulastplan,grip Lgrip)
18: # Execute arm and gripper plans at each simulation step
19: for each i = 1&”’; do

HC“'
20: t= H:im

21: Qastplan, - = ArmPlan(t)

22: SetArmJointPosTarget(qiastplan)

23: Qlastplan,grip ; Ulastplan,grip = GrlpPlan(t)
24: SetGripperJointPosTarget(quasiplan,grip)
25: SetGripperJointVel Target(viasplan,grip)
26: end for each

27: Qlastgoal,grip = {Ggoal,grip
28: T=T+1

For Octo simulated evaluations, since the model involves a non-deterministic diffusion head, we
average its success rates across three different random seeds to produce a lower-variance estimate of
the policy’s simulation performance. Additionally, for RT-1 Robot simulated evaluations, we aver-
age results over four versions of robot arm and gripper colors to account for changes in arm texture
during real robot rollouts (see Section 4.2). For the WidowX environments, given the consistent
black color of the arm and gripper across videos, we skip this step.

The number of evaluation trials we present above pertain to the real-world evaluation setup. For
our “Variant Aggregation” simulation evaluation setup, the number of trials is multiplied by the
number of simulation environment variants. For our “Visual Matching” simulation evaluation setup,
the number of trials is multiplied by the number of tuned robot arm colors for the RT-1 Robot
evaluation setup, along with the number of seeds for the Octo policies.

B More Implementation Details of Our Real-to-Sim Evaluation System

B.1 Robot Controllers

RT-1 Robot Given translation, rotation, and gripper action output from a model, we adopt Algo-
rithm | in simulator to execute the action commands. The simulation frequency in the algorithm
refers to the number of simulation steps per second, while the control frequency refers to the num-
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Algorithm 2 WidowX Controller in Simulation

Require: (1) Current end-effector action (x4, Ra), along with sensed arm joint positions gam; (2) Current
gripper action g,, along with sensed gripper joint position ggrip; (3) Simulation frequency Him (500 in our
implementation), action output frequency (control frequency) Hew (5 in our implementation following);
(4) Current action timestep T within an episode; (5) A function S that maps a R® position vector and a 3x3
SO(3) rotation matrix to a 4x4 SE(3) matrix.

1 if T = 0 then > At the beginning of episode

Qlastgoal = Qarm

: end if

: (x, R) = ForwardKinematics(qiastgoal )

: (Xgoah Rgm,l) = S_I(S(X7 I) . S(Xa, Ra)'

S(—x,I)-S(x, Ram))

: Geon = InverseKinematics(Xgoar, Rgoal, Garm )

* {goal,grip = Ja

: SetArmJointPosTarget(qgoal)

: SetGripperJointPosTarget(qgoal, grip)
© (Qlastgoal = (goal

cT=T+1

— OV

—_—

ber of control commands (policy action outputs) per second. We use the open-source library Ruckig
for time-optimal joint motion planning with velocity, acceleration, and jerk constraints. Note that
the duration of planned trajectories may exceed the interval between two control commands.

WidowX We present our WidowX controller implementation in Algorithm

B.2 Robot and Object Assets

Robots For RT-1 Robot, we convert the publically-released MuJoCo .mjcf robot description to
URDF robot description. We also refine the collision mesh of the robot base link from the original
assets to prevent erroneous mesh penetrations. For WidowX, we directly export the URDF robot
descriptions from the official Interbotix repository using ROS. To simulate the RT-1 Robot, we
find that the Projected Gauss-Seidel solver in PhysX causes mesh penetration behaviors during the
process of object grasping. Thus, we enable the Temporal Gauss-Seidel solver in both SAPIEN and
Isaac Sim’s simulation backends to produce correct grasping behaviors.

The RT-1 Robot uses a customized egocentric camera mounted on the robot head, while the WidowX
+ Bridge V2 setup uses a Logitech C920 third-view camera. We use known robot camera intrinsics
if possible, and when they are unknown, we obtain them from real evaluation video frames using
efficient interactive GUI tools such as fSpy.

Objects We adopt the following procedure to obtain object assets. Except creating precise models
for articulated objects like cabinets, the process does not involve heavy manual effort.

* Obtain raw 3D object models from public repositories (e.g., Objaverse [60]), from 3D
scanning of objects purchased from Amazon, from single-view 3D generation (e.g., One-
2-3-45++ [61]), or from manual modeling based on precise measurements of real-world
counterparts (we only used the last technique for articulated objects like cabinets since this
requires the most human effort; we highlight the acceleration of articulated asset curation
process through approaches like multi-view [62] or interactive [63] articulated object gen-
eration as an avenue for future work).

* Process 3D object models in Blender such that the dimensions of objects are similar to
those used in the real world, and that the object meshes do not contain too many vertices
(to limit the sizes of object meshes).

* Optionally, use our Visual Matching approach (see below) to improve the texture of 3D
object models.

Uhttps://github.com/pantor/ruckig
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Figure 5: Subset of environment variations under our “Variant Aggregation” evaluation setup, visualized in
SAPIEN from RT-1 Robot’s egocentric view. The variations cover different lightings, backgrounds and table
textures and are modified from ReplicaCAD [17] scenes.

* Export visual mesh and collision mesh of objects. For collision mesh, further perform
CoACD [64] to obtain watertight and locally convex collision meshes. Optionally, simplify
the resulting collision mesh and perform minor modifications using Blender (e.g., make the
bottom of cans or bottles flat).

 Set the object to have a simple uniform density by querying their common material density
in GPT-4 or google search, or (for objects with non-uniform densities like empty coke can),
querying their mass and dividing by their visual mesh volume.

To perform visual matching of object textures, we adopt the following steps: (1) Crop the target
object in a real image using SAM [56]; (2) Perform a coarse estimation of object pose by importing
it into the simulation and adjusting its position such that its simulation segment mask overlaps with
the real one; (3) Employ differential rendering (using Nvdiffrast) to optimize the simulation asset’s
pose such that it precisely aligns with the real object’s segmentation mask; (4) “Unproject” the real
object’s RGB texture values onto the simulation object mesh; (5) Optionally, generate the remaining
views of the object through a diffusion model (Zero123++ [65]), and refine the poses of novel views
using a rendering loss with the existing object view. Finally, unproject the novel view textures
onto the simulation object mesh. This whole process is semi-automatic, and can thus be completed
efficiently. We commit to release a convenient command-line python script for this process.

B.3 SIMPLER-Variant Aggregation

A common approach for addressing visual gaps in sim-to-real policy training is domain random-
ization. By performing training across a range of randomized parameters, such as textures and
lighting, prior works aim to obtain policies that are robust to visual distribution shifts in the real-
world [40, 41]. Similarly, in real-to-sim evaluation, we can aggregate evaluation results across a
range of visual simulator characteristics to obtain a more faithful signal for the policy’s perfor-
mance. In practice, we implement this SIMPLER-“Variant Aggregation” approach as an alternative
to SIMPLER-Visual Matching, described in Section 4.2. Concretely, we create a “base” version
of our simulation environment and then creating “variants” of this environment along four axes of
visual variation: background, lighting, distractors, and table texture. For each axis, we construct 2
variations of the base setup similar to [59], covering backgrounds from different rooms, lighter and
darker lighting, fewer and more distractors, and solid color and complex table textures. We visual-
ize an example of such simulator variations for various table-top tasks in Fig. 5. We average policy
performance in simulation across all variants of an environment to obtain our final performance
estimate.
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Open Top Drawer

Pick Coke Can Move Near Open / Close Drawer nd Place Appl
RT-1 Robot ) and Tlace Apple
Evaluation Setup Policy Horizontal ~ Vertical .
Laying Laying Standing  Average Average Open  Close  Average Average
RT-1 (Converged) 0.960 0.880 0.720 0.853 0.633 0815  0.926 0.870 0.185
RT-1 (15%) 1.000 0.960 0.800 0.920 0.583 0.704  0.889 0.796 0.185
Real Eval RT-1-X 0.880 0.560 0.840 0.760 0.450 0.519  0.741 0.630 0.407
RT-2-X 0.920 0.800 1.000 0.907 0.733 0333 0.630 0.481 0.074
Octo-Base 0.440 0.200 0.240 0.293 0.350 0.148  0.519 0.333 0.000
RT-1 (Begin) 0.200 0.000 0.200 0.133 0.017 0.000  0.000  0.000 0.000
RT-1 (Converged) 0.969 0.760 0.964 0.898 0.500 0270  0.376 0.323 0.026
RT-1 (15%) 0.920 0.704 0.813 0.813 0.446 0212 0323 0.267 0.021
RT-1-X 0.569 0.204 0.698 0.490 0.323 0.069 0.519 0.294 0.101
SIMPLER Eval RT-2-X 0.822 0.754 0.893 0.823 0.792 0333 0372 0.353 0.206
(Variant Aggregation)  Octo-Base 0.005 0.000 0.013 0.006 0.031 0.000  0.021 0.011 0.000
RT-1 (Begin) 0.022 0.013 0.031 0.022 0.040 0.005  0.132 0.069 0.000
MMRYV | 0.093 0.133 0.140 0.084 0.111 0.303  0.321 0.321 0.148
Pearson r1 0.947 0.937 0.933 0.960 0.887 0.629  0.613 0.737 0.235
RT-1 (Converged) 0.960 0.900 0.710 0.857 0.442 0.601  0.861 0.730 0.065
RT-1 (15%) 0.860 0.790 0.480 0.710 0.354 0.463  0.667 0.565 0.130
RT-1-X 0.820 0.330 0.550 0.567 0.317 0.296  0.891 0.597 0.213
SIMPLER Eval RT-2-X 0.740 0.740 0.880 0.787 0.779 0.157  0.343 0.250 0.037
(Visual Matching) Octo-Base 0.210 0.210 0.090 0.170 0.042 0.009  0.444 0.227 0.000
RT-1 (Begin) 0.050 0.000 0.030 0.027 0.050 0.000 0.278 0.139 0.000
MMRYV | 0.027 0.027 0.053 0.031 0.111 0.000 0.123 0.055 0.000
Pearson r 1 0.981 0.964 0.942 0.976 0.855 0.983  0.768 0915 0.969

Table 2: Real-world and SAPIEN evaluation results across different policies on RT-1 Robot tasks. We present
success rates for the “Variant Aggregation” and “Visual Matching” approaches in Sec. 4.2. We calculate the
Mean Maximum Rank Violation (“MMRV”, lower is better) and the Pearson correlation coefficient (‘“Pearson
r”, higher is better) to assess the alignment between simulation and real-world relative performances across
different policies.

. . Put Spoon on Towel Put Carrot on Plate Stack Green Block on Yellow Block  Put Eggplant in Yellow Basket

WidowX+Bridge Policy

Evaluation Setup Grasp Spoon ~ Success  Grasp Carrot  Success  Grasp Green Block Success Grasp Eggplant Success
RT-1-X 0.042 0.000 0.167 0.000 0.000 0.000 0.033 0.000

Real Eval Octo-Base 0.500 0.333 0.500 0.250 0.292 0.000 0.400 0.233
Octo-Small 0.542 0.417 0.208 0.083 0.583 0.125 0.700 0.433
RT-1-X 0.167 0.000 0.208 0.042 0.083 0.000 0.000 0.000
Octo-Base 0.347 0.125 0.528 0.083 0.319 0.000 0.667 0.431

SIMPLER Eval ' grant 0778 0472 0278 0.007 0.403 0.042 0.875 0.569

(Visual Matching)
MMRYV | 0.000 0.000 0.000 0.111 0.000 0.000 0.000 0.000
Pearson r1 0.778 0.827 0.995 0.575 0.964 1.000 0.995 0.990

Table 3: Real-world and SAPIEN simulation evaluation results for the WidowX + Bridge setup. We report both
the final success rate (“Success”) along with partial success (e.g., “Grasp Spoon”).

C Full Results for Real-and-Sim Relative Policy Performance Correlation
Experiments

In Table 2 and Table 3, we present full evaluation results for our experiments in Sec. 5.2, which
demonstrate that SIMPLER environments show strong performance relationship correlations with
real-world evaluations.

D Full Results for Real-and-Sim Policy Behavior Correlation Experiments
under Environment Distribution Shifts

In Table 4, Table 5, and Table 6, we present full evaluation results for our experiments in Sec. s
which demonstrate that SIMPLER environments show strong policy behavior correlations with real-
world evaluations under different environment distribution shifts.

2After running 2 real evaluation trials, robot operators decided that since this policy would potentially
damage the robot on the Drawer tasks, the real evaluation was terminated.

3 As real evaluation was terminated due to risk of damaging the robot, we expect the MMRYV to be less than
this number if real evaluation were to continue.
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Pick Coke Can Move Near Avg. Real TableTop [59]

Policy Distribution Shift

|A Successy] MMRV] r 1  |ASuccessy MMRV] r 71 |A Successy MMRV] =1 | A Success|
Background 0.013 0.083 0.048 0.028
RT-1 Lighting 0.040 0.075 0.057 0.083
wlo Aug Distractors 0.027 0.000 0.779 0.133 0.055 0.939 0.080 0.000 0.831 0.111
Table Texture 0.113 0.175 0.144 0.389
Camera Pose 0.753 0.192 0.473 0.458
Background 0.153 0.092 0.123 0.167
RT1 Lighting 0.033 0.117 0.075 0.042
+Aug Distractors 0.033 0.041 0.984 0.084 0.125 0.721 0.059 0.041 0.970 0.083
Table Texture 0.220 0.159 0.189 0.167
Camera Pose 0.613 0.175 0.394 0.375

Table 4: Impact of various distribution shifts on the tabletop manipulation performance of RT-1 policies trained
with and without image augmentation. SIMPLER evaluations accurately track the policies’ robustness to dis-
tribution shifts, exhibiting low Mean Maximum Rank Violation (“MMRV”) and high Pearson correlation coef-
ficient (“r”’) with the real world evaluations [59].

Policy Robustness Factor ~ Pick Coke Can Move Near
Base Setup 0.920 0.467
Background 0.933/0.907 0.533/0.567
RT-1 Lighting 0.960/0.960 0.483/0.600
w/o Aug  Distractors 0.880/0.901 0.600
Table Texture 0.867/0.747 0.550/0.200
Camera Pose 0.053/0.280 0.117/0.433
Base Setup 0.800 0.383
Background 0.747/0.547 0.483/0.467
RT-1 Lighting 0.760/0.773 0.517/0.483
+Aug Distractors 0.813/0.747 0.467
Table Texture 0.667/0.493 0.450/0.133
Camera Pose 0.267/0.107 0.200/0.217

“The base setup environment already contains dis-
tractors, so we construct environment variants without
distractors.
Table 5: Success rates of different out-of-distribution generalization factors on the tabletop manipulation per-
formance of RT-1 policies in the SAPIEN simulator. “a/b” denote results on different environment variants
(lighting: darker / brighter; table texture: solid color / contrastively patterned; camera pose: oriented lower /
higher).

719 E  Full Results for Main Paper Ablation Experiments

720 We present detailed results for our main paper’s ablations in Table 7, Table 8, and Table

Real Success

Policy Sim Success Range Orig Arm Texture ~ OOD Arm Texture
RT-1-X [0.507, 0.653] 0.760 0.520
Octo-Base [0.000, 0.293] 0.293 0.000

Table 6: Impact of arm textures on the success rates of “Pick Coke Can” task in the SAPIEN simulator (Visual
Matching evaluation setup) and in the real-world. The ranges of simulation success rates across multiple (tuned
and untuned) robot arm colors can predict policy sensitivity to real-world OOD arm textures.
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Components Open Drawer Close Drawer

Background Drawer Robot RT-1 (Converged) RT-1(15%) RT-1-X MMRV] RT-1 (Converged) RT-1(15%) RT-1-X MMRV]

Real Real Real 0.815 0.704 0.519 N/A 0.926 0.889 0.741 N/A
GreenScreen  Curated  Curated 0.703 0.556 0.333 0.000 0.889 0.667 0.851 0.099
GreenScreen  Curated  Original 0.444 0.444 0.259 0.111 0.741 0.630 0.926 0.173
GreenScreen  Original ~ Original 0.593 0.519 0.148 0.000 0.852 0.778 0.963 0.173
ReplicaCAD ~ Curated  Curated 0.407 0.259 0.111 0.000 0.667 0.481 0.778 0.173
ReplicaCAD ~ Curated  Original 0.630 0.407 0.074 0.000 0.630 0.593 0.667 0.173
ReplicaCAD  Original ~ Curated 0.556 0.296 0.074 0.000 0.667 0.704 0.815 0.173
ReplicaCAD  Original ~ Original 0.556 0.333 0.074 0.000 0.704 0.556 0.741 0.173

Table 7: Impact of real-to-sim visual gaps on real-and-sim performance correlations. We report the success
rates of 3 different policies on 2 tasks: Open Drawer and Close Drawer. The settings with the smallest MMRV
and the smallest absolute performance gap with the real performance are highlighted. Using a combination of
“green-screened” background and curated foreground object and robot assets provides the best correlation.

Gripper Friction Coefficient

Coke Can Mass 0.25 0.50 1.0 2.0

10g 0957 0967 0971 0.978
20g 0969 0975 0978 0977
40g 0963 0976 0976  0.976
80¢g 0962 0962 0975  0.990

(a) Pearson r between real and SIMPLER evaluations on the Pick Coke Can task under different settings of can
mass and gripper friction coefficient. The MMRYV is 0.031 in all cases. The use of empty coke cans follows the
setup from the RT-1 Robot demonstration dataset and the RT-1 paper [1].

Cabinet Joint Friction 0.0125 0.025 0.05 0.10 0.15 0.20

MMRV | 0.055 0.055 0.055 0.055 0.105 0.055
Pearson 71 0.930 0.941 0915 0.923 0.903 0.928

(b) MMRV and Pearson r between real and SIMPLER evaluations on the Open/Close Drawer tasks under
different settings of cabinet joint friction.

Table 8: SIMPLER is robust to imprecisely estimated physical simulation parameters such as object mass and
friction coefficients, as indicated by the low MMRYV and high Pearson r in both ablation studies. We use the 6
policies from our RT-1 Robot experiments in these ablations.

RT-1 Robot ) Pick Coke Can Move Near
Evaluation Setup Policy Horizontal Vertical
o K Standing Avg. Success Avg. Success
Laying Laying
RT-1 (Converged) 0.960 0.880 0.720 0.853 0.633
RT-1 (15%) 1.000 0.960 0.800 0.920 0.583
Real Eval RT-1-X 0.880 0.560 0.840 0.760 0.450
Octo-Base 0.440 0.200 0.240 0.293 0.350
RT-1 (Begin) 0.200 0.000 0.200 0.133 0.017
RT-1 (Converged) 0418 0.377 0.436 0.410 0.150
RT-1 (15%) 0.428 0.306 0.590 0.441 0.100
RT-1-X 0.340 0.182 0.618 0.380 0.125
(SI'SM‘ZLSRHE:;‘II_‘ ) OctoBase 0.015 0.020 0.010 0.015 0.020
saac, variant Aggre. RT-1 (Begin) 0.036 0.040 0.054 0.044 0.000
MMRV | 0.096 0.112 0.016 0.064 0.053
Pearson 1 0.961 0.949 0.989 0.973 0.865

Table 9: Real-world and Isaac Sim evaluation results for the RT-1 Robot setup. The findings on Isaac Sim are
consistent with the findings on the SAPIEN simulator.
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735

737

738
739
740
741
742
743
744

Task \ Validation Action MSE Sim Eval (Visual Matching)

Pick Coke Can 0.412/0.464 0.031/0.976
Move Near 0.408 /0.230 0.111/0.855
Open / Close Drawer 0.346/0.264 0.055/0.915
Open Drawer & Place Apple 0.265/0.198 0.000/0.969
Put Spoon on Towel 0.389/-0.951 0.000/0.827
Put Carrot on Plate 0.194/-0.342 0.111/0.575
Stack Block 0.125/-0.857 0.000/ 1.000
Put Eggplant in Basket 0.366 / -1.000 0.000/0.990

Table 10: MMRYV / Pearson correlation comparison between our Visual Matching simulation evaluation ap-
proach and the simulation-free approach that assesses the MSE between predicted and ground-truth actions
on validation trajectories. For the latter approach, we calculate the MMRYV / Pearson correlation between the
negative MSE and the real policy performance. Our approach yields significantly better real-and-sim policy
performance correlations.

Avg. Sim Success

Policy Avg. Real Success (Visual Matching)
RT-1 (Converged) 0.853 0.857
RT-1 (15%) 0.920 0.710
RT-1 (Single Task Policy) 0.680 0.403
RT-1-X 0.760 0.567
RT-2-X 0.907 0.787
Octo-Base 0.293 0.170
RT-1 (Begin) 0.133 0.027
MMRV | 0.027
Pearson r1 0.959

Table 11: Real-world and simulated evaluation results on the Pick Coke Can task, after adding an RT-1 policy
trained solely on the Pick Coke Can demonstrations. Our simulated evaluation remains effective, exhibiting
low MMRYV and high Pearson correlation coefficient with real evaluations.

F More Experiment Results

F.1 More Ablations

Simulated vs. simulation-free evaluation approaches: To evaluate and select real-world robot ma-
nipulation policies, a widely-adopted approach involves calculating the MSE loss between predicted
and ground-truth actions on a set of held-out validation demonstration trajectories. We are thus in-
terested in the following question: Does simulated evaluation produce significantly better real-to-
sim relative performance correlation than simulation-free approaches? We conduct an experiment
where we calculate the action-prediction MSE loss on the RT-1 Robot dataset and the Bridge dataset.
For the Bridge dataset, we randomly select 25 trajectories from the validation demonstration split.
For the RT-1 Robot dataset, as a validation split is not publicly available, we randomly select 25
trajectories from the training demonstrations.

We report the results in Table 10. We find that SIMPLER evaluation produces significantly bet-
ter correlations between real-and-sim performances across different policies, as highlighted by a
substantially-lower MMRYV and a substantially-higher Pearson correlation coefficient. Furthermore,
as demonstrated in Sec. of the main paper, SIMPLER evaluation reveals finegrained policy
behavior modes, such as robustness to visual distribution shifts, offering insights beyond policy
performance comparisons, unlike simulation-free evaluations.

Is simulated evaluation still effective on single-task policies? Previously in the main paper, we
focused our simulated evaluation on policies trained on multi-task datasets, such as the RT-1 Robot
RT-1 dataset and the Open-X-Embodiment dataset, which contain >80k demonstrations. In this
section, we further ask the question: Is SIMPLER evaluation still effective on policies trained on
smaller-scale data, which are potentially more sensitive to real-to-sim visual and control gaps? To
this end, we conduct an experiment where we train RT-1 only with the “pick coke can” demon-
strations and evaluate its real and simulation performance. We also compare the MMRV and the
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Open Top Drawer

Pick Coke Can Move Near Open / Close Drawer
and Place Apple
RT-1 Robot .
Evaluation Setup Metrie Horizontal Vertical
" R Standing Avg. Success Avg. Success Open Close Avg. Success  Avg. Success

Laying  Laying

SIMPLER (VisMatch) Kruskal-#Policy p<0.05 0 0 2 3 3 1 2 2 0
()

WidowX+Bridge Metric Put Spoon on Towel ~ Put Carrot on Plate ~ Stack Green Block on Yellow Block Put Eggplant in Yellow Basket
Evaluation Setup Grasp Spoon Success Grasp Carrot Success Grasp Green Block Success Grasp Eggplant  Success
SIMPLER (VisMatch) Kruskal-#Policy p<0.05 0 0 0 0 0 0 1 0

(b)

Table 12: For our Visual Matching evaluation approach, we conduct Kruskal-Wallis test to assess whether
simulation and real-world policy evaluations exhibit significant distribution shift, even though we do not expect
to obtain an exact reproduction of real-world performance.

Pearson correlation before and after incorporating this single-task policy into the RT-1 Robot exper-
iments. Results are shown in Table | |. We find that our simulated evaluation effectively reflects the
performance rankings of the newly-added single-task policy, with the MMRYV remaining low and
the Pearson Coefficient remaining high. This demonstrates SIMPLER evaluation’s versatility across
policies trained on diverse data scales.

F.2 Other Metrics: Kruskal Wallis

In our previous analysis, we primarily focused on metrics that measure real-to-sim relative per-
formance alignment between policies. As we match real-to-sim visual input appearance in our
Visual Matching evaluation approach, it also becomes meaningful to measure the simulation distri-
bution shift of absolute performance from real-world evaluations, even though we do not expect
the real-to-sim absolute performances to exactly match. Let the real-world evaluation results of [V
policies be r = {ry,ro,...,ry}, where r; = (rij);»v;‘i‘ is the indicator of each trial’s success in
the real-world. Let the corresponding simulation evaluation results be s = {s1, 89, ...,sx}, where
S; = (sij)j-vji‘. We perform Kruskal-Wallis test for each individual policy (i.e., between each r; and
s;) to measure whether simulation evaluations exhibit significant distribution shift from real evalua-
tions. We then report the number of policies with significant distribution shift (which we denote as
“Kruskal-#Policy p<0.05).

We present the Kruskal-Wallis results in Tab. 12. We find that with the Visual Matching evalua-
tion approach, the simulation trial success distribution is not significantly different from the real
results (p > 0.05) across many tasks and policies, demonstrating the effectiveness of our simulation
evaluation tool. We also note that our MMRV and the Kruskal metrics complement each other’s
limitations, with the former providing a real-to-sim relative performance alignment perspective, and
the latter providing an absolute performance alignment perspective.
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