
A Additional statements and proofs

This appendix includes the missing proofs of the results presented in the main text, additional results,
and some helpful lemmas.

Fact 1 (Thm. 5.2.1 of Gray [11]). Let P and Q be two probability measures defined on the same
measurable space (Ω,F), such that P is absolutely continuous with respect to Q. Then the Donsker-
Varadhan dual characterization of Kullback-Leibler divergence states that

KL (P ‖ Q) = sup
X

{
EP [X]− logEQ

[
eX
]}
, (30)

X is any random variable defined on (Ω,F) such that both EP [X] and EQ
[
eX
]

exist.

Lemma 2. If X is a σ-subgaussian random variable with zero mean, then

E eλX
2

≤ 1 + 8λσ2, ∀λ ∈
[
0,

1

4σ2

)
. (31)

Proof. As X is σ-subgaussian and EX = 0, the k-th moment of X can be bounded the following
way [35]:

E |X|k ≤ (2σ2)k/2kΓ(k/2), ∀k ∈ N, (32)

where Γ(·) is the Gamma function. Continuing,

E eλX
2

= E

[ ∞∑
k=0

(λX2)k

k!

]
(33)

= 1 +

∞∑
k=1

E

(
(
√
λ|X|)2k

k!

)
(by Fubini’s theorem) (34)

≤ 1 +

∞∑
k=1

(
(2λσ2)k · 2k · Γ(k)

k!

)
(by (32)) (35)

= 1 + 2

∞∑
k=1

(2λσ2)k. (36)

When λ ≤ 1/(4σ2), the infinite sum of (36) converges to a value that is at most twice of the first
element of the sum. Therefore

E eλX
2

≤ 1 + 8λσ2, ∀λ ∈
[
0,

1

4σ2

)
. (37)

Lemma 3. Let X and Y be independent random variables. If g is a measurable function such that
g(x, Y ) is σ-subgaussian and E g(x, Y ) = 0 for all x ∈ X , then g(X,Y ) is also σ-subgaussian.

Proof. As E g(X,Y ) = 0, we have that

EX,Y exp {t (g(X,Y )− EX,Y g(X,Y ))} = EX,Y exp {tg(X,Y )} (38)
= Ex∼X [EY exp {tg(x, Y )}] (by independence of X and Y ) (39)

≤ Ex∼X et
2σ2

(by subgaussianity of g(x, Y )) (40)

= et
2σ2

. (41)
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A.1 Proof of Lemma 1

We use the Donsker-Varadhan inequality (see Fact 1) for I(Φ; Ψ) and λg(φ, ψ), where λ ∈ R is any
constant:

I(Φ; Ψ) = KL (PΦ,Ψ ‖ PΦ ⊗ PΨ) (by definition) (42)

≥ EΦ,Ψ [λg(Φ,Ψ)]− logEΦ̄,Ψ̄

[
eλg(Φ̄,Ψ̄)

]
(by Fact 1) (43)

= EΦ,Ψ [λg(Φ,Ψ)]− logEΦ,Ψ̄

[
eλg(Φ,Ψ̄)

]
(as PΦ̄,Ψ̄ = PΦ,Ψ̄). (44)

The subgaussianity of g(Φ, Ψ̄) implies that

logEΦ,Ψ̄

[
eλ(g(Φ,Ψ̄)−E[g(Φ,Ψ̄)])

]
≤ λ2σ2

2
, ∀λ ∈ R. (45)

Plugging this into (44), we get that

I(Φ; Ψ) ≥ λ
(
EΦ,Ψ [g(Φ,Ψ)]− EΦ,Ψ̄

[
g(Φ, Ψ̄)

])
− λ2σ2

2
. (46)

Picking λ to maximize the right-hand side, we get that

I(Φ; Ψ) ≥ 1

2σ2

(
EΦ,Ψ [g(Φ,Ψ)]− EΦ,Ψ̄

[
g(Φ, Ψ̄)

])2
, (47)

which proves the first part of the lemma.

To prove the second part of the lemma, we are going to use Donsker-Varadhan inequality again, but
for a different function. Let λ ∈

[
0, 1

4σ2

)
and define

g̃(φ, ψ) , λ
(
g(φ, ψ)− EΨ̄ g(φ, Ψ̄)

)2
. (48)

By assumption E g̃(Φ,Ψ) exists. Note that for each fixed φ, the random variable g(φ, Ψ̄)−EΨ̄ g(φ, Ψ̄)
has zero mean and is σ-subgaussian, by the additional assumptions of the second part of the lemma.
As a result, E exp

(
g̃(Φ, Ψ̄)

)
= Eφ∼Φ EΨ̄ exp

(
g̃(φ, Ψ̄)

)
also exists (by Lemma 2). Therefore,

Donsker-Varadhan is applicable for g̃ and gives the following:

I(Φ; Ψ) ≥ EΦ,Ψ [g̃(Φ,Ψ)]− logEΦ,Ψ̄

[
eg̃(Φ,Ψ̄)

]
(49)

= λE
[(
g(Φ,Ψ)− EΨ̄ g(Φ, Ψ̄)

)2]− logEφ∼Φ EΨ̄ exp
{
λ
(
g(φ, Ψ̄)− EΨ̄ g(φ, Ψ̄)

)2}
(50)

≥ λE
[(
g(Φ,Ψ)− EΨ̄ g(Φ, Ψ̄)

)2]− log
(
1 + 8λσ2

)
(by Lemma 2). (51)

Picking λ→ 1/(4σ2), we get

I(Φ; Ψ) ≥ 1

4σ2
E
[(
g(Φ,Ψ)− EΨ̄ g(Φ, Ψ̄)

)2]− log 3, (52)

which proves the desired inequality. To prove the last part of the lemma, we just use the Markov’s
inequality and combine with this last result:

P
(∣∣g(Φ,Ψ)− EΨ̄ g(Φ, Ψ̄)

∣∣ ≥ ε) = P
((
g(Φ,Ψ)− EΨ̄ g(Φ, Ψ̄)

)2 ≥ ε2) (53)

≤
E
(
g(Φ,Ψ)− EΨ̄ g(Φ, Ψ̄)

)2
ε2

(54)

≤ 4σ2(I(Φ; Ψ) + log 3)

ε2
. (55)

A.2 Proof of Thm. 2.2

Let us fix a value of U . Conditioning on U = u keeps the distribution of W and S intact, as U is
independent of R and S. Let us set Φ = W,Ψ = Su, and

g(w, su) =
1

m

m∑
i=1

(`(w, sui
)− EZ′∼D `(w,Z ′)) . (56)
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Note that for each value of w, the random variable g(w, S̄u) is σ√
m

-subgaussian, as it is a sum of m
i.i.d. σ-subgaussian random variables. Furthermore, ∀w, E g(w, S̄u) = 0. These two statements
together and Lemma 3 imply that g(W, S̄u) is also σ√

m
-subgaussian. Therefore, with these choices

of Φ,Ψ, and g, Lemma 1 gives that∣∣∣∣∣ES,R
[

1

m

m∑
i=1

`(W,Sui
)− EZ′∼D `(W,Z ′)

]∣∣∣∣∣ ≤
√

2σ2

m
I(W ;Su). (57)

Taking expectation over u on both sides, then swapping the order between expectation over u and
absolute value (using Jensen’s inequality), we get∣∣∣∣∣ES,R,u∼U

[
1

m

m∑
i=1

`(W,Sui
)− EZ′∼D `(W,Z ′)

]∣∣∣∣∣ ≤ Eu∼U

√
2σ2

m
I(W ;Su). (58)

This proves the first part of the theorem as the left-hand side is equal to the absolute value of the
expected generalization gap, |ES,R [L(A,S,R)− Lemp(A,S,R)]|.
The second part of Lemma 1 gives that

ES,R

(
1

m

m∑
i=1

`(W,Sui
)− EZ′∼D `(W,Z ′)

)2

≤ 4σ2

m
(I(W ;Su) + log 3) . (59)

When u = [n], (59) becomes

ES,R (L(A,S,R)− Lemp(A,S,R))
2 ≤ 4σ2

n
(I(W ;S) + log 3) , (60)

proving the second part of the theorem.

Note that in case of m = 1 and u = {i}, (59) becomes

ES,R (`(W,Zi)− EZ′∼D `(W,Z ′))
2 ≤ 4σ2 (I(W ;Zi) + log 3) . (61)

Unfortunately, this result is not useful for bounding ES,R (L(A,S,R)− Lemp(A,S,R))
2, as for

large n the log 3 term will likely dominate over I(W ;Zi).

A.3 Proof of Proposition 1

Before we prove Proposition 1, we establish two useful lemmas that will be helpful also in the proofs
of Proposition 2, Proposition 3, Thm. 2.3, Thm. A.1 and Thm. 3.2.

Lemma 4. Let Ψ = (Ψ1, . . . ,Ψn) be a collection of n independent random variables and Φ be
another random variable defined on the same probability space. Then

∀i ∈ [n], I(Φ; Ψi) ≤ I(Φ; Ψi | Ψ−i), (62)

and

I(Φ; Ψ) ≤
n∑
i=1

I(Φ; Ψi | Ψ−i). (63)

Proof. First, for all i ∈ [n],

I(Φ; Ψi | Ψ−i) = I(Φ; Ψi)− I(Ψi; Ψ−i) + I(Ψi; Ψ−i | Φ) (chain rule of MI) (64)
= I(Φ; Ψi) + I(Ψi; Ψ−i | Φ) (Ψi ⊥⊥ Ψ−i) (65)
≥ I(Φ; Ψi) (nonnegativity of MI). (66)
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Second,

I(Φ; Ψ) =

n∑
i=1

I(Φ; Ψi | Ψ<i) (67)

=

n∑
i=1

(I(Φ; Ψi | Ψ<i,Ψ>i) + I(Ψi; Ψ>i | Ψ<i)− I(Ψi; Ψ>i | Ψ<i,Φ)) (68)

=

n∑
i=1

(I(Φ; Ψi | Ψ<i,Ψ>i)− I(Ψi; Ψ>i | Ψ<i,Φ)) (69)

≤
n∑
i=1

I(Φ; Ψi | Ψ<i,Ψ>i) (70)

=

n∑
i=1

I(Φ; Ψi | Ψ−i). (71)

The first two equalities above use the chain rule of mutual information, while the third one uses the
independence of Ψ1, . . . ,Ψn. The inequality of the fourth line relies on the nonnegativity of mutual
information.

The quantity
∑n
i=1 I(Φ; Ψi | Ψ−i) is also known as erasure information and is denoted by

I−(Φ; Ψ) [34].
Lemma 5. Let S = (Z1, . . . , Zn) be a collection of n independent random variables and Φ be
an arbitrary random variable defined on the same probability space. Then for any subset u′ ⊆
{1, 2, . . . , n} of size m+ 1 the following holds:

I(Φ;Su′) ≥
1

m

∑
k∈u′

I(Φ;Su′\{k}). (72)

Proof.

(m+ 1)I(Φ;Su′) =
∑
k∈u′

I(Φ;Su′\{k}) +
∑
k∈u′

I(Φ;Zk | Su′\{k}) (chain-rule of MI) (73)

≥
∑
k∈u′

I(Φ;Su′\{k}) + I(Φ;Su′) (second part of Lemma 4).

(74)

Proof of Proposition 1. By Lemma 5 with Φ = W , for any subset u′ of size m+ 1 the following
holds:

I(W ;Su′) ≥
1

m

∑
k∈u′

I(W ;Su′\{k}). (75)

Therefore,

φ

(
1

m+ 1
I(W ;Su′)

)
≥ φ

(
1

m(m+ 1)

∑
k∈u′

I(W ;Su′\{k})

)
(76)

≥ 1

m+ 1

∑
k∈u′

φ

(
1

m
I(W ;Su′\{k})

)
. (by Jensen’s inequality) (77)

Taking expectation over u′ on both sides, we have hat

EU ′ φ
(

1

m+ 1
I(W ;Su′)

)
≥ EU ′

[
1

m+ 1

∑
k∈u′

φ

(
1

m
I(W ;Su′\{k})

)]
(78)

=
∑
u

αuφ

(
1

m
I(W ;Su)

)
. (79)

17



For each subset u of size m, the coefficient αu is equal to

αu =
1(
n

m+ 1

) · 1

m+ 1
· (n−m) =

1(
n
m

) . (80)

Therefore ∑
u

αuφ

(
1

m
I(W ;Su)

)
= EU φ

(
1

m
I(W ;Su)

)
. (81)

A.4 Proof of Thm. 2.3

Using Lemma 4 with Φ = W and Ψ = S, we get that

I(W ;Zi) ≤ I(W ;Zi | Z−i) and I(W ;S) ≤
∑
i=1

I(W ;Zi | Z−i). (82)

Plugging these upper bounds into Thm. 2.2 completes the proof.

A.5 Proof of Thm. 2.6

Let us condition on U = u and Z̃ = z̃. Let Φ = A(z̃S , R), Ψ = Su, and

g(φ, ψ) =
1

m

m∑
i=1

(
`(φ, (z̃u)i,ψi)− `(φ, (z̃u)i,neg(ψi))

)
. (83)

Note that by our assumption, for any w ∈ W each summand of g(w, S̄u) is in [−1,+1], hence is
a 1-subgaussian random variable. Furthermore, each of these summands has zero mean. As the
average of m independent and zero-mean 1-subgaussian variables is 1√

m
-subgaussian, then g(w, S̄u)

is 1√
m

-subgaussian for each w ∈ W . Additionally, ∀w ∈ W, ES̄ g(w, S̄u) = 0. Therefore, by
Lemma 3, g(Φ, S̄u) is also 1√

m
-subgaussian. With these choices of Φ,Ψ, and g(φ, ψ), we use

Lemma 1. To avoid notational clutter we will denote the random variable A(z̃S , R) by W , hiding its
dependence on z̃, R, S.1 First,

ES,R g(W,Su) = ES,R

[
1

m

m∑
i=1

(
`(W, (z̃u)i,(Su)i)− `(W, (z̃u)i,neg((Su)i))

)]
. (84)

Second,

ES,R,S̄
[
g(W, S̄u)

]
= 0. (85)

Therefore, Lemma 1 gives∣∣∣∣∣ES,R
[

1

m

m∑
i=1

(
`(W, (z̃u)i,(Su)i)− `(W, (z̃u)i,neg((Su)i))

)]∣∣∣∣∣ ≤
√

2

m
I(W ;Su). (86)

Taking expectation over u on both sides and using Jensen’s inequality to switch the order of absolute
value and expectation of u, we get∣∣∣∣∣ES,R,u∼U

[
1

m

m∑
i=1

(
`(W, (z̃u)i,(Su)i)− `(W, (z̃u)i,neg((Su)i))

)]∣∣∣∣∣ ≤ Eu∼U

√
2

m
I(W ;Su), (87)

which reduces to∣∣∣∣∣ES,R
[

1

n

n∑
i=1

(
`(W, z̃i,Si

)− `(W, z̃i,neg(Si))
)]∣∣∣∣∣ ≤ Eu∼U

√
2

m
I(W ;Su). (88)

1Expressions like Ez̃∼Z̃ W will mean Ez̃∼Z̃ A(z̃S , R).
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This can be seen as bounding the expected generalization gap for a fixed z̃. Taking expectation over z̃
on both sides, and then using Jensen’s inequality to switch the order of absolute value and expectation
of z̃, we get∣∣∣∣∣Ez̃∼Z̃,S,R

[
1

n

n∑
i=1

(
`(W, z̃i,Si

)− `(W, z̃i,neg(Si))
)]∣∣∣∣∣ ≤ Ez̃∼Z̃,u∼U

√
2

m
I(W ;Su) (89)

Finally, noticing that left-hand side is equal to the absolute value of the expected generalization gap,∣∣∣EZ̃,S,R [L(A, Z̃S , R)− Lemp(A, Z̃S , R)
]∣∣∣, completes the proof of the first part of this theorem.

When u = [n], applying the second part of Lemma 1 gives

ES,R

(
1

n

n∑
i=1

(
`(W, z̃i,Si)− `(W, z̃i,neg(Si))

))2

≤ 4

n
(I(W ;S) + log 3). (90)

Taking expectation over z̃, we get

Ez̃∼Z̃,S,R

(
1

n

n∑
i=1

(
`(W, z̃i,Si

)− `(W, z̃i,neg(Si))
))2

︸ ︷︷ ︸
B

≤ 4

n
Ez̃∼Z̃(I(W ;S) + log 3). (91)

Continuing,

EZ̃,S,R
(
L(A, Z̃S , R)− Lemp(A, Z̃S , R)

)2

= Ez̃∼Z̃,S,R

(
1

n

n∑
i=1

`(W, z̃i,Si
)− EZ′∼D `(W,Z ′)

)2

(92)

≤ 2B + 2Ez̃∼Z̃,S,R

(
1

n

n∑
i=1

`(W, z̃i,neg(Si))− EZ′∼D `(W,Z ′)

)2

(93)

= 2B + 2Ez̃∼Z̃,S,R

(
1

n

n∑
i=1

(
`(W, z̃i,neg(Si))− EZ′∼D `(W,Z ′)

))2

(94)

= 2B + 2EZ̃S ,Z̃neg(S),R

(
1

n

n∑
i=1

(
`(A(Z̃S , R), (Z̃neg(S))i)− EZ′∼D `(A(Z̃S , R), Z ′)

))2

(95)

= 2B + 2EZ̃S ,R
EZ̃neg(S)|Z̃S ,R

(
1

n

n∑
i=1

(
`(A(Z̃S , R), (Z̃neg(S))i)− EZ′∼D `(A(Z̃S , R), Z ′)

))2

.

(96)

Note that as Z̃neg(S) is independent of (Z̃S , R), conditioning on (Z̃S , R) does not change its distribu-
tion, implying that its components stay independent of each other. For each fixed values Z̃S = z and
R = r, the inner part of the outer expectation in (96) becomes

EZ̃neg(S)

(
1

n

n∑
i=1

(
`(A(z, r), (Z̃neg(S))i)− EZ′∼D `(A(z, r), Z ′)

))2

, (97)

which is equal to

EZ′1,Z′2,...,Z′n

(
1

n

n∑
i=1

(
`(A(z, r), Z ′i)− EZ′i `(A(z, r), Z ′i)

))2

, (98)

where Z ′1, . . . , Z
′
n are n i.i.d. samples from D. The expression in (98) is simply the variance of the

average of n i.i.d [0, 1]-bounded random variables. Hence, it can be bounded by 1/(4n). Connecting
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this result with (96), we get

EZ̃,S,R
(
L(A, Z̃S , R)− Lemp(A, Z̃S , R)

)2

≤ 2B +
1

2n
(99)

≤ 2Ez̃∼Z̃

[
4

n
(I(W ;S) + log 3)

]
+

1

2n
(100)

≤ Ez̃∼Z̃

[
8

n
(I(W ;S) + 2)

]
. (101)

A.6 Proof of Proposition 2

The proof follows that of Proposition 1, with the only difference that W is replaced with A(z̃S , R).

A.7 Thm. A.1

Theorem A.1. If `(w, z) ∈ [0, 1],∀w ∈ W, z ∈ Z , then∣∣∣EZ̃,S,R [L(A, Z̃S , R)− Lemp(A, Z̃S , R)
]∣∣∣ ≤ Ez̃∼Z̃

[
1

n

n∑
i=1

√
2I(A(z̃S , R);Si | S−i)

]
, (102)

and

EZ̃,S,R
(
L(A, Z̃S , R)− Lemp(A, Z̃S , R)

)2

≤ 8

n

(
Ez̃∼Z̃

[
n∑
i=1

I(A(z̃S , R);Si | S−i)

]
+ 2

)
.

(103)

Proof. For a fixed z̃, using Lemma 4 with Φ = A(z̃S , R) and Ψ = S, we get that

I(A(z̃S , R);Si) ≤ I(A(z̃S , R);Si | S−i), (104)

and

I(A(z̃S , R);S) ≤
n∑
i=1

I(A(z̃S , R);Si | S−i). (105)

Using these upper bounds in Thm. 2.6 proves the theorem.

A.8 Proof of Thm. 3.1

Let us condition on U = u and Z̃ = z̃. To simplify the notation we will use F as a shorthand for
f(z̃S , x̃, R), the predictions on the all n pairs after training on z̃S with randomness R. Expressions
like Ez̃∼Z̃ F will mean Ez̃∼Z̃ f(z̃S , x̃, R). Furthermore, when ŷ and y are collection of predictions
and labels, we will use `(ŷ, y) to denote the average loss.

We are going to use Lemma 1 with Φ = Fu, Ψ = Su, and

g(φ, ψ) = `(φψ, (ỹu)ψ)− `(φneg(ψ), (ỹu)neg(ψ)) (106)

=
1

m

(
m∑
i=1

`(φi,ψi
, (ỹu)i,ψi

)− `(φi,neg(ψ)i , (ỹu)i,neg(ψ)i)

)
. (107)

The function g(φ, ψ) computes the generalization gap measured on pairs of the examples specified
by subset u, assuming that predictions are given by φ and the training/test set split is given by
ψ. Note that by our assumption, for any φ each summand of g(φ, S̄u) is a 1-subgaussian random
variable. Furthermore, each of these summands has zero mean. As the average of m independent
and zero-mean 1-subgaussian variables is 1√

m
-subgaussian, then g(φ, S̄u) is 1√

m
-subgaussian for

each possible φ. Additionally, ∀φ ∈ Km×2, ES̄ g(φ, S̄u) = 0. By Lemma 3, g(Fu, S̄u) is also
1√
m

-subgaussian. Hence, these choices of Φ,Ψ, and g(φ, ψ) satisfy the assumptions of Lemma 1.
We have that

ES,R g(Fu, Su) = ES,R
[
`((Fu)Su , (ỹu)Su)− `((Fu)neg(S)u , (ỹu)neg(S)u

]
, (108)
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and

EFu,S̄u

[
g(Fu, S̄u)

]
= 0. (109)

Therefore, the first part of Lemma 1 gives∣∣ES,F [`((Fu)Su , (ỹu)Su)− `((Fu)neg(S)u , (ỹu)neg(S)u

]∣∣ ≤√ 2

m
I(Fu;Su). (110)

Taking expectation over u on both sides, and then using Jensen’s inequality to swap the order of
absolute value and expectation of u, we get∣∣ES,R,u∼U [`((Fu)Su , (ỹu)Su)− `((Fu)neg(S)u , (ỹu)neg(S)u)

]∣∣ ≤ Eu∼U

√
2

m
I(Fu;Su), (111)

which reduces to∣∣ES,R [`(FS , ỹS)− `(Fneg(S), ỹneg(S))
]∣∣ ≤ Eu∼U

√
2

m
I(Fu;Su). (112)

This can be seen as bounding the expected generalization gap for a fixed z̃. Taking expectation over z̃
on both sides and using Jensen’s inequality to switch the order of absolute value and expectation of z̃,
we get ∣∣∣Ez̃∼Z̃,S,R [`(FS , ỹS)− `(Fneg(S), ỹneg(S))

]∣∣∣ ≤ Ez̃∼Z̃,u∼U

√
2σ2

m
I(Fu;Su). (113)

Noticing that the left-hand side is equal to the absolute value of the expected generalization gap,
EZ̃,R,S

[
L(f, Z̃S , R)− Lemp(f, Z̃S , R)

]
, completes the proof of the first part of the theorem.

When u = [n], applying the second part of Lemma 1 gives

ES,R
(
`(FS , ỹS)− `(Fneg(S), ỹneg(S))

)2 ≤ 4

n
(I(F ;S) + log 3). (114)

Taking expectation over z̃, we get

Ez̃∼Z̃,S,R
(
`(FS , ỹS)− `(Fneg(S), ỹneg(S))

)2︸ ︷︷ ︸
B

≤ Ez̃∼Z̃

[
4

n
(I(F ;S) + log 3)

]
. (115)

Continuing,

EZ̃,R,S
(
L(f, Z̃S , R)− Lemp(f, Z̃S , R)

)2

= Ez̃∼Z̃,S,R (`(FS , ỹS)− EZ′∼D `(f(z̃S , X
′, R), Y ′))

2

(116)

≤ 2B + 2Ez̃∼Z̃,S,R
(
`(Fneg(S), ỹneg(S))− EZ′∼D `(f(z̃S , X

′, R), Y ′)
)2

(117)

= 2B + 2Ez̃∼Z̃,S,R

(
1

n

n∑
i=1

(
`(Fi,neg(S)i , ỹi,neg(S)i)− EZ′∼D `(f(z̃S , X

′, R), Y ′)
))2

(118)

= 2B + 2EZ̃S ,R,Z̃neg(S)

(
1

n

n∑
i=1

(
`(f(Z̃S , X̃neg(S), R)i, (Ỹneg(S))i)− EZ′∼D `(f(Z̃S , X

′, R), Y ′)
))2

(119)

= 2B + 2EZ̃S ,R
EZ̃neg(S)|Z̃S ,R

(
1

n

n∑
i=1

(
`(f(Z̃S , X̃neg(S), R)i, (Ỹneg(S))i)− EZ′∼D `(f(Z̃S , X

′, R), Y ′)
))2

.

(120)

Note that as Z̃neg(S) is independent of (Z̃S , R), conditioning on (Z̃S , R) does not change its distribu-
tion, implying that its components stay independent of each other. For each fixed values Z̃S = z and
R = r, the inner part of the expectation in (120) becomes

EZ̃neg(S)

(
1

n

n∑
i=1

(
`(f(z, X̃neg(S), r)i, (Ỹneg(S))i)− EZ′∼D `(f(z,X ′, r), Y ′)

))2

, (121)
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which is equal to

EZ′1,Z′2,...,Z′n

(
1

n

n∑
i=1

(
`(f(z,X ′i, Y

′
i )− EZ′i `(f(z,X ′i, r), Y

′
i )
))2

, (122)

where Z ′1, . . . , Z
′
n are n i.i.d. samples from D. The expression in (122) is simply the variance of the

average of n i.i.d [0−1]-bounded random variables. Hence, it can be bounded by 1/(4n). Connecting
this result with (120), we get

EZ̃,R,S
(
L(f, Z̃S , R)− Lemp(f, Z̃S , R)

)2

≤ 2B +
1

2n
(123)

≤ 2Ez̃∼Z̃

[
4

n
(I(F ;S) + log 3)

]
+

1

2n
(124)

≤ Ez̃∼Z̃

[
8

n
(I(F ;S) + 2)

]
. (125)

A.9 Proof of Proposition 3

The proof closely follows that of Proposition 1. The only difference is that f(z̃S , x̃u, R) depends on
u, while W does not.

If we fix a subset u′ of size m+ 1, set Φ = f(z̃S , x̃u′ , R)), and use Lemma 5, we get

I(f(z̃S , x̃u′ , R);Su′) ≥
1

m

∑
k∈u′

I(f(z̃S , x̃u′ , R);Su′\{k}) (126)

≥ 1

m

∑
k∈u′

I(f(z̃S , x̃u′\{k}, R);Su′\{k}). (removing predictions on pair k can not increase MI)

(127)

Therefore,

φ

(
1

m+ 1
I(f(z̃S , x̃u′ , R);Su′)

)
≥ φ

(
1

m(m+ 1)

∑
k∈u′

I(f(z̃S , x̃u′\{k}, R);Su′\{k})

)
(128)

≥ 1

m+ 1

∑
k∈u′

φ

(
1

m
I(f(z̃S , x̃u′\{k}, R);Su′\{k})

)
(by Jensen’s inequality) (129)

Taking expectation over U ′ on both sides, we have

EU ′ φ
(

1

m+ 1
I(f(z̃S , x̃u′ , R);Su′)

)
≥ EU ′

[
1

m+ 1

∑
k∈u′

φ

(
1

m
I(f(z̃S , x̃u′\{k}, R);Su′\{k})

)]
(130)

=
∑
u

αuφ

(
1

m
I(f(z̃S , x̃u, R);Su)

)
. (131)

For each subset u of size m, the coefficient αu is equal to

αu =
1(
n

m+ 1

) · 1

m+ 1
· (n−m) =

1(
n
m

) . (132)

Therefore ∑
u

αuφ

(
1

m
I(f(z̃S , x̃u, R);Su)

)
= EU φ

(
1

m
I(f(z̃S , x̃u, R);Su)

)
. (133)
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A.10 Proof of Thm. 3.2

Let us fix z̃. Setting Φ = f(z̃S , x̃i, R), Ψ = S, and using the first part of Lemma 4, we get that
I(f(z̃S , x̃i, R);Si) ≤ I(f(z̃S , x̃i, R);Si | S−i). (134)

Next, setting Φ = f(z̃S , x̃, R), Ψ = S, and using the second part of Lemma 4, we get that

I(f(z̃S , x̃, R);S) ≤
n∑
i=1

I(f(z̃S , x̃, R);Si | S−i). (135)

Using these upper bounds in Thm. 3.1 proves this theorem.

A.11 Proof of Thm. 4.1

Let k denote the number of distinct values f(z̃S , x̃, R) can take by varying S and R. Clearly, k is not
more than the growth function ofH evaluated at 2n. Applying the Sauer-Shelah lemma [29, 30], we
get that

k ≤
d∑
i=0

(
2n
i

)
. (136)

The Sauer-Shelah lemma also states that if 2n > d+ 1 then
d∑
i=0

(
2n
i

)
≤
(

2en

d

)d
. (137)

If 2n ≤ d+ 1, one can upper bound k by 22n ≤ 2d+1. Therefore

k ≤ max

{
2d+1,

(
2en

d

)d}
. (138)

Finally, as a f(z̃S , x̃, R) is a discrete variable with k states,
f -CMI(f, z̃) ≤ H(f(z̃S , x̃, R)) ≤ log(k). (139)

A.12 Proof of Proposition 4

The proof below uses the independence of S1, . . . , Sn and the convexity of KL divergence, once for
the first and once for the second argument.

I(f(z̃S , x,R);Si | S−i) = KL (f(z̃S , x,R)|S ‖ f(z̃S , x,R)|S−i) (140)

=
1

2
KL (f(z̃Si←0 , x,R)|S−i ‖ f(z̃S , x,R)|S−i) (141)

+
1

2
KL (f(z̃Si←1 , x,R)|S−i ‖ f(z̃S , x,R)|S−i) (142)

=
1

2
KL
(
f(z̃Si←0 , x,R)|S−i ‖

1

2
(f(z̃Si←0 , x,R) + f(z̃Si←1 , x,R)) |S−i

)
(143)

+
1

2
KL
(
f(z̃Si←1 , x,R)|S−i ‖

1

2
(f(z̃Si←0 , x,R) + f(z̃Si←1 , x,R)) |S−i

)
(144)

≤ 1

4
KL (f(z̃Si←0 , x,R)|S−i ‖ f(z̃Si←0 , x,R)|S−i) (145)

+
1

4
KL (f(z̃Si←0 , x,R)|S−i ‖ f(z̃Si←1 , x,R)|S−i) (146)

+
1

4
KL (f(z̃Si←1 , x,R)|S−i ‖ f(z̃Si←0 , x,R)|S−i) (147)

+
1

4
KL (f(z̃Si←1 , x,R)|S−i ‖ f(z̃Si←1 , x,R)|S−i) (148)

=
1

4
KL (f(z̃Si←0 , x,R)|S−i ‖ f(z̃Si←1 , x,R)|S−i) (149)

+
1

4
KL (f(z̃Si←1 , x,R)|S−i ‖ f(z̃Si←0 , x,R)|S−i) . (150)
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A.13 Proof of Thm. 4.2

Given a deterministic algorithm f , we consider the algorithm that adds Gaussian noise to the
predictions of f :

fσ(z, x,R) = f(z, x) + ξ, (151)
where ξ ∼ N (0, σ2Id). The function fσ is constructed in a way that the noise terms are independent
for each possible combination of z and x.2

First we relate the generalization gap of fσ to that of f :∣∣∣EZ̃,R,S [L(fσ, Z̃S , R)− Lemp(fσ, Z̃S , R)
]∣∣∣ (152)

=

∣∣∣∣∣EZ̃,R,S,Z′∼D
[
`(fσ(Z̃S , X

′, R), Y ′)− 1

n

n∑
i=1

`(fσ(Z̃S , X̃i,Si
, R), Ỹi,Si

)

]∣∣∣∣∣ (153)

=

∣∣∣∣∣EZ̃,R,S,Z′∼D
[
`(f(Z̃S , X

′) + ξ′, Y ′)− 1

n

n∑
i=1

`(f(Z̃S , X̃i,Si
) + ξi, Ỹi,Si

)

]∣∣∣∣∣ (154)

=

∣∣∣∣∣EZ̃,R,S,Z′∼D
[
`(f(Z̃S , X

′), Y ′) + ∆′ − 1

n

n∑
i=1

(
`(f(Z̃S , X̃i,Si), Ỹi,Si) + ∆i

)]∣∣∣∣∣ , (155)

where ∆′ = `(f(Z̃S , X
′) + ξ′, Y ′) − `(f(Z̃S , X

′), Y ′) and ∆i = `(f(Z̃S , X̃i,Si
) + ξi, Ỹi,Si

) −
`(f(Z̃S , X̃i,Si

), Ỹi,Si
). As `(ŷ, y) is γ-Lipschitz in its first argument, |∆′| ≤ γ ‖ξ′‖ and |∆i| ≤

γ ‖ξi‖. Connecting this to (155) we get∣∣∣EZ̃,R,S [L(fσ, Z̃S , R)− Lemp(fσ, Z̃S , R)
]∣∣∣ ≥ ∣∣∣EZ̃,R,S [L(f, Z̃S)− Lemp(f, Z̃S)

]∣∣∣ (156)

− γ E ‖ξ′‖ − γ

n

n∑
i=1

E ‖ξi‖ (157)

=
∣∣∣EZ̃,R,S [L(f, Z̃S)− Lemp(f, Z̃S)

]∣∣∣− 2
√
dγσ.

(158)
Similarly, we relate the expected squared generalization gap of fσ to that of f :

EZ̃,R,S
(
L(fσ, Z̃S , R)− Lemp(fσ, Z̃S , R)

)2

(159)

= EZ̃,R,S

(
EZ′∼D

[
`(f(Z̃S , X

′), Y ′) + ∆′
]
− 1

n

n∑
i=1

(
`(f(Z̃S , X̃i,Si), Ỹi,Si) + ∆i

))2

(160)

= EZ̃,R,S
(
L(f, Z̃S)− Lemp(f, Z̃S)

)2

+ EZ̃,R,S

(
EZ′∼D[∆′]− 1

n

n∑
i=1

∆i

)2

(161)

+ 2EZ̃,R,S

[(
L(f, Z̃S)− Lemp(f, Z̃S)

)(
EZ′∼D[∆′]− 1

n

n∑
i=1

∆i

)]
(162)

≥ EZ̃,R,S
(
L(f, Z̃S)− Lemp(f, Z̃S)

)2

(163)

− 2EZ̃,R,S

[∣∣∣L(f, Z̃S)− Lemp(f, Z̃S)
∣∣∣ ∣∣∣∣∣EZ′∼D[∆′]− 1

n

n∑
i=1

∆i

∣∣∣∣∣
]

(164)

= EZ̃,S
(
L(f, Z̃S)− Lemp(f, Z̃S)

)2

(165)

− 2EZ̃,S

[∣∣∣L(f, Z̃S)− Lemp(f, Z̃S)
∣∣∣ER [

∣∣∣∣∣EZ′∼D[∆′]− 1

n

n∑
i=1

∆i

∣∣∣∣∣
]]

. (166)

2This can be achieved by viewing R as an infinite collection of independent Gaussian variables, one of which
is selected for each possible combination of z and x.
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As

ER

[∣∣∣∣∣EZ′∼D[∆′]− 1

n

n∑
i=1

∆i

∣∣∣∣∣
]
≤ ER [EZ′∼D |∆′|] +

1

n

n∑
i=1

ER |∆i| (167)

≤ ER [EZ′∼D [γ ‖ξ′‖]] +
1

n

n∑
i=1

ER [γ ‖ξ‖] (168)

= 2γ
√
dσ, (169)

we can write (166) as

EZ̃,R,S
(
L(fσ, Z̃S , R)− Lemp(fσ, Z̃S , R)

)2

(170)

≥ EZ̃,S
(
L(f, Z̃S)− Lemp(f, Z̃S)

)2

− 4γ
√
dσ EZ̃,S

[∣∣∣L(f, Z̃S)− Lemp(f, Z̃S)
∣∣∣] (171)

≥ EZ̃,S
(
L(f, Z̃S)− Lemp(f, Z̃S)

)2

− 4γ
√
dσ

√
EZ̃,S

(
L(f, Z̃S)− Lemp(f, Z̃S)

)2

, (172)

where the last line follows from Jensen’s inequality ((E |X|)2 ≤ EX2). Summarizing, (158) and
(172) relate expected generalization gap and expected squared generalization gap of fσ to those of f .

Bounding expected generalization gap of f .

∣∣∣EZ̃,R,S [L(fσ, Z̃S , R)− Lemp(fσ, Z̃S , R)
]∣∣∣ (173)

≤
∣∣∣EZ̃,R,S [L(fσ, Z̃S , R)− Lemp(fσ, Z̃S , R)

]∣∣∣+ 2
√
dγσ (by (158)) (174)

≤ 1

n

n∑
i=1

Ez̃∼Z̃
√

2I(fσ(z̃S , x̃i, R);Si | S−i) + 2
√
dγσ (by Thm. 3.2) (175)

≤ 1

n

n∑
i=1

Ez̃∼Z̃

√
1
2 KL (fσ(z̃Si←1 , x̃i, R)|S−i ‖ fσ(z̃Si←0 , x̃i, R)|S−i)
+ 1

2 KL (fσ(z̃Si←0 , x̃i, R)|S−i ‖ fσ(z̃Si←1 , x̃i, R)|S−i)
+ 2
√
dγσ (176)

=
1

n

n∑
i=1

Ez̃∼Z̃

√
1

2σ2
ES−i

‖f(z̃Si←0 , x̃i)− f(z̃Si←1 , x̃i)‖22 + 2
√
dγσ (177)

≤ 1

n

n∑
i=1

√
1

2σ2
EZ̃,S−i

∥∥∥f(Z̃Si←0 , X̃i)− f(Z̃Si←1 , X̃i)
∥∥∥2

2
+ 2
√
dγσ (178)

≤
√
β2

σ2
+ 2
√
dγσ (by β self-stability of f ). (179)

Picking σ2 = β

2
√
dγ

, we get

∣∣∣EZ̃,R,S [L(fσ, Z̃S , R)− Lemp(fσ, Z̃S , R)
]∣∣∣ ≤ 2

3
2 d

1
4

√
γβ. (180)
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Bounding expected squared generalization gap of f . To shorten the writing, let us denote

EZ̃,S
(
L(f, Z̃S)− Lemp(f, Z̃S)

)2

with G. Starting with (172), we get

G ≤ EZ̃,R,S
(
L(fσ, Z̃S , R)− Lemp(fσ, Z̃S , R)

)2

+ 4γ
√
dσ
√
G (181)

≤ 8

n

(
Ez̃∼Z̃

[
n∑
i=1

I(fσ(z̃S , x̃, R);Si | S−i)

]
+ 2

)
+ 4γ

√
dσ
√
G (by Thm. 3.2) (182)

≤ 16

n
+

8

n

n∑
i=1

(
1
4 KL (fσ(z̃Si←1 , x̃, R)|S−i ‖ fσ(z̃Si←0 , x̃, R)|S−i)
+ 1

4 KL (fσ(z̃Si←0 , x̃, R)|S−i ‖ fσ(z̃Si←1 , x̃, R)|S−i)

)
+ 4γ

√
dσ
√
G

(183)

=
16

n
+

8

n

n∑
i=1

EZ̃,S

[
1

4σ2

∥∥∥f(Z̃Si←0 , X̃)− f(Z̃Si←1 , X̃)
∥∥∥2

2

]
+ 4γ

√
dσ
√
G (184)

≤ 16

n
+

2

σ2

(
2β2 + nβ2

1 + nβ2
2

)
+ 4γ

√
dσ
√
G. (185)

The optimal σ is given by

σ =

(
2β2 + nβ2

1 + nβ2
2

γ
√
G
√
d

) 1
3

, (186)

and gives

G ≤ 16

n
+ 6d

1
3 γ

2
3

(
2β2 + nβ2

1 + nβ2
2

) 1
3 G

1
3 . (187)

We discuss 2 cases.

(i) 16
n ≥ 6d

1
3 γ

2
3

(
2β2 + nβ2

1 + nβ2
2

) 1
3 G

1
3 . In this case G ≤ 32

n .

(ii) 16
n < 6d

1
3 γ

2
3

(
2β2 + nβ2

1 + nβ2
2

) 1
3 G

1
3 . In this case, we have

G ≤ 12d
1
3 γ

2
3

(
2β2 + nβ2

1 + nβ2
2

) 1
3 G

1
3 , (188)

which simplifies to

G ≤ 12
3
2

√
dγ
√

2β2 + nβ2
1 + nβ2

2 . (189)

Combining these cases we can write that

G ≤ max

{
32

n
, 12

3
2

√
dγ
√

2β2 + nβ2
1 + nβ2

2

}
(190)

≤ 32

n
+ 12

3
2

√
dγ
√

2β2 + nβ2
1 + nβ2

2 . (191)

Remark 1. The bounds of this theorem work even when Y = K = [a, b]d instead of Rd. To see
this, we first clip the noisy predictions to be in [a, b]d:

f cσ(z, x)i , clip(fσ(z, x), a, b)i, ∀i ∈ [d]. (192)

Inequalities (158) and (172) that relate the expected generalization gap and expected squared general-
ization gap of fσ to those of f stay true when replacing fσ with f cσ . Furthermore, by data processing
inequality, mutual informations measured with f cσ can always be upper bounded by the corresponding
mutual informations informations measures with fσ . Therefore, generalization bounds that hold for
fσ will also for f cσ , allowing us to follow the exact same proofs above.

Remark 2. In the construction of fσ we used Gaussian noise with zero mean and σ2I covariance
matrix. A natural question arises whether a different type of noise would give better bounds. Inequali-
ties (158) and (172) only use the facts that noise components are independent, have zero-mean and σ2

variance. Therefore, if we restrict ourselves to noise distributions with independent components, each
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Figure 3: Comparison of expected generalization gap and f -CMI bound for MNIST 4 vs 9 classifica-
tion with a 4-layer CNN. The figure on the left repeats the experiment of Fig. 1a (i.e., MNIST 4 vs 9
classification with the CNN described in Table 1 trained using a deterministic training algorithm)
while modifying the network to have 4 times more neurons at each layer. The figure in the middle
repeats the experiment of Fig. 1a while making the training algorithm stochastic by randomizing
the seed. The figure on the right corresponds to the experiment of Fig. 1a and plots the expected
generalization gap and the f-CMI bound versus the training time.

Layer type Parameters

Conv 32 filters, 4× 4 kernels, stride 2, padding 1, batch normalization, ReLU
Conv 32 filters, 4× 4 kernels, stride 2, padding 1, batch normalization, ReLU
Conv 64 filters, 3× 3 kernels, stride 2, padding 0, batch normalization, ReLU
Conv 256 filters, 3× 3 kernels, stride 1, padding 0, batch normalization, ReLU
FC 128 units, ReLU
FC 2 units, linear activation

Table 1: The architecture of the 4-layer convolutional neural network used in MNIST 4 vs 9
classification tasks. The wider version of this network is constructed by multiplying the number of
channels/neurons of each hidden layer by 4.

of which has zero mean and σ2 variance, then the best bounds will be produced by noise distributions
that result in the smallest KL divergence of form KL (fσ(z̃Si←1 , x,R)|S−i ‖ fσ(z̃Si←0 , x,R)|S−i).
An informal argument below hints that the Gaussian distribution might be the optimal choice of the
noise distribution when fσ(z̃Si←1 , x,R) and fσ(z̃Si←0 , x,R) are close to each other.

Let us fix σ2 and consider two means µ1 < µ2 ∈ R. Let F = {p(x;µ) | µ ∈ R} be a family of
probability distributions with one mean parameter µ, such that every distribution of it has variance σ2

and KL divergences between members of F exist. Let X1 ∼ p(x, µ1) and X2 ∼ p(x, µ2). We are
interested in finding such a family F that KL (X ‖ Y ) is minimized. For small µ2 − µ1, we know
that

KL (X ‖ Y ) ≈ 1

2
(µ2 − µ1)I(µ1)(µ2 − µ1), (193)

where I(µ) is the Fisher information of p(x;µ). Furthermore, let µ̂1 , X . As E µ̂1 = µ1 and
Var[µ̂1] = σ2, the Cramer-Rao bound gives

σ2 = Var[µ̂1] ≥ 1

I(µ1)
. (194)

This gives us the following lower bound on the KL divergence between X and Y :

KL (X ‖ Y ) '
1

2σ2
(µ2 − µ1)2, (195)

which is matched by the Gaussian distribution.

B Experiment details and additional results

In this appendix we present additional experimental results and details that were not included in the
main text due to space constraints.
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Estimation of generalization gap. In all experiments we draw k1 samples of Z̃, each time by
randomly drawing 2n examples from the corresponding dataset and grouping then into n pairs. For
each sample z̃, we draw k2 samples of the training/test split variable S and randomness R. We then
run the training algorithm on these k2 splits (in total k1k2 runs). For each z̃, s and r, we estimate
the population risk with the average error on the test examples z̃neg(s) and get an estimate of the
generalization gap L(f, z̃s, r)−Lemp(f, z̃s, r). For each z̃, we average over the k2 samples of S and
R to get an estimate ĝ(z̃) of ES,R [L(f, z̃s, R)− Lemp(f, z̃s, R)]. Note that this latter quantity is not
the expected generalization gap yet, as it still misses an expectation over z̃. Figures 1 and 3 plot the
mean and the standard deviation of ĝ(z̃), estimated using the k1 samples of Z̃. Note that this mean will
be an unbiased estimate of the true expected generalization gap EZ̃,S,R [L(f, z̃s, r)− Lemp(f, z̃s, r)].

Estimation of f -CMI bound. Similarly, for each z̃ we use the k2 samples of S and R to estimate
f -CMI(f, z̃, {i}) = I(f(z̃S , x̃i, R);Si), i ∈ [n]. As in all considered cases we deal with classifica-
tion problems (i.e., having discrete output variables), this is done straightforwardly by estimating all
the states of the joint distribution of f(z̃S , x̃i, R) and Si, and then using a plug-in estimator of mutual
information. The bias of this plug-in estimator is O

(
1
k2

)
, while the variance is O

(
(log k2)2

k2

)
[24].

To estimate f -CMID(f, {i}) = Ez̃∼Z̃ [f -CMI(f, z̃, {i})] we use k1 samples of Z̃. After this step

the estimation bias stays the same, while the variance increases by O
(

1
k1

)
. The error bars in Figures

1 and 3 are empirical standard deviations computed using these k1 estimates.

In the main text we consider the three experiments: (a) MNIST 4 vs 9 classification using standard
training algorithms, (b) MNIST 4 vs 9 classification using SGLD, and (c) CIFAR-10 classification
with fine-tuned pretrained ResNet-50. The experimental details of these experiments are presented in
Tables 2, 3, and 4, respectively. In all cases the loss function was the cross-entropy loss. We did the
experiments on a cluster of 4 computers, each with 4 NVIDIA GeForce RTX 2080 Ti GPUs. Training
only single-GPU models, the experiments take 2-3 days.

Network The 4-layer CNN described in Table 1.
Optimizer ADAM with 0.001 learning rate and β1 = 0.9.
Batch size 128
Number of examples (n) [75, 250, 1000, 4000]
Number of epochs 200
Number of samples for Z̃ (k1) 5
Number of samplings for S for each z̃ (k2) 30

Table 2: Experimental details for MNIST 4 vs 9 classification in case of the standard training
algorithm.

Network The 4-layer CNN described in Table 1.
Learning rate schedule Starts at 0.004 and decays by a factor of 0.9 after

each 100 iterations.
Inverse temperature schedule min(4000,max(100, 10et/100)), where t is the it-

eration.
Batch size 100
Number of examples (n) 4000
Number of epochs 40
Number of samples for Z̃ (k1) 5
Number of samplings for S for each z̃ (k2) 30

Table 3: Experimental details for MNIST 4 vs 9 classification in case of the SGLD training algorithm.
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Network ResNet-50 pretrained on ImageNet.
Optimizer SGD with 0.01 learning rate and 0.9 momentum.
Data augmentations Random horizontal flip and random 28x28 cropping.
Batch size 64
Number of examples (n) [1000, 5000, 20000]
Number of epochs 40
Number of samples for Z̃ (k1) 1
Number of samplings for S for each z̃ (k2) 40

Table 4: Experimental details for CIFAR-10 classification using fine-tuned ResNet-50 networks.

Network ResNet-50 pretrained on ImageNet.
Data augmentations Random horizontal flip and random 28x28 crop-

ping.
Learning rate schedule Starts at 0.01 and decays by a factor of 0.9 after

each 300 iterations.
Inverse temperature schedule min(16000,max(100, 10et/300)), where t is the

iteration.
Batch size 64
Number of examples (n) 20000
Number of epochs 16
Number of samples for Z̃ (k1) 1
Number of samplings for S for each z̃ (k2) 40

Table 5: Experimental details for CIFAR-10 classification experiment, where a pretrained ResNet-50
is fine-tuned using the SGLD algorithm.

29


