
Supplementary Materials for “Echoes Beyond Points:
Unleashing the Power of Raw Radar Data in

Multi-modality Fusion”

Supplementary Material

A Proof for column and pillar correspondence

In this section, we will provide a detailed proof for the correspondence between pillar in radar
coordinate and column in camera coordinate as described in Section 4.2 of our main paper.

Suppose that the rotation matrix and translation vector between radar and camera are:

R =

(
a1 b1 c1
a2 b2 c2
a3 b3 c3

)
, T =

(
d1
d2
d3

)
. (S1)

Then for a point located at (rbev, ϕbev, z) under radar’s polar coordinate, it has cartesian coordinate
(xR, yR, zR):

xR = rbev cos (ϕbev) , yR = rbev sin (ϕbev) , zR = z, (S2)

and it can be projected to the camera frame using extrinsic parameters:(
xC

yC
zC

)
= R

(
xR

yR
zR

)
+ T =

(
a1rbev cosϕbev + b1rbev sinϕbev + c1z + d1
a2rbev cosϕbev + b2rbev sinϕbev + c2z + d2
a3rbev cosϕbev + b3rbev sinϕbev + c3z + d3

)
. (S3)

Using the intrinsic parameters, the camera coordinate (xC , yC , zC) can be correlated with image
pixel position (xI , yI) using:

xI − u0

fx
=

xC

zC
,
yI − v0

fy
=

yC
zC

, (S4)

where fx, fy, u0, and v0 are intrinsic parameters. Our goal is to find a situation that the pillar is
projected as a column on the image plane. Under this condition, xI should be irrelevant with z, i.e.
in the equation below:

xI − u0

fx
=

xC

zC
=

a1rbev cosϕbev + b1rbev sinϕbev + c1z + d1
a3rbev cosϕbev + b3rbev sinϕbev + c3z + d3

. (S5)

The coefficients of z should be 0, which means by combining the relationship between rotation matrix
R with roll α, pitch β, and yaw γ [1], we can derive:{

c1 = sin γ sinα+ cos γ sinβ cosα = 0
c3 = cosβ cosα = 0.

(S6)

Considering second row of Eq. (S6), there are two solutions β = ±π
2 or α = ±π

2 . Considering the
first solution β = ±π

2 , the first row of Eq. (S6) is transformed to:

sin γ sinα± cos γ cosα = 0, (S7)
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which means:
cos (γ ∓ α) = 0. (S8)

Thus we have:
β =

π

2
, γ = α± π

2
, α ∈ [−π, π] ,

or, β = −π

2
, γ = −α± π

2
, α ∈ [−π, π] .

(S9)

For another solution α = ±π
2 , the first row of Eq. (S6) is transformed to:

sin γ sinα+ cos γ sinβ cosα = ± sin γ = 0. (S10)

Thus we have:
α = ±π

2
, γ = 0 or π, β ∈ [−π, π] . (S11)

As a result, the final solution is:

β =
π

2
, γ = α± π

2
, α ∈ [−π, π] ,

or, β = −π

2
, γ = −α± π

2
, α ∈ [−π, π] ,

or, α = ±π

2
, γ = 0 or π, β ∈ [−π, π] .

(S12)

x
z

y 𝛼𝛼 =
𝜋𝜋
2

Radar

y

x

z

Camera
x

y

z

𝛽𝛽

pillar@
(𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏,𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏)

column@𝑥𝑥𝐼𝐼

Figure S1: Illustration of coordinate sys-
tem transformation.

In standard ADS, the LiDAR or radar coordinate system
usually has a z-axis pointing up, while the camera coordi-
nate system has a y-axis pointing up or down. So a widely
adopted practice first exchanges the y and z axes, which
means a roll α = ±π

2 . After that, a pitch β around the
vertical y-axis is executed, while further rotation around
the z-axis is not required, as shown in Figure S1. In other
words, the roll β can be any value between −π and π,
while yaw γ is set to 0. This is exactly the situation of the
third solution of Eq. (S12). And under this condition, we
have expression of R according to [1]:

R =

(
cosβ ± sinβ 0
0 0 ∓1

− sinβ ± cosβ 0

)
, T =

(
d1
d2
d3

)
. (S13)

Thus, using Eq. (S3) and Eq. (S5), we can get the expres-
sion of column index xI . If α = π

2 , we have:

xI = u0 + fx
rbev cos (β − ϕbev) + d1
−rbev sin (β − ϕbev) + d3

. (S14)

If α = −π
2 , we have:

xI = u0 + fx
rbev cos (β + ϕbev) + d1
−rbev sin (β + ϕbev) + d3

. (S15)

For RADIal, the rotation matrix from the radar coordinate system to the camera coordinate system is:

R =

(
0.0465 −0.9989 −0.0051
−0.0476 0.0029 −0.9989
0.9978 0.0467 −0.0474

)
, (S16)

which is the approximation of (α, β, γ) = (π/2,−π/2, 0). And thus we approximately have:

xI ≈ u0 + fx
−rbev sinϕbev + d1
rbev cosϕbev + d3

. (S17)

It can be inferred that xI is almost irrelevant to z, which means one pillar in the polar coordinate of
radar corresponds to a column in the image.
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Figure S2: Visualization of ground truths and predictions from RT and image fusion. The ground
truth bounding boxes are in pink, while the predicted bounding boxes are in green with the confidence
score on its upper right. The LiDAR points and the radar points are respectively in blue and red. The
rear edge of each car is in cyan. We recommend readers to zoom in for better detail.

(c)(a) (b)

Figure S3: Statistics of RADIal dataset. Image (a) corresponds to sample distribution over range,
while images (b) and (c) correspond to yaw distribution over the range of train and test data splits.

B Visualization and Dataset Statistics

To better illustrate the performance of our method, we visualize the predictions and ground truths
in Figure S2. As can be seen from the cases in the first and the second column, our method can
accurately predict the position of vehicles. But there are several cases in which the accurate prediction
does not get high confidence, as shown in the upper case in the third column. On the other hand, the
orientation estimation error may be significant when the yaw of the vehicle is large, shown in the
inferior case in the third column. The main reason is that the samples with large yaw are relatively
rare in the dataset, as shown in Figure S3 (b) and (c).

As shown in Figure S3 (a), the samples of test data are rather rare within 30 meters and out of
80 meters. To comprehensively explore the detection performance of objects, we divide the range
into 0-50m and 50-100m, which correspond to short-range and long-range detection performance
respectively.
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Figure S4: The visualization of the old labels and new labels under Bird’s Eye View. The old labels
include 3D center points and fixed scale and orientation, denoted as green boxes. The new labels are
denoted as red boxes, which we offered real scale and orientation, as well as objects’ accurate center
position. The rear edge of each bounding box is colored in cyan. The left, middle, and right column
respectively denotes the situation of large heading angle, missed traffic participants, and vehicles of
large scale. We recommend readers to zoom in for better detail.

Table S1: LET-BEV-AP results with different longitudinal tolerance Tl. The performances of different
modality combinations of our algorithm on RADIal Dataset test split are presented, using refined 3D
bounding box annotations. C, L, and RT respectively refer to the camera, LiDAR, and range-time
data. The results with LiDAR are on gray background.

Modality Tl = 0.1, LET-BEV-AP@0.7(%)↑ Tl = 0.3, LET-BEV-AP@0.7(%)↑
C RT L Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

✓ 56.92±3.91 78.98±1.41 36.20±5.81 81.36±1.15 83.30±2.01 77.00±0.43
✓ 55.04±1.25 68.56±4.11 52.30±1.82 55.34±1.91 69.79±4.59 51.02±0.07

✓ 86.07±0.44 88.55±0.79 93.17±0.10 86.41±0.47 89.72±0.03 93.22±0.04

✓ ✓ 88.86±0.62 92.81±1.37 94.81±0.52 88.56±0.53 92.58±0.70 94.57±0.29

We further visualize scenarios that are corrected by our new labels. It is worth noting that the original
annotation and prediction of previous methods are centers of objects’ visible faces, and they assign
a fixed scale and zero orientation when calculating Average Precision (AP). But vehicles of large
angles and scales are normal in daily scenarios, as shown in Figure S4. Our new annotations based
on dense LiDAR points correct this, helping a more comprehensive evaluation of existing methods.
We also annotate other traffic participants such as pedestrians and cyclists. But due to their limited
numbers (4 cyclists, 23 pedestrians in training split, and 17 cyclists, 0 pedestrians in test split), we
don’t add more fine-grained class labels.

C Complementary property of radar and camera

To highlight the complementary nature of radar and camera properties, we investigated the perfor-
mance of LET-BEV-AP with varying longitudinal tolerance (Tl), as presented in Table S1. Notably,
when using a larger Tl of 0.3, the camera’s performance experiences a significant improvement. This
suggests that the relatively lower performance of long-range LET-BEV-AP under Tl of 0.1 primarily
stems from depth errors. By reducing the impact of longitudinal estimation, the camera’s exceptional
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Table S2: Recall with different IoU thresholds. The performances of different modality combinations
of our algorithm on RADIal Dataset test split are presented, using refined 3D bounding box annota-
tions. C, L, and RT respectively refer to the camera, LiDAR, and range-time data. The results with
LiDAR are on gray background.

Modality BEV recall@0.7(%)↑ BEV recall@0.3(%)↑
C RT L Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

✓ 62.73±1.24 73.89±2.11 61.21±0.82 86.27±0.43 92.13±0.71 93.40±0.54
✓ 86.38±0.00 89.11±0.08 93.35±0.08 91.40±0.08 96.13±0.17 96.95±0.16

✓ ✓ 86.18±0.13 89.13±0.6 92.53±0.56 91.78±0.85 95.82±0.50 97.67±1.05

Table S3: BEV detection performances of different modality combinations of our algorithm on
RADIal Dataset test split. Refined 3D bounding box annotations are applied. C, L, ADC, RD, RT,
RA, RP respectively refer to the camera, LiDAR, ADC data, range-Doppler spectrum, range-time
data, range-azimuth map, and radar point cloud. The best result without LiDAR of each metric are in
bold, and the results with LiDAR are on gray background.

Modality BEV AP@0.7(%)↑ LET-BEV-AP@0.7(%)↑
C ADC RT RD RA RP L Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

✓ 10.07±1.10 21.68±3.11 2.21±0.59 56.92±3.91 78.98±1.41 36.20±5.81
✓ 49.64±0.43 61.37±1.57 47.92±1.48 56.52±2.36 68.93±1.87 54.68±1.76

✓ 48.26±0.92 62.33±4.00 45.05±0.98 55.04±1.25 68.56±4.11 52.30±1.82
✓ 47.34±0.73 59.31±1.64 42.53±1.98 54.96±0.67 67.02±1.67 50.59±0.26

✓ 50.67±1.03 65.05±1.59 42.98±0.51 58.53±0.13 72.95±0.78 51.41±0.54
✓ 53.55±0.70 66.19±1.72 47.41±1.06 62.59±1.14 76.45±2.06 56.73±1.33

✓ 84.47±0.15 86.92±0.61 91.91±0.13 86.07±0.44 88.55±0.79 93.17±0.10

✓ ✓ 84.85±0.22 87.68±1.54 91.46±1.08 88.66±0.63 92.43±1.15 94.99±0.66
✓ ✓ 84.92±0.98 87.56±1.58 91.06±1.18 88.86±0.62 92.81±1.37 94.81±0.52
✓ ✓ 83.31±0.39 87.26±0.56 89.16±0.44 88.24±0.06 92.18±0.43 93.26±0.73
✓ ✓ 84.77±0.65 87.93±0.60 91.48±0.28 89.54±0.54 93.83±0.56 94.87±0.58
✓ ✓ 82.35±0.93 86.97±1.01 86.39±0.74 88.35±0.78 93.07±0.80 92.77±0.69
✓ ✓ 86.35±1.15 88.81±1.40 94.25±1.68 88.44±0.79 91.63±1.34 95.31±1.28

angular perception accuracy becomes more pronounced. Conversely, the LET-BEV-AP performance
of the radar-only variant remains relatively unchanged. This finding indicates that the radar’s depth
estimation is quite accurate and minimally affected by the value of Tl. Similarly, the highly accurate
LiDAR-only variant and camera and RT fusion variant don’t suffer from performance fluctuation as
well, which supports our conclusion.

To further investigate the primary factor affecting radar performance, we conducted a comparison of
BEV recall at IoU thresholds of 0.7 and 0.3, as outlined in Table S2. It can be deduced that by using a
less stringent IoU threshold, the recall of the RT-only variant experiences a significant increase. This
result suggests that the RT-only variant’s limitation mainly lies in its inferior angular localization
ability. But by combining the strengths of camera and radar modalities, the model can leverage the
advantages of both modalities, leading to a significant performance boost.

D Doppler domain multiplexing and coordinate system

As mentioned in [2], Doppler Domain Multiplexing(DDM) is used to distinguish received radar
signals from different transmitters. The mechanism can be best illustrated in Range-Doppler (RD)

Table S4: Ablation on the coordinate system. Experiments are carried on RADIal dataset, with RT
data and image as input.

BEV AP@0.7(%)↑ LET-BEV-AP@0.7(%)↑
Coordinate Overall 0 - 50m 50 - 100m Overall 0 - 50m 50 - 100m

Polar 84.92±0.98 87.56±1.58 91.06±1.18 88.86±0.62 92.81±1.37 94.81±0.52
Sphere 85.02±0.60 88.02±0.59 91.76±0.98 89.97±0.61 93.35±0.32 96.41±1.21
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Figure S5: The illustration of Doppler Domain Multiplexing(DDM). This figure shows a toy example
of how to use DDM to distinguish four transmitters.

Table S5: BEV detection performances of different modality combination on KRadar Dataset test split
with KITTI protocol of 40 recall positions. C, RA, RP respectively refer to the camera, range-azimuth
map, and radar point cloud. The best result of each metric is in bold.

BEV AP(%)↑ 3D AP(%)↑
Training set Method AP@0.3 AP@0.5 AP@0.7 AP@0.3 AP@0.5 AP@0.7

KRadar-20-train EchoFusion(RP) 55.74 43.94 20.56 53.40 29.21 2.90
KRadar-20-train EchoFusion(RA) 54.45 42.28 17.97 51.75 24.65 3.85
KRadar-20-train EchoFusion(RP+C) 66.46 54.17 26.39 58.62 34.67 3.96
KRadar-20-train EchoFusion(RA+C) 68.70 55.90 29.65 66.68 34.33 5.34

spectrum format of data, as shown in Figure S5. Without DDM, the valid measurable speed interval
is [−Vmax, Vmax]. Suppose we have four transmitters, Tx 1/2/3/4, and one object with speed in
[0, Vmax/2]. The echo signals from Tx 1/2/3/4 will respectively fall into sections C, D, A, B by using
DDM, showing a periodical pattern. But now we can only measure speed in [0, Vmax/2]. Similar
phenomenon can be observed in the figure of Range Doppler data, i.e. the third image in ?? in the
paper.

We also carried out experiments on coordinate system of BEV space. Though the range dimension
is under sphere system, we found that a polar system can achieve on par performance, as shown in
Table S4. Thus we apply the polar system in the paper.

E More experimental results

Referring to Table S3, we have included the detection performance when our model consumes the
ADC data or range-Doppler spectrum as input. It is worth noticing that we add an extra complex
linear layer initialized with FFT coefficients for ADC data to replace the range FFT and the side-lobe
suppression. In the case of the single modality version, the performance discrepancy between RT and
these two modalities remains within the margin of error. When considering the fusion of image data,
the performance of RD slightly lags behind that of RT, while that of ADC is almost the same as RT.
These findings suggest that the integration of image data significantly mitigates the importance of
conventional radar signal processing in accurate radar-based detection.

Besides, we offer ablation of different modality combinations on KRadar. The results are reported in
Table S5. Here, we train all models with training split. The RA map shows considerable superiority
over radar point cloud when fusing with the monocular image, which aligns with our research
motivation and results on RADIal dataset.
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