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Supplementary Materials:
OneChart: Purify the Chart Structural Extraction
via One Auxiliary Token

Anonymous Authors

1 VISUALIZATION OF PREDICTIONS

Convert the key information of the chart to a python dict:

Global Metal Production by Type (2010-2020)

Primary Production
Secondary Production

40 -

Production (in million metric tons)

Aluminum Steel Copper Zinc Nickel Lead
Income

"title": "Global Metal Production by Type (2010-2020)",
"source": "None",
"x_title": "Income",
"y_title": "Production (in million metric tons)",
"values": {
"Primary Production": {
"Aluminum": "60",
"Steel": "75",
"Copper": "45",
"Zinc": "35",
"Nickel": "25",
"Lead": "15" },
"Secondary Production": {
"Aluminum": "40",
"Steel": "25",
"Copper": "55",
"Zinc": "65",
“Nickel": "75",
"Lead": "85" }

"I-D <Chart>: [6.5234e-01, 8.5156e-01, 4.2188e-01,
2.7930e-01, 1.4355e-01, -4.1016e-02,
3.2227e-01, 1.4062e-01, 5.8203e-01,
7.2656e-01, 8.5547e-01, 9.9609e-01, ...]
Reliable Distence: S = 0.0113 < 0.1

After OneChart checking, this prediction is reliable.

Figure 1: English line chart. OneChart prediction visualiza-
tion for structural extraction task.

We present various visualization cases of OneChart performing
inference for different chart styles. Figure 1 and Figure 2 are images

Convert the key information of the chart to a python dict:

Average Annual Expenditure on Education in Differen
t Countries

nited States

Germany

China

Data Source: World Bank

"title": "Average Annual Expenditure on Education in
Different Countries",
"source": "Data Source: World Bank",

"x_title": "None",

"y_title": "None",

"values": {
"China": "4567.0",
"'Germany": "6521.0",
"United States": '"12602.0",
"Japan": "10250.0",
“Brazil": "3285.0",
"India": "1832.0"

‘LD <Chart>: [0.2754, 0.4492, 1.0078, 0.7891,
0.1729, -0.0067, ...l
Reliable Distence: S = 0.0159 < 0.1

After OneChart checking, this prediction is reliable.

Figure 2: English bar chart. OneChart prediction visualiza-
tion for structural extraction task.

within the ChartY-en benchmark, whereas Figure 3 and Figure 4
are from real-world scenarios. The inference results encompass
not just the Python dict but also the output credibility, derived
from the auxiliary token we introduced. These examples effectively
demonstrate OneChart’s capabilities in structured parsing and self-
evaluation.

2 DETAILS IN DOWNSTREAM QA

When combining the proposed OneChart with popular VLMs to
validate its effectiveness, for fully supervised methods which have
figure input in the Tabel 6 in the main text, our prompt combines
"[Question]" with [system prompt]: “Please answer directly with
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Convert the key information of the chart to a python dict:

BA: RERRBME P & AMN &R R

——Ep b BN GT# Srk)
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

201944 20194UK 20204 20206 K 2021 20219 UK

HAHRE: wind, FIEEL G0N, EHEELTLEA

"title": "ER: RIFLRAREF SEEABRAN SLERERRFA",

"source": "FRFR:wind, RFLATNE, ESIESMRAA",
"x_title": "None",

"y_title": "None",

"values": {

"BPaET: {
"2019FH)": "10%",
"2019%FK": "43%",
"2020FH)": "49%",
"20205FK": "74%",
"2021F)": "79%",
"20215F K" "90%"

1

“NAEE (TEAEE) " {
"2019%H)": "9%",
"2019%F/F": "26%",
"2020%FH)": "34%",
"20205E": "62%",
"2021FH)": "76%",
"2021FF": "90%"

‘J.D <Chart>: [8.3008e-02, 4.4531e-01, 4.8633e-01,
7.9688e-01, 8.7891e-01, 1.0078e+00,
2.5482e-03, 2.0996e-01, 3.3594e-01,
6.9531e-01, 8.3594e-01, 9.8828e-01, ...l
Reliable Distence: S = 0.0186 < 0.1

After OneChart checking, this prediction is reliable.

Figure 4: Chinese line chart. OneChart prediction visualiza-
tion for structural extraction task.

Anonymous Authors

Convert the key information of the chart to a python dict:

B 22: 2022E b F AT S & LH A

4.29% 25%

8.4% BERBOLHIE

L RR% 6/t pey

EANL

24.4% TN

60.5%
3D

i : Velodyne 73 B9 #, A5 iEFKTE P

"title": “E22:2022EMAEATHESY SLEFN",
"source": "ZRIFR:Velodge, BRIRBAB, RIGIESHRFL",
"x_title": "None",
"y_title": "None",
"values": {
"EHBEEA": "60.5%",
TSR : "24.4%",
"FAM": "8.4%",
UHEA": "4.2%",
"3DiILR": "'2.5%"

'J-D <Chart>: [1.0078e+00, 3.7305e-01, 9.9121e-02,
3.2227e-02, 3.9673e-04, ...l
Reliable Distence: S = 0.0037 < 0.1

After OneChart checking, this prediction is reliable.

Figure 3: Chinese pie chart. OneChart prediction visualiza-
tion for structural extraction task.

a word, phrase, or number.”. For GPT-3.5, we employ a one-shot
approach, using the system prompt: “Here is a python-dict and a
related question for you. Please answer directly with a word, phrase,
or number. [Example]”. In other cases (Ours + LLaVA1.5 and Ours +
LLaVAL1.6), we utilize a zero-shot approach. When no figure input
is provided (only chart’s structural information dictionary input),
the system prompt is: “Here is a python-dict and a related question
for you. Please answer directly with a word, phrase, or number.”. For
scenarios that include image input (both image and dict inputs),
as shown in Figure 5, we use [system prompt w/ dict]: “Here
is a chart image, a related python-dict and question for you. Please
answer directly with a number, word, or phrase based on the picture.
The python-dict is for reference only.”.

Figure 5 visually demonstrates the beneficial effect of OneChart
on VLMs. With the assistance of OneChart’s correctly parsed dicts,
the incorrect answers of the original model (LLaVA1.6) are cor-
rected.
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® Apparel @ Socks ® Arms/legs sleeves

Question: How many compression sock sales were there in the United
States in 2010?

Label: 1.2

2015 206 2017 2018 2019

® Worker's health @ Productivity and performance © Healthcare costs

Question: When did the blue bar reach the peak?
Label: 2019

ACM MM, 2024, Melbourne, Australia

Q: [system prompt] [Question]
LLaVA 1.6: 4.8

Q: [system prompt] [Question]
LLaVA 1.6: 2015

Q: [system prompt w/dict] [Question]

Dict: {"title":"None","source":"None","x_title":
"None","y_title":"Sales in million U.S.dollars",
"values": {

"Apparel":

{"2008":"2.7","2009":"3.7","2010": "4.8"},
"Socks":

{"2008": "0.17","2009":"0.51","2010": "1.2"},
"Arms/legs sleeves":

{"2008": "0.27","2009": "1.2","2010": "2.3"}}}

LLaVA 1.6 + Ours: 1.2

Q: [system prompt w/dict] [Question]

Dict: {"title": "None","source": "None","x_title": "None",
"y_title": "Percentage of employers",

"values": {"Worker's health": {

"2015"
'2017": "78%","2018'
"Productivity and performance": {

"2015": "80%","2016": "80%",

"2017": "75%","2018": "77%","2019": "84%"},
"Healthcare costs":
"2015": "71%","2016": "725%",
"2017": "69%","2018": "71%","2019": "72%"}}}

LLaVA 1.6 + Ours: 2019

1 "83%"},

Long-term price index in food commodities, 1850-2015, World, 1934 -

Commodty price index in food tems dating 1850-2015, measured relative to real prices in 1900 (Le. 1900 = 100).
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Question: How many food item is shown in the bar graph?
Label: 14

Q: [system prompt] [Question]
LLaVA 1.6: 12

Strong Support for
Army to Fight Drug
Traffickers

Support

PEW RESEARCH CENTER Q137

Question: What's the difference in value of biggest and smallest
segment?

Label: 77

Q: [system prompt] [Question]
LLaVA 1.6: 0.02

Q: [system prompt w/dict] [Question]

Dict: {"title": "Long-term price index in food
commodities, 1850-2015, World, 1934",

"source": "None","x_title": "None","y_title": "None",
"values": {

"Lamb": "103.7","Corn": "103.13","Barley": "102.46",
"Rye": "87.37","Beef": "85.27","Wheat": "83.73",
"Coffee": "82.2","Tea": "68.48","Peanuts": "64.71",
"Palm oil": "57.6","Pork":"55.36","Rice":"42.48",
"Sugar": "25.56","Cocoa": "18.81"}}

LLaVA 1.6 + Ours: 14

Q: [system prompt w/dict] [Question]

Dict: {"title": "Strong Support for Army to Fight Drug
Traffickers","source": "None","x_title": "None",
"y_title": "None","values": {

"Support": "80%","Oppose": "17%","DK": "3%"}}
LLaVA 1.6 + Ours: 77%

Figure 5: LLaVA 1.6 + OneChart shows much stronger alignment and numerical reasoning skills than LLaVA 1.6.
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