
Efficiently Learning the Graph for Semi-supervised Learning
(Supplementary Material)

Dravyansh Sharma1 Maxwell Jones1

1School of Computer Science., Carnegie Mellon University, Pittsburgh, PA, 15213

A PROOFS FROM SECTIONS 3 AND 4

Theorem 3.1 (restated). Suppose l1, . . . , lT : P → [0, 1] is a sequence of β-dispersed loss functions, and the domain
P ⊂ Rd is contained in a ball of radius R. The Approximate Continuous Exp3-Set algorithm (Algorithm 1) achieves
expected regret Õ(

√
dMT log(RT) + T 1−min{β,β′}) with access to (ϵ, γ)-approximate semi-bandit feedback with system

size M , provided γ ≤ T−β′
, ϵ ≤ vol(B(T−β))T−β′

, where B(r) is a d-ball of radius r.

Proof of Theorem 3.1. We adapt the CONTINUOUS-EXP3-SET analysis of Alon et al. [2017], Balcan et al. [2020]. Define
weights wt(ρ) over the parameter space P as w1(ρ) = 1 and wt+1(ρ) = wt(ρ) exp(−ηl̂t(ρ)) and normalized weights
Wt =

∫
P wt(ρ)dρ. Note that pt(ρ) =

wt(ρ)
Wt

. We will give upper and lower bounds on the quantity E[logWT+1/W1], i.e.
the expected value of the log-ratio of normalized weights.

Using exp(−x) ≤ 1− x+ x2/2 for all x ≥ 0, we get

Wt+1

Wt
=

∫
P
pt(ρ) exp(−ηl̂t(ρ))dρ

≤ 1− η

∫
P
pt(ρ)l̂t(ρ)dρ+

η2

2

∫
P
pt(ρ)l̂

2
t (ρ)dρ.

Computing the oscillating product and using 1− x ≤ exp(−x) for all x ≥ 0, we get

WT+1

W1
≤ exp

(
− η

T∑
t=1

∫
P
pt(ρ)l̂t(ρ)dρ+

η2

2

T∑
t=1

∫
P
pt(ρ)l̂

2
t (ρ)dρ

)
.

Taking logarithm and expectations on both sides we get

E
[
log

WT+1

W1

]
≤− η

T∑
t=1

E
[∫

P
pt(ρ)l̂t(ρ)dρ

]
+

η2

2

T∑
t=1

E
[∫

P
pt(ρ)l̂

2
t (ρ)dρ

]
.

We have, by the definitions of expectation and approximate semi-bandit feedback,

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<dravyans@cs.cmu.edu>?Subject=Your UAI 2023 paper
mailto:<mjones2@andrew.cmu.edu>?Subject=Your UAI 2023 paper

Et [lt(ρt)] =

∫
P
pt(ρ)lt(ρ)dρ

=

M∑
i=1

∫
Ã

(i)
t

pt(ρ)lt(ρ)dρ

=

M∑
i=1

[∫
Â

(i)
t

pt(ρ)lt(ρ)dρ+

∫
Ã

(i)
t \Â(i)

t

pt(ρ)lt(ρ)dρ

]

≤
M∑
i=1

∫
Â

(i)
t

pt(ρ)(l̃t(ρ) + γ)dρ+Mϵ (∵ pt(ρ)lt(ρ) ≤ 1 ∀ ρ)

≤
M∑
i=1

∫
Ã

(i)
t

pt(ρ)(l̃t(ρ) + γ)dρ+Mϵ

=

∫
P
pt(ρ)l̃t(ρ)dρ+ γ +Mϵ (∵

∫
P
pt(ρ)dρ = 1).

Moreover,

E
[∫

P
pt(ρ)l̂t(ρ)dρ

]
= E<tEt

[∫
P
pt(ρ)l̂t(ρ)dρ

]
= E<t

[∫
P
pt(ρ)l̃t(ρ)dρ

]
,

using the definition of l̂t in Algorithm 1. Plugging this in above, we get

E [lt(ρt)] = E<tEt [lt(ρt)]

≤ E<t

[∫
P
pt(ρ)l̃t(ρ)dρ

]
+ γ +Mϵ

= E
[∫

P
pt(ρ)l̂t(ρ)dρ

]
+ γ +Mϵ,

and, further,

Et[l̂t(ρ)
2] =

∫
P
pt(ρ

′)

(
I[ρ ∈ Ãt(ρ

′)]

pt(Ãt(ρ′))
l̃t(ρ)

)2

dρ′

=

(
l̃t(ρ)

pt(Ãt(ρ))

)2 ∫
Ãt(ρ)

pt(ρ
′)dρ′

≤ 1

pt(Ãt(ρ))
.

Therefore,

E[
∫
P
pt(ρ)l̂t(ρ)

2dρ] ≤ E
[∫

P
pt(ρ) ·

1

pt(Ãt(ρ))
dρ

]
= M.

Putting together, we get

E
[
log

WT+1

W1

]
≤ −ηE

[
T∑

t=1

lt(ρt)

]
+ ηT (Mϵ+ γ) +

η2MT

2
.

We can also adapt the argument of Balcan et al. [2020] to obtain a lower bound for WT+1

W1
in terms of Dr, the number of

L-Lipschitz violations between the worst pair of points within distance r across the T loss functions. We have

WT+1

W1
=

1

vol(P)

∫
P
wT+1(ρ)dρ

≥ 1

vol(P)

∫
B(ρ∗,r)

wT+1(ρ)dρ.

Taking the log and applying Jensen’s inequality gives

log
WT+1

W1
≥ log

vol(B(ρ∗, r))
vol(P)

− η

vol(B(ρ∗, r))

∫
B(ρ∗,r)

T∑
t=1

l̂t(ρ)dρ.

Taking expectations w.r.t. the randomness in Algorithm 1 (but for any loss sequence l1, . . . , lt) and using the fact that P is
contained in a ball of radius R, we get

E
[
log

WT+1

W1

]
≥ d log

r

R
− η

vol(B(ρ∗, r))

T∑
t=1

E

[∫
B(ρ∗,r)

l̂t(ρ)dρ

]
.

Using E[l̂t(ρ)] = l̃t(ρ), and noting that for any fixed t and r

∫
B(ρ∗,r)

l̃t(ρ)dρ =

M∑
i=1

∫
B(ρ∗,r)∩Ã

(i)
t

l̃t(ρ)dρ

≤
M∑
i=1

∫
B(ρ∗,r)∩Â

(i)
t

l̃t(ρ)dρ+Mϵ

≤
M∑
i=1

∫
B(ρ∗,r)∩Â

(i)
t

(lt(ρ) + γ)dρ+Mϵ

≤
M∑
i=1

∫
B(ρ∗,r)∩Ã

(i)
t

l̃t(ρ)dρ+Mϵ

=

∫
B(ρ∗,r)

lt(ρ)dρ+ vol(B(ρ∗, r))γ +Mϵ,

we get that

E
[
log

WT+1

W1

]
≥d log

r

R
− η

vol(B(ρ∗, r))

T∑
t=1

∫
B(ρ∗,r)

lt(ρ)dρ− ηγ − ηMϵ

vol(B(ρ∗, r))
.

By above assumption on the number of L-Lipschitz violations we get
∑

t lt(ρ) ≥
∑

t lt(ρ
∗)− TLr −Dr, or

E
[
log

WT+1

W1

]
≥d log

r

R
− η

T∑
t=1

lt(ρ
∗)− ηTLr − ηDr − ηγT − ηMϵT

vol(B(ρ∗, r))
.

Combining the lower and upper bounds gives

E

[
T∑

t=1

lt(ρt)

]
−

T∑
t=1

lt(ρ
∗) ≤ d

η
log

R

r
+

ηMT

2
+Dr + T

(
Mϵ+ 2γ + Lr +

Mϵ

vol(B(ρ∗, r))

)
.

Finally, setting r = T−β , η =
√

2d log(RTβ)
TM , γ ≤ T−β′

and ϵ ≤ vol(B(r))T−β′
, and using that the loss sequence is

β-dispersed, we get the desired regret bound

E

[
T∑

t=1

lt(ρt)−
T∑

t=1

lt(ρ
∗)

]
≤ O(

√
dMT log(RT) + T 1−β + T 1−β′

) = O(
√

dMT log(RT) + T 1−min{β,β′}).

In particular, we have used vol(B(T−β)) ≤ vol(B(1)) ≤ 8π2

15 for any d, T ≥ 1 and β ≥ 0.

Theorem 4.1 (restated). The pseudo-dimension of Hk,σ is O(K + log n) when the labeling algorithm A is the mincut
approach of Blum and Chawla [2001].

Proof of Theorem 4.1. Consider an arbitrary node u in any fixed problem instance. Also fix k ∈ [K]. Since f(d) =
exp(−d2/σ2) is monotonic in d for any σ > 0, the set Nk(u) of k nearest neighbors of u is the same for all values σ. This
is true for any u, therefore Nk and also the set of mutual nearest neighbors N ′

k(u) = {v ∈ Nk(u) | (u, v) ∈ Nk} is also
fixed given the pairwise distances for the instance.

We can show that the label of u can flip for at most O(K22K) distinct values of σ for the given instance. Suppose that the
label of u flips for σ = σ0 (as σ is increased from 0 to infinity), say from positive to negative (WLOG). Let S+, S

′
+ ⊆ N ′

k

for G(k, σ−
0) and G(k, σ+

0) respectively denote the positively labeled neighbors of u just before and after σ = σ0. Note that
σ0 is the root of an exponential equation in at most 2k terms and therefore has at most 2k possible values (Lemma 26 in
Balcan and Sharma [2021]) obtained by comparing the total weights of edges in δ(u,N ′

k \ S+) and δ(u, S′
+), where δ(v, V)

denotes the set of edges with one end-point v and the other end point in vertex set V . Over all possible pairs of S+, S
′
+ we

have at most 2k
(
2k

2

)
= O(K22K) possibilities for σ0.

The above bound holds for any fixed k. For all k ∈ [K] there are at most O(K222K) label flips for any fixed node u (as σ
is varied). Summing up over all n possible choices of u and over all m problem instances, we have at most O(mnK22K)
intervals of σ such that the labelings of all nodes are identical for all instances, for all values of k, within a fixed interval.
Using Lemma 2.3 of Balcan [2020] (proof of which involves arguments similar to those used in the proof of Theorem 4.2),
the pseudo-dimension m satisfies 2m ≤ O(mnK22K), or m = O(K + log n).

Theorem 4.2 (restated). The pseudo-dimension of Hk,r is O(log n) for any labeling algorithm A.

Proof of Theorem 4.2. Consider any fixed problem instance with n examples. For any fixed choice of parameter k, there
are at most nk

2 (unweighted) edges in G(k, r) for any value of r. Therefore, as r is increased from 0 to infinity, the graph
changes only when r corresponds to one of nk

2 distinct distances between pairs of data points, and so at most nk
2 +1 distinct

graphs may be obtained for any k. Summing over all possible values of k ∈ [n], we have at most O(n3) distinct graphs.

Thus given set S of m instances (d(i), L(i), U (i)), we can partition the real line into O(mn3) intervals such that all values
of r behave identically for all instances, and for all values of k, within any fixed interval. Since A and therefore its loss
is deterministic once the graph G is fixed, the loss function is identical in each interval. Each piece can have a witness
above or below it as r is varied for the corresponding interval, and so the binary labeling of S is fixed in that interval. The
pseudo-dimension m satisfies 2m ≤ O(mn3) and is therefore O(log n).

A.1 SAMPLE COMPLEXITY FOR UNIFORM LEARNING.

Let h∗ : X → {0, 1} denote the target concept. We say H is (ϵ, δ)-uniformly learnable with sample complexity n if,
for every distribution D, given a sample S ∼ Dn of size n, with probability at least 1 − δ,

∣∣ 1
n

∑
s∈S |h(s) − h∗(s)| −

Es∼D[|h(s) − h∗(s)|]
∣∣ < ϵ for every h ∈ H. It is well-known that (ϵ, δ)-uniform learnability with n samples implies

(ϵ, δ)-PAC learnability with n samples [Anthony and Bartlett, 1999].

B APPROXIMATE SOFT LABEL AND GRADIENT COMPUTATION

The piecewise constant interval computation in Algorithm 3 needs computation of soft labels f(σ) as well as gradients
∂f
∂σ for all unlabeled nodes. Typically, one computes a matrix inverse to exactly compute these quantities, and the exact
matrix inverted is different for different approaches. In this section, we provide approximate but more efficient procedures
for computing these quantities for computing soft labels using the Harmonic objective approach of Zhu et al. [2003], as
well as for the scalable approach of Delalleau et al. [2005]. We also provide convergence guarantees for our algorithms, in
terms of the number of conjugate gradient iterations needed for obtaining an ϵ-approximation to the above quantities. Note
that replacing CG(A, b, t) by the computation A−1b recovers the algorithm from Balcan and Sharma [2021], which is more
precise but takes longer (O(n3) time or O(nω), where ω is the matrix multiplication exponent, for the matrix inversion step).

B.1 APPROXIMATE EFFICIENT SOFT-LABELING OF Zhu et al. [2003]

We provide an approximation guarantee for Algorithm 2. We first need a simple lemma to upper bound matrix vector
products for positive definite matrices.

Lemma B.1. Suppose matrix A ∈ Rn×n is positive definite, with x ∈ Rn. Then ∥Ax∥2 ≤ λmax∥x∥2 where λmax is the
maximum eigenvalue of A

Proof. The idea is to normalize vector x, then consider SVD of A. Since the vectors are orthonormal, we will be able to
simplify to a form that can be upper bounded by λmax∥x∥2. Letting x̂ = x

∥x∥ and {ϕi}i∈[n] be an orthonormal basis for A,
we can write x̂ as a linear combination of {ϕi}:

x̂ =
∑
i∈[n]

αiϕi.

Now,

∥Ax̂∥22 =

∥∥∥∥∥∥A
∑
i∈[n]

αiϕi

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∑
i∈[n]

αiλiϕi

∥∥∥∥∥∥
2

2

=
∑
i∈[n]

α2
iλ

2
i (ϕi orthonormal)

≤ λ2
max (λi ≤ λmax∀i; x̂ is a unit vector).

Thus, ∥Ax∥ ≤ λmax∥x∥ using x̂ = x
∥x∥ .

Equipped with this lemma, we are ready to prove our approximation guarantee for Algorithm 2.

Theorem B.2. Suppose the function f : R → R is convex and differentiable, and that its gradient is Lipschitz continuous
with constant L > 0, i.e. we have that |f ′(x) − f ′(y)| ≤ L|x − y| for any x, y. Then for some σ ∈ [σmin, σmax], where∣∣∣ ∂f∂σ ∣∣∣ < 1

ϵλmin(I−PUU) on [σmin, σmax], κ(A) is condition number of matrix A and λmin(A) is the minimum eigenvalue

of A, we can find an ϵ approximation of fu(σ)∂fu∂σ achieving
∣∣∣fu(σ)∂fu∂σ −

(
fu(σ)

∂fu
∂σ

)
ϵ

∣∣∣ < ϵ, where fu(σ),
∂fu
∂σ are as

described in Algorithm 2 using O
(√

κ(I − PUU) log
(

n
ϵλmin(I−PUU)

))
conjugate gradient iterations.

Proof. A grounded Laplacian (aka Dirichlet Laplacian) matrix is obtained by “grounding”, i.e. removing rows and columns
corresponding to, some subset of graph nodes from the Laplacian matrix L = D −W . It is well known that the grounded
Laplacian matrix is positive definite Varga [1962], Miekkala [1993]. In particular, LUU = DUU − WUU and therefore
I − PUU = D

−1/2
UU LUUD

−1/2
UU are positive definite. This implies (I − PUU)

−1 is also positive definite with maximum
eigenvalue 1

λmin
, where λmin is the minimum eigenvalue for I − PUU . From here, note that all elements of PULfL are less

than one as all labels are 0 or 1, and P is positive in all terms and row normalized to have rowsums of 1. Therefore,

∥f(σ)∥ = ∥(I − PUU)
−1PULfL∥ ≤ 1

λmin
∥PULfL∥ ≤

√
n

λmin

where the first inequality holds via Lemma B.1.

We now have that ∥f(σ)∥ is bounded by
√
n

λmin(I−PUU) on [σmin, σmax]. To find an ϵ approximation in the sense
∥f − fϵ∥ ≤ ϵ, we set

ϵ′ = ϵλmin(I − PUU) ≤
√
nϵ

maxσ∈[σmin,σmax] f(σ)

and note
∥f − fϵ′∥ ≤ ϵ′∥f∥ ≤ ϵ

We consider this process for ∂f
∂σ as well since ∂f

∂σ is bounded by 1
ϵλmin(I−PUU) . Setting ϵ′ = ϵ2λmin(I − PUU),∣∣∣∣∂f∂σ − ∂f

∂σ ϵ

∣∣∣∣ ≤ ϵ′
∂f

∂σ
≤ ϵ

holds. Finally, letting

ϵ′ =

√
nϵ2λmin(I − PUU)

3
we achieve the desired result ∣∣∣∣f ∂f∂σ − fϵ′

∂f

∂σ ϵ′

∣∣∣∣ < ϵ′f + ϵ′
∂f

∂σ
+ ϵ′2 < ϵ.

Next we analyze the number of iterations of the CG method used. By Axelsson [1976], finding ϵ′ approximations using the
CG method on positive definite matrix G be done in

O(
√

κ(G)) log
1

ϵ′

iterations. Here we need an ϵ′ =
√
nϵ2λmin(I−PUU)

3 approximation for matrix I − PUU , so this takes

O

(√
κ(I − PUU) log

(
n

ϵλmin(I − PUU)

))
iterations of the CG method.

B.2 APPROXIMATE EFFICIENT SOFT-LABELING OF Delalleau et al. [2005]

Algorithm 1 computes the soft label corresponding to the efficient algorithm of Delalleau et al. [2005] and gradient for
a given value of graph parameter σ for a fixed unlabeled node i, by running the conjugate gradient for given number of
iterations.

We again provide an approximation guarantee for the algorithm.

Theorem B.3. Suppose the function f : R → R is convex and differentiable, and that its gradient is Lipschitz continuous
with constant L > 0, i.e. we have that |f ′(x) − f ′(y)| ≤ L|x − y| for any x, y. Then for some σ ∈ [σmin, σmax], where∣∣∣ ∂f∂σ ∣∣∣ ∈ O

(
1

ϵλmin(A)

)
on [σmin, σmax], κ(A) is condition number of matrix A and λmin(A) is the minimum eigenvalue of

A, we can find an ϵ approximation of f̃u(σ) · ∂f̃u
∂σ achieving

∣∣∣f̃u(σ)∂f̃u∂σ −
(
f̃u(σ)

∂f̃u
∂σ

)
ϵ

∣∣∣ < ϵ, where f̃u(σ),
∂f̃u
∂σ are as

described in Algorithm 1 using
O
(√

κ(A) log
(

λ(|LLabels|+|ŨLabels|)
ϵσminλmin(A)

))
conjugate gradient iterations. Here LLabels and ŨLabels are sets of labels as described

in Algorithm 1, and λ is the parameter passed into Algorithm 1.

Algorithm 1 NONPARAMETRICAPPROXIMATION(G, fL, i, σ, ϵ)[Ũ , λ]

1: Input: Graph G with labeled nodes fL and set of unlabeled nodes U , unlabeled node i ∈ U , query parameter σ, error
tolerance ϵ.

2: Hyperparameters: Small subset Ũ ⊂ U (e.g. chosen by the greedy approach of Delalleau et al. [2005], or via Wang
et al. [2016]), labeled loss regularization coefficient λ (see Delalleau et al. [2005]).

3: Output: approximate soft label f̃i,ϵ and approximate gradient ∂f̃i
∂σ ϵ

.
4: Let CG(A, b, t) represent running the conjugate gradient method for t iterations to solve equation Ax = b.
5: Let tϵ indicate the number of iterations sufficient for ϵ-approximation (Theorem B.3).
6: Let f̃i,ϵ(σ) =

∑
j∈Ũ∪L Wij(σ)fj(σ)ϵ∑

j∈Ũ∪L Wij(σ)
, where

f(σ)ϵ = CG(A, λ−→y , tϵ),

A = λ∆L +Diag(W1n)−W,

(∆L)ij = δijδi∈L,

−→y = (y1, ..., yl, 0, ..., 0)
⊤.

7: Let ∂f̃i
∂σ ϵ

=
∑

j∈Ũ∪L

∂Wij
∂σ fj(σ)+

∑
j∈Ũ∪L Wij(σ)

∂fj
∂σ ϵ

+f̃i,ϵ(σ)
∑

j∈Ũ∪L

∂Wij
∂σ∑

j∈Ũ∪L Wij
, where

∂f

∂σ ϵ
= −CG(A,

∂A

∂σ
f, tϵ),

∂A

∂σ
= Diag

(
∂W

∂σ
1n

)
− ∂W

∂σ
,

∂Wij

∂σ
=

2Wijd
2
ij

σ3
.

8: return f̃i,ϵ(σ),
∂f̃i
∂σ ϵ

.

Proof. As noted in the proof of B.2, the grounded Laplacian A is positive definite. We can now bound A−1 as in Theorem
B.2 and note that

A−1λ−→y ≤
λ
√
|LLabels|

λmin(A)

via Lemma B.1 as the vector −→y contains at most Llabels elements with value 1. Note that λ is the constant passed in to
Algorithm 1, and λmin(A) is the smallest eigenvalue of A.

Next, we argue that we can find ϵ approximations of f, ∂f
∂σ with ϵ′ =

√
|LLabels|ϵ2λmin(A)

λ similarly to Theorem 2 as well.
From here we consider f̃(σ) and note that

∣∣∣∣∣
∑

j∈Ũ∪L Wij(σ)f(σ)∑
j∈Ũ∪L Wij

−
∑

j∈Ũ∪L Wij(σ)f(σ)ϵ∑
j∈Ũ∪L Wij

∣∣∣∣∣ <
∣∣∣∣∣
∑

j∈Ũ∪L Wij∑
j∈Ũ∪L Wij

ϵ

∣∣∣∣∣ = ϵ

Finally, we show that the result holds for ∂f̃i
∂σ , noting we have proven the result for both f̃i,ϵ and ∂f

∂σ ϵ
, and noting that we

have exact values for Wij and ∂Wij

∂σ∣∣∣∣∣∂f̃i∂σ ϵ
− ∂f̃i

∂σ

∣∣∣∣∣ =
∑

j∈Ũ∪L Wij(σ)ϵ+ ϵ
∑

j∈Ũ∪L
∂Wij

∂σ∑
j∈Ũ∪L Wij(σ)

= ϵ+ ϵ

∑
j∈Ũ∪L

∂Wij

∂σ∑
j∈Ũ∪L Wij(σ)

= ϵ+
2ϵ

σ3

∑
j∈Ũ∪L e−

d2ij

σ2 d2ij∑
j∈Ũ∪L e−

d2
ij

σ2

≤ ϵ+
2ϵ

σ3

∑
j∈Ũ∪L

e−
d2ij

2σ2 dij (Cauchy-Schwartz inequality)

≤ ϵ+
2ϵ

σ3

∑
j∈Ũ∪L

σe−
1
2 (maximum of f(x) = xe−

x2

2c2 attained at x = c)

≤ ϵ

(
1 +

2(|LLabels|+ |ŨLabels|)
σ2

)

≤ ϵ

(
1 +

2(|LLabels|+ |ŨLabels|)
σ2
min

)
.

In a similar manner to Theorem 2, we need

ϵ′ =

√
|LLabels|ϵ2λmin(A)

λ

to achieve ϵ approximations of ∂f
∂σ and f̃ . Setting

ϵ′′ =
ϵ2σ2

minλmin(A)

(2(|LLabels|+ |ŨLabels|) + σ2
min)

√
|LLabels|λ

we also achieve ∣∣∣∣∣∂f̃i∂σ ϵ′
− ∂f̃i

∂σ

∣∣∣∣∣ < ϵ.

As a result, we obtain the desired bound ∣∣∣∣∣f̃u(σ)∂f̃u∂σ
−

(
f̃u(σ)

∂f̃u
∂σ

)
ϵ

∣∣∣∣∣ < ϵ.

Since we have that A is positive definite, via Axelsson [1976], This can be achieved in

O

(√
κ(A) log

1

ϵ′′

)
= O

(√
κ(A) log

(
λ(|LLabels|+ |ŨLabels|)

ϵσminλmin(A)

))

iterations of the CG method.

C CONVERGENCE OF NESTEROV’S GRADIENT DESCENT AND NEWTON’S METHOD

In this section we provide useful lemmas that provide convergence analysis for Nesterov’s gradient descent and Newton’s
method, when working with approximate gradients. First we provide a guarantee for Nesterov’s method in Theorem C.1,
which uses the result of d’Aspremont [2008] to analyse our algorithm.

Theorem C.1. Suppose the function f : R → R is convex and differentiable, and that its gradient is Lipschitz continuous
with constant L > 0, i.e. we have that |f ′(x)−f ′(y)| ≤ L|x−y| for any x, y. Then if we run Nesterov’s method to minimize

g(σ) = (f(σ)− 1
2)

2 on some range [σmin, σmax] where
∣∣∣ ∂f∂σ ∣∣∣ < 1

ϵλmin(GA) using ∂g
∂σ as defined in Algorithm 3 and finding

soft labels and derivatives as defined by some algorithm A, we can achieve an ϵ approximation σ∗
ϵ of the optimal result

σ∗ satisfying |σ∗
ϵ − σ∗| < ϵ in O(log log 1

ϵ) iterations of nesterovs method. We use O(CGA(
ϵ

42(σmax−σmin)
) log log 1

ϵ)

conjugate gradient iterations overall, where CGA(ϵ
′) is the number of conjugate gradient iterations used by algorithm A to

achieve ϵ′ approximations of f, ∂f
∂σ satisfying |fu,ϵ(σ) ∂f∂σ ϵ

− fu(σ)
∂f
∂σ | < ϵ′

Proof. First, note that ∣∣∣∣∂gu∂σ
− ∂gu

∂σ ϵ′

∣∣∣∣ = ∣∣∣∣2(fu(σ)− 1

2

)(
∂fu
∂σ

)
− 2

(
fu(σ)ϵ′ −

1

2

)(
∂fu
∂σ ϵ′

)∣∣∣∣
≤ 4ϵ′fu(σ)

∂fu(σ)

∂σ
+ 2(ϵ′)2fu(σ)

∂fu(σ)

∂σ
+ ϵ′

∂fu(σ)

∂σ

≤ 7

∣∣∣∣fu(σ)∂fu∂σ
−
(
fu(σ)

∂fu
∂σ

)
ϵ

∣∣∣∣ .
Letting

ϵ′ =
ϵ

42(σmax − σmin)

we find ϵ′ approximations of f and ∂fu
∂σ in CGA(ϵ

′) steps. We can then bound∣∣∣∣(∂g

∂σ

)
ϵ′
−
(
∂g

∂σ

)∣∣∣∣ ≤ ϵ

6(σmax − σmin)
.

On compact set [σmin, σmax] with this bound, we then have that∣∣∣∣〈(∂g

∂σ

)
ϵ′
−
(
∂g

∂σ

)
, y − z

〉∣∣∣∣ ≤ ϵ

6
∀y, z ∈ [σmin, σmax].

With this, d’Aspremont [2008] shows that Nesterov’s accelerated gradient descent using an approximate gradient will
converge to within ϵ of the optimal σ∗ ∈ [σmin, σmax] in O(1√

ϵ
) complexity. This yields O(log log 1

ϵ) steps until convergence

Next we analyze the number of iterations of the CG method used. We called algorithm A O(log log 1
ϵ) times,

each time using CGA(ϵ
′) = CGA

(
ϵ

42(σmax−σmin)

)
iterations. This yields

O

(
CGA

(
ϵ

42(σmax − σmin)

)
log log

1

ϵ

)
overall iterations of the CG method to find σ∗.

We also provide an analysis for convergence of Newton’s method using approximate gradients in Theorem C.2.

Theorem C.2. Suppose the function f : R → R has multiplicity 2 at optimal point x∗, with f(x∗) = 0. If Newton’s
accelerated method xn+1 = xn − 2 f(xn)

f ′(xn)
coverges quadratically, then so does an epsilon approximation xn+1 =

xn − f(xn)
f ′(xn)ϵ

satisfying |f ′(x)ϵ − f ′(x)| ≤ ϵ|f(x)|∀x ∈ R

Proof. First, quadratic convergence of accelerated Newton’s method gives us en+1 ≤ Le2n for some constant L, where
en = x∗ − xn is the error for the accelerated Newton’s method update, and xn+1 = xn − 2 f(xn)

f ′(xn)
.

Using the Lagrange form of the Taylor series expansion, we see that

f(xn) = f(x∗) + f ′(x∗)(x∗ − xn) + (x∗ − xn)f
′′(ξ)

with ξ between xk and x∗. Letting x∗ be the optimal point with f(x∗) = 0, f ′(x∗) = 0 by multiplicity 2, we see that
f(xk) = (x∗ − xn)f

′′(ξ). Now to handle the ϵ-approximate case note that

en+1 = x∗ − xn − 2
f(xk)

f ′(xn)ϵ

≤ x∗ − xn − 2
f(xk)

f ′(xn)(1 + ϵ)

= x∗ − xn − 2f(xk)

f ′(xn)
+

2ϵ

1 + ϵ
f(xn)

≤ Le2n +
2ϵ

1 + ϵ
f(xn)

≤ Le2n +
2ϵ

1 + ϵ
(x∗ − xn)

2f ′′(ξ)

≤
(
L+

2ϵ

1 + ϵ
f ′′(ξ)

)
e2n

as xn → x∗, we see that this is quadratic convergence if we are sufficiently close to x∗ (f ′′(ξ) < Cf ′′(x∗)∀ξ ∈
[xn, x

∗]).

D FULL PROOF DETAILS FROM SECTION 5

Theorem D.1. Given an algorithm for computing ϵ-approximate soft labels and gradients for the har-
monic objective of Zhu et al. [2003] (ZGL03APPROX), if the soft label function fu(σ) is convex and
smooth, Algorithm 3 computes (ϵ, ϵ)-approximate semi-bandit feedback for the semi-supervised loss l(σ) in time

O
(
|EG|n

√
κ(LUU) log

(
n∆

ϵλmin(LUU)

)
log log 1

ϵ

)
, where |EG| is the number of edges in graph G, LUU = I − PUU

is the normalized grounded graph Laplacian (with labeled nodes grounded), ∆ = σmax − σmin is the size of the parameter
range and κ(M) = λmax(M)

λmin(M) denotes the condition number of matrix M .

Proof. As in Balcan and Sharma [2021], note that any boundary σmin or σmax must have some fu(σ) =
1
2 . Algorithm 3

finds these boundary pieces by finding roots/zeros of
(
fu(σ)− 1

2

)2
. As noted in Theorems C.1 and C.2, both Nesterov’s

and Newton’s descent methods have quadratic convergence, so at every update step in algorithm 3 (lines 12 and 15), we con-
verge quadratically, leading to log log(1ϵ) update steps needed to satisfy |σ∗

ϵ −σ∗| < ϵ, where σ∗ is the root with gu(σ
∗) = 0.

In Theorems B.2 and B.3, we assumed that | ∂f∂σ | < 1
ϵλmin(G) for some graph G. Consider this is not the case. We

examine the Newton update, which is an upper bound on the size of the update step used as our update uses the minimum of
Newton and Nesterov steps:

2·gu(σ)
g′u(σ)

= 2 · (fu(σ)− 1/2)2

2 · (∂f/∂σ)(fu(σ)− 1/2)

=
(fu(σ)− 1/2)

(∂f/∂σ)

< ϵλmin(G)(fu(σ)− 1/2) (∵ |∂f/∂σ| > 1/ϵλmin(G))

< ϵ (∵ fu(σ) ≤ 1/λmin, cf. Thms B.2 and B.3).

Thus in this case the update step is less than ϵ, and we will terminate after one subsequent step.

As noted in Theorem B.2, we need O
(√

κ(LUU) log
(

n
ϵ′λmin(LUU)

))
CG steps to reach an ϵ′ approximation of f ∂f

∂σ .

Theorem C.1 states that we need ϵ′ = O
(

ϵ
∆

)
to find an ϵ approximation of the root σ∗, so this takes complexity

O

(√
κ(LUU) log

(
n∆

ϵλmin(LUU)

))
.

(a) Algorithm 2
|U | = 100

(b) Algorithm 2 (kNN)
|U | = 100

(c) Algorithm 1 (kNN)
|Ũ | = 100, |U | = 1000

Figure 1: Accuracy values across σ for different approaches using the CG Method with 20 iterations.

(a) MNIST (b) Fashion-MNIST (c) USPS

Figure 2: Interval calculation with labeling via Algorithm 2 (complete graph) |U | = 100.

Running a single iteration of the conjugate gradient method requires a constant number of matrix-vector products of form
Ax, where A is the weighted adjacency matrix for graph G. This computation takes O(|EG|) time. Finally, we run this
algorithm for each of the n points, leading to an overall time complexity of

O

(
|EG|n

√
κ(LUU) log

(
n∆

ϵλmin(LUU)

)
log log

1

ϵ

)
.

If G is the complete graph, |EG| ∈ O(n2). If G is a kNN graph for some fixed k, then |EG| = kn ∈ O(n).

E EXPERIMENT DETAILS AND INSIGHTS

We include further experimental details below, including implementation and insights into further challenges as well as
potential future work.

E.1 IMPLEMENTATION DETAILS

For all experiments, we consider 10 random subsets of datasets MNIST, FashionMNIST, and USPS. We will consider a
bounded parameter domain to avoid highly ill-conditioned graph matrices (Figure 5). We pick σmin based on behavior of
graph condition numbers for low σ values, where σmin is 1 for MNIST and FashionMNIST using the CG method, and .4
for USPS using the CG method. We keep σmax = 7 for all experiments. We find that Algorithm 3 does not produce valid
intervals when condition number is high, and note that ill-conditioned graphs lead to low accuracy. In Figure 1, we see that
USPS has higher accuracy values in range [.4, 1] while MNIST and FashionMNIST do not display optima until later σ
values. We find that computing a full matrix inverse is less stable than the CG method for low σ values, and use σmin = 2 for
full inverse interval calculation. We keep σmin = 1 always when calculating average number of intervals overall in Table 1
in order to compare number of intervals on the same range ([1,7]) for all problem instances.

(a) MNIST (b) Fashion-MNIST (c) USPS

Figure 3: Interval calculation with labeling via Algorithm 2, kNN with k = 6, |U | = 100.

(a) MNIST (b) Fashion-MNIST (c) USPS

Figure 4: Interval calculation with labeling via Algorithm 1. |L| = 10, |U | = 100, |Ũ | = 1000.

In order to find intervals, we begin with σ0 = σmin. Once interval [σl, σu] is calculated for σ0 = σmin, we let σ(1)
0 = σu+step

as the next initial σ. Here we use step = .05, ϵ = 1e− 4, η = 1, where ϵ and η are used as in Algorithm 3. We also consider
algorithmic optimizations to speedup runtime and improve performance of Algorithm 3, which can be found in Appendix
E.2.

E.2 ALGORITHM OPTIMIZATION

A few optimizations of Algorithm 3 were used in practice. First, note that if we update the left endpoint σl of the piecewise
constant interval containing σ0 on line 16, then we need not consider any root σl′ with σl′ < σl, as it will not change our
current left endpoint of the interval. As a result, we can stop the while loop on line 6 of Algorithm 3 if we leave current
interval range [σl, σh] at any point in the algorithm. Second, we change the while loop on line 6 to:

|σn+1 − σn| ≥ ϵ OR |fu(σu)n+1 − fu(σu)n| ≥ ϵ

(a)
√

κ(I − PUU) (D.1) (b)
√

κ(I − PUU) (D.1, kNN) (c)
√

κ(A) (5.2) (d)
√

κ(A) (5.2, kNN)

Figure 5: Condition numbers for matrices from Theorems D.1 and 5.2 for MNIST subsets size 100.

Dataset Size Time per Inverse (s),
Full Inverse

Optimal Accuracy,
Full Inverse

MNIST
500 0.1285 0.9988

1000 0.2248 0.9991
2000 0.5528 0.9986

Fashion-
MNIST

500 0.1275 0.9502
1000 0.2312 0.9775
2000 0.5454 0.9570

USPS
500 0.1445 0.9998

1000 0.2230 0.9997
2000 0.5437 1.0

Table 1: Optimal Accuracy/Average Time computing matrix inverse via Algorithm 2 (Averaged over 10 samples).

Dataset Size Time per Inverse (s),
Full Inverse

Optimal Accuracy,
Full Inverse

MNIST
500 0.1235 0.999

1000 0.2181 0.9993
2000 0.5354 0.9992

Fashion-
MNIST

500 0.1299 0.9637
1000 0.2244 0.9638
2000 0.5337 0.9683

USPS
500 0.1254 0.9998

1000 0.2189 0.9998
2000 0.5411 1.0

Table 2: Optimal Accuracy/Average Time computing matrix inverse with kNN=6 via Algorithm 2 (Averaged over 10
samples).

Noting that f values can go through very short periods of high change as evidenced by Figure 2, if f values have some
large change in a given step, then we may be making progress towards a critical point even if σ has not changed drastically.
Further, if both quantities are under ϵ yet we have a label that is not close to .5, we stop the algorithm prematurely without
having found a critical point.

Finally, for k-nearest neighbor graphs, we note that the Gaussian kernel preserves order across σ, i.e.

d(a, b) < d(c, d) =⇒ e−
d(a,b)2

σ2 > e−
d(c,d)2

σ2 ∀ σ ∈ (0,∞).

As a result, we only need to calculate k-nearest neighbors once when finding an interval centered around σ0. After a kNN
mask is computed for Wσ , it can then be used for any subsequent Wσ′ . When analyzing the time to compute all intervals in

(a) MNIST (b) Fashion-MNIST (c) USPS

Figure 6: Challenging cases for algorithm

Dataset Size Time,
CG, t = 5

Time,
CG, t = 10

Time,
CG, t = 20

Accuracy,
CG, t = 5

Accuracy,
CG, t = 10

Accuracy,
CG, t = 20

MNIST
500 0.004 0.0041 0.004 0.9971 0.9971 0.9971
1000 0.0058 0.0058 0.006 0.9958 0.9958 0.9958
2000 0.0238 0.0234 0.0234 0.9956 0.9956 0.9956

Fashion-
MNIST

500 0.0041 0.004 0.004 0.9561 0.9561 0.9561
1000 0.0058 0.0059 0.0059 0.9544 0.9544 0.9544
2000 0.0235 0.0256 0.0241 0.9579 0.9579 0.9579

USPS
500 0.0041 0.0041 0.004 0.9945 0.9945 0.9945
1000 0.0058 0.0056 0.006 0.9989 0.9989 0.9989
2000 0.0234 0.0234 0.0235 0.9792 0.9792 0.9792

Table 3: Optimal Accuracy/Average Time computing approximate matrix inverse via Algorithm 2 (Averaged over 10
samples).

a given range, this could be computed once for all starting points, but since we were interested in time for each interval, we
calculated the mask for every interval.

E.3 CHALLENGING CASES

There were certain challenging problem instances associated with Algorithm 3. First, we considered using gradient descent
methods with adaptive step size Vrahatis et al. [2000] to combat the issue of very different gradient values at different σ
values, but we found this method to be ineffective for our specific task. Some of the datasets would return singular matrices
or non-convergent matrices for very low σ values, leading to interval calculation needing to be started at some later point, as
mentioned in Section 6.1. Similarly, we find that the algorithm was more likely to miss intervals for very high values of σ
(≥ 6) as seen in Figure 6. This could be due to very different or lower condition numbers as compared to earlier σ values as
evidenced by Figure 5. One solution could be updating the learning rate η as a function of condition number or σ value. We
also find an outlier graph in the kNN Delalleau graph family displayed in Figure 5 that behaved similarly to the harmonic
minimizer graphs for low σ. In addition, we find that the algorithm may not be able to correctly find the rightmost point of
very long piecewise intervals (size 3 or more), as the descent algorithms has trouble finding critical points that are very far
from the initial σ.

Dataset Size Time,
CG, t = 5

Time,
CG, t = 10

Time,
CG, t = 20

Accuracy,
CG, t = 5

Accuracy,
CG, t = 10

Accuracy,
CG, t = 20

MNIST
500 0.0036 0.0034 0.0034 0.9988 0.9988 0.9988
1000 0.0052 0.005 0.0049 0.9865 0.9865 0.9865
2000 0.0224 0.0225 0.0225 0.9754 0.9754 0.9754

Fashion-
MNIST

500 0.0033 0.0034 0.0034 0.9692 0.9692 0.9692
1000 0.0053 0.0053 0.0052 0.9714 0.9714 0.9714
2000 0.0224 0.0224 0.0225 0.9723 0.9723 0.9723

USPS
500 0.0033 0.0034 0.0035 1.0 1.0 1.0
1000 0.0048 0.0049 0.0048 1.0 1.0 1.0
2000 0.0225 0.0225 0.0226 0.9943 0.9943 0.9943

Table 4: Optimal Accuracy/Average Time computing approximate matrix inverse via Algorithm 2 with kNN=6 (Averaged
over 10 samples)

E.4 FURTHER DIRECTIONS

While we used our method on two algorithms, namely Delalleau et al. [2005] and Zhu et al. [2003], our method could be
extended to other SSL labeling schemes that allow for a derivative ∂f

∂σ to be taken, where f is the labeling function and σ is
a hyperparameter.
One technique not explored in this work is anchor graph regularization Liu et al. [2010]. In this method, a set of points is
chosen to be "anchor points". These points are then labeled, and all other points are labeled via some weighted combination

of the labels of the anchor points. Since these anchor points are chosen via a k-means clustering idea, in order to calculate
∂f
∂σ , it is necessary to determine how the cluster centers, or anchor points, of a graph change as the parameter σ changes.
We leave this as a further direction. Another SSL technique that can be explored as a further direction is the use of leading
eigenvectors as "anchor points" Sinha and Belkin [2009]. In this method, a lasso least squares approximation is used with
respect to certain eigenvectors of the kernel matrix to create a point classifier. While the lasso least squares method has a
closed form solution, it is necessary to determine how these eigenvectors change as a function of σ. It is possible that this
change could be approximated fast using eigenvector approximation techniques like Lanczos algorithm, implementation and
verification is an interesting candidate for further research.

While we use the time saved to run Algorithm 2 faster by computing inverses from Delalleau et al. [2005] and Zhu et al.
[2003] quickly, it could also be used directly with results from any graph based SSL technique that employs radial basis
kernels and takes inverses. Further, since it is standard to use kNN graphs when doing matrix inverses as in Delalleau
et al. [2005] and Zhu et al. [2003], this would speedup an inverse on an m × m matrix from O(m3) to O(m) for an ϵ
approximation. As a result, larger subsets of data could be inverted. It has been shown that accuracy increases as more data
is used for inversion Delalleau et al. [2005], Zhu et al. [2003], and we have shown that we can match optimal accuracy of
full matrix inversion across hyperparameters with the CG-method. This signifies that using a larger dataset and finding
approximate inverses with the CG method could lead to higher accuracy than using a smaller dataset and taking exact
inverses.

We notice that larger datasets lead to much smaller interval sizes when using Algorithm 1. One way to combat this could be
to find (ϵ, ϵ)-approximate intervals whose accuracy values all fall within some δ of each other, as opposed to being piecewise
constant. In this way, we could find larger accuracy-approximate intervals, which then allow for a faster search of range
[σmin, σmax].

References

Noga Alon, Nicolo Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, and Ohad Shamir. Nonstochastic
multi-armed bandits with graph-structured feedback. SIAM Journal on Computing, 46(6):1785–1826, 2017.

Martin Anthony and Peter L Bartlett. Neural network learning: theoretical foundations, volume 9. Cambridge University
Press, Cambridge, 1999.

O. Axelsson. A class of iterative methods for finite element equations. Computer Methods in Applied Mechanics
and Engineering, 9(2):123–137, 1976. ISSN 0045-7825. doi: https://doi.org/10.1016/0045-7825(76)90056-6. URL
https://www.sciencedirect.com/science/article/pii/0045782576900566.

Maria-Florina Balcan. Book chapter Data-Driven Algorithm Design. In Beyond Worst Case Analysis of Algorithms, T.
Roughgarden (Ed). Cambridge University Press, 2020.

Maria-Florina Balcan and Dravyansh Sharma. Data driven semi-supervised learning. Advances in Neural Information
Processing Systems (NeurIPS), 34, 2021.

Maria-Florina Balcan, Travis Dick, and Wesley Pegden. Semi-bandit optimization in the dispersed setting. In Conference on
Uncertainty in Artificial Intelligence (UAI), pages 909–918. PMLR, 2020.

Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph mincuts. In International Conference
on Machine Learning (ICML), 2001.

Alexandre d’Aspremont. Smooth optimization with approximate gradient. SIAM Journal on Optimization, 19(3):1171–1183,
2008.

Olivier Delalleau, Yoshua Bengio, and Nicolas Le Roux. Efficient non-parametric function induction in semi-supervised
learning. In International Workshop on Artificial Intelligence and Statistics (AISTATS), pages 96–103. PMLR, 2005.

Wei Liu, Junfeng He, and Shih-Fu Chang. Large graph construction for scalable semi-supervised learning. In International
conference on machine learning (ICML), 2010.

Ulla Miekkala. Graph properties for splitting with grounded laplacian matrices. BIT Numerical Mathematics, 33(3):485–495,
1993.

Kaushik Sinha and Mikhail Belkin. Semi-supervised learning using sparse eigenfunction bases. Advances in Neural
Information Processing Systems (NeurIPS), 22, 2009.

Richard S Varga. Matrix iterative analysis. Prentice Hall Series in Automatic Computations, 1962.

M.N. Vrahatis, G.S. Androulakis, J.N. Lambrinos, and G.D. Magoulas. A class of gradient unconstrained minimization
algorithms with adaptive stepsize. Journal of Computational and Applied Mathematics, 114(2):367–386, 2000. ISSN
0377-0427. doi: https://doi.org/10.1016/S0377-0427(99)00276-9. URL https://www.sciencedirect.com/
science/article/pii/S0377042799002769.

Meng Wang, Weijie Fu, Shijie Hao, Dacheng Tao, and Xindong Wu. Scalable semi-supervised learning by efficient anchor
graph regularization. IEEE Transactions on Knowledge and Data Engineering, 28(7):1864–1877, 2016.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using Gaussian fields and harmonic
functions. In International Conference on Machine Learning (ICML), pages 912–919, 2003.

https://www.sciencedirect.com/science/article/pii/0045782576900566
https://www.sciencedirect.com/science/article/pii/S0377042799002769
https://www.sciencedirect.com/science/article/pii/S0377042799002769

	Proofs from Sections 3 and 4
	Sample complexity for uniform learning.

	Approximate Soft Label and Gradient Computation
	Approximate Efficient Soft-labeling of zhu2003semi
	Approximate Efficient Soft-labeling of delalleau2005efficient

	Convergence of Nesterov's Gradient Descent and Newton's Method
	Full Proof Details from Section 5
	Experiment Details and Insights
	Implementation Details
	Algorithm Optimization
	Challenging Cases
	Further Directions

