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Figure 1: TANGO is a framework designed to generate co-speech body-gesture videos using a
motion graph-based retrieval approach. It first retrieves most of the reference video clips that match
the target speech audio by utilizing an implicit hierarchical audio-motion embedding space. Then,
it adopts a diffusion-based interpolation network to generate the remaining transition frames and
smooth the discontinuities at clip boundaries.

ABSTRACT

We present TANGO, a framework for generating co-speech body-gesture videos.
Given a few-minute, single-speaker reference video and target speech audio,
TANGO produces high-fidelity videos with synchronized body gestures. TANGO
builds on Gesture Video Reenactment (GVR), which splits and retrieves video
clips using a directed graph structure - representing video frames as nodes and
valid transitions as edges. We address two key limitations of GVR: audio-motion
misalignment and visual artifacts in GAN-generated transition frames. In partic-
ular, (i) we propose retrieving gestures using latent feature distance to improve
cross-modal alignment. To ensure the latent features could effectively model the
relationship between speech audio and gesture motion, we implement a hierar-
chical joint embedding space (AuMoCLIP); (ii) we introduce the diffusion-based
model to generate high-quality transition frames. Our diffusion model, Appear-
ance Consistent Interpolation (ACInterp), is built upon AnimateAnyone and in-
cludes a reference motion module and homography background flow to preserve
appearance consistency between generated and reference videos. By integrating
these components into the graph-based retrieval framework, TANGO reliably pro-
duces realistic, audio-synchronized videos and outperforms all existing generative
and retrieval methods. Our code, pretrained models, and datasets are publicly
available.

1 INTRODUCTION

This paper addresses the problem of generating high texture quality co-speech body gesture videos
from a reference speaker’s talking video. Since significant progress has been made in talking face
generation (Prajwal et al., 2020), our goal is to synchronize the body gestures in video with new,
unseen speech audio. Successfully generating gesture-synchronized talking videos can significantly
reduce production costs in real-world applications, such as news broadcasting and virtual YouTube
content creation.
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Figure 2: Limitations of GVR (Zhou et al., 2022).

Generating gesture-synchronized videos from
audio is promising but presents challenges, as
humans are sensitive to both the video textural
quality and the relationship between gestures
and the audio’s acoustic and semantic proper-
ties. Existing methods could be broadly catego-
rized into two groups: generative and retrieval.
Generative methods (Ginosar et al., 2019; Qian
et al., 2021) generate all frames from given au-
dio or audio estimated 2D pose using video
generation neural networks (Chan et al., 2019),
while retrieval methods (Zhou et al., 2022), re-
combine existing frames to match the audio
and generate a few transition frames for recom-
bination boundaries. Generative methods fre-
quently suffer from artifacts such as temporal blur in hand and cloth textures. This limitation
motivates our choice of the retrieval method, which ensures higher video quality for real-world
applications.

Audio-Driven Gesture Video Reenactment (GVR) (Zhou et al., 2022), to the best of our knowledge,
is the first and only retrieval-based method for gesture video generation. GVR splits videos into
equal-length sub-clips and reassembles them in a motion graph-based (Kovar et al., 2008) approach.
However, as shown in Figure 2, GVR has characteristic artifacts in two key components. First, the
alignment between the target speech audio and the retrieved gesture video is limited, as the retrieval
naively relies on audio onset features and keyword matching. Second, the performance of its GAN-
based interpolation network is limited by its ability to predict accurate optical flow (Fleet & Weiss,
2006; Ilg et al., 2017), resulting in artifacts such as distorted hands.

To address these, we reproduce GVR’s motion graph-based framework and introduce two improve-
ments: an implicit feature distance-based gesture retrieval method and a diffusion-based interpo-
lation network. The former (AuMoCLIP) introduces a hierarchical audio-motion joint embedding
space to encode paired audio and motion modality data into a close latent space. The training
pipeline is designed to split the low-level and high-level joint embedding space for learning local
and global associations. After training, this joint embedding is adopted to retrieve gestures from
the target’s unseen audio. The latter, Appearance Consistent Interpolation (ACInterp), a diffusion-
based interpolation network, leverages the power of existing video generation diffusion models,
AnimateAnyone (Hu et al., 2023), to eliminate the blur and ghost artifacts found in traditional flow-
based interpolation methods (Huang et al., 2022; Kong et al., 2022; Reda et al., 2022; Lu et al.,
2022; Zhou et al., 2022), and proposes utilizing homography background flow and reference motion
module to preserve appearance consistency between generated and reference videos. By integrating
these improvements, our method, TANGO, could produce plausible videos while accurately aligning
gestures with audio inputs. Our contributions can be summarized as follows:

• We propose a hierarchical audio-motion joint embedding space, AuMoCLIP, for accurately
retrieving gestures based on target speech audio. To the best of our knowledge, AuMoCLIP
is the first work to present CLIP-like embedding space between audio-motion modalities.

• We introduce a diffusion-based interpolation network, ACInterp, reducing spatial and tem-
poral video artifacts and generating appearance-consistent video clips.

• We present a reproduced and improved motion graph-based gesture retrieval framework
featuring a graph pruning method to generate co-speech gesture videos of infinite length.

• We release a small-scale, background-clean co-speech video dataset, YouTube Business,
including data from 12 speakers to validate gesture video generation models.

• We integrate the above components into TANGO; it outperforms existing generative and
retrieval methods, both quantitatively and qualitatively, on the existing Talkshow-Oliver
and the newly introduced YouTube Business dataset.
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2 RELATED WORK

Our methodology is related to prior research on generative and retrieval-based co-speech video
generation, cross-modal retrieval, and video frame interpolation.

Generative Co-Speech Video Generation. Generative approaches (Qian et al., 2021; Liu et al.,
2022a; Yoon et al., 2020; Liu et al., 2022b; Yang et al., 2023a;b; Zhu et al., 2023; Yi et al., 2023;
Pang et al., 2023; Nyatsanga et al., 2023; He et al., 2024b) generate all frames from given audio via
a two-stage pipeline. These methods, such as speech2gesture and speech-driven template (Ginosar
et al., 2019; Qian et al., 2021), initially map audio to poses through specialized networks, followed
by employing a separate GAN-based pose2video pre-trained model (Chan et al., 2019) to transform
these poses into video frames. The audio2Pose stage has been improved by emotion-aware architec-
ture (Qi et al., 2023) and diffusion models (Mughal et al., 2024). Recent literature has improved the
performance of pose2video with diffusion models. For instance, AnimateAnyone (Hu et al., 2023)
utilizes a reference-net attention-based motion module (Guo et al., 2023) for spatial and temporal
consistency. Overall, the skeleton-level results from Generative methods are typically aligned with
the audio, the pose2video stage (Chan et al., 2019; Zhang et al., 2023b; Hu et al., 2023; Rombach
et al., 2022) is the bottleneck which often suffers from artifacts such as temporal blur in hands and
cloth textures. This is due to the network’s need to handle higher resolutions, long-term, accurate
temporal consistency, and varied body deformations. This limitation shows the benefit of our ap-
proach, which reuses existing video frames. In our method, pose2video is only required for short
clips with start and end frames; this allows to maintain high-quality results with minimal artifacts.

Retrieval Co-Speech Video Generation. Gesture Video Reenactment (GVR) (Zhou et al., 2022)
represents the first attempt to retrieve gesture motion from speech audio using a motion graph-
based (Kovar et al., 2008) framework. It has three key steps: (i) creating a motion graph based on
3D motion and 2D image domain distances, (ii) retrieval of the optimal path within this graph for
the target speech by audio onset and keyword matching, (iii) blending the discontinues frames by
an interpolation network based on flow warping and GAN. Our method improves GVR by incorpo-
rating learned feature-based retrieval and diffusion-based interpolation modules, resulting in better
cross-modal alignment and high-quality transitions.

Cross-Modal Retrieval. Cross-modal retrieval aligns associations between different modalities
within a learned feature space. The CLIP series (Radford et al., 2021; Li et al., 2022; 2023a) align
text and images using contrastive learning. In the text-motion domain, MotionCLIP (Tevet et al.,
2022) aligns motion with the frozen pretrained CLIP text space. GestureDiffCLIP (Ao et al.) aligns
gesture motion with speech transcripts using max pooling. However, directly using text-only fea-
tures to retrieve gesture motion is challenging due to the lack of timing information. Unlike previous
methods, we propose a joint embedding space directly between audio and motion modalities.

Video Frame Interpolation. Video frame interpolation (VFI) aims to create intermediate frames
between two existing frames. The integration of optical flow-based techniques with deep learning is
the mainstream approach for VFI (Liu et al., 2017; Jiang et al., 2018; Niklaus & Liu, 2018; Xue et al.,
2019; Niklaus & Liu, 2020; Park et al., 2020; 2021; Sim et al., 2021; Wu et al., 2022; Danier et al.,
2022; Kong et al., 2022; Reda et al., 2022; Huang et al., 2022; Li et al., 2023b). Optical flow meth-
ods estimate pixel movement between frames to guide the interpolation process. However, these
methods still face challenges such as handling high-frequency details, large or fast motions, occlu-
sions, and balancing memory requirements. Hybrid models that combine CNNs with transformers
(Lu et al., 2022; Zhang et al., 2023a; Park et al., 2023) and diffusion models (Voleti et al., 2022;
Danier et al., 2024; Jain et al., 2024) have recently demonstrated more consistent and sharper re-
sults but require high memory capacity, e.g., 76GB training memory for 256x256 images (Lu et al.,
2022; Danier et al., 2024), making the extension of these methods to real-world high-resolution
videos challenging. Our method addresses these challenges by integrating latent diffusion-based
architectures and temporal priority to improve visual fidelity and computational efficiency.

Lip Synchronization in Co-Speech Video Generation. Similar to previous co-speech gesture
video generation works (Zhou et al., 2022; He et al., 2024a), our method only focuses on body
gestures and employs post-processing using Wav2Lip (Prajwal et al., 2020) for lip synchronization.
The reason for separating lip-sync and body gesture generation is performance-driven, i.e., separated
pipeline will have a higher SyncNet score (Prajwal et al., 2020). Audio correlates more strongly with
lip movements than with body gestures, making it beneficial to handle them separately.

3
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Figure 3: System Pipeline of TANGO. TANGO generates gesture video in three steps. Firstly, it
creates a directed motion graph to represent video frames as nodes and valid transitions as edges.
Each sampled path (in bold) dictates the selected playback order. Secondly, an audio-conditioned
gesture retrieval module aims to minimize cross-modal feature distance to find a path where ges-
tures best match target audio. Lastly, a diffusion-based interpolation model generates appearance-
consistent connection frames when the transition edges do not exist in the original reference video.

3 TANGO
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𝑛𝑜𝑑𝑒𝑠: 3526	 𝑒𝑑𝑔𝑒𝑠: 	7982
Video Motion Graph W/O Pruning Video Motion Graph With Pruning
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Figure 4: Graph Pruning. We delete paths with
dead endpoints by merging SCC subgraphs. i.e.,
those ending with a node without out-degree in
the initial Gesture Video Graph (left), and obtain a
strongly connected subgraph (right). Each node in
the pruned graph is reachable from any other node
within this subgraph, enabling efficient sampling
of long video. The color of the paths represents
different reference video clips for one speaker.

Our TANGO, as shown in Figure 3, is a mo-
tion graph-based framework for reenacting ges-
ture videos based on target speech audio. Ini-
tially, we build upon the implementation of the
VideoMotionGraph baseline (Zhou et al., 2022)
and introduce graph pruning to create a directed
Gesture Video Motion Graph (Section 3.1). In
this graph, each node represents both the au-
dio and image frames of the video, while each
edge denotes a valid transition between frames.
Given a target audio, its temporal features are
extracted via a pre-trained audio-motion joint
embedding network (AuMoCLIP). These fea-
tures are then utilized to retrieve a subset of
video playback paths (Section 3.2). When a
transition edge does not exist within the original
reference video, a frame interpolation network
(ACInterp), is employed to ensure smooth tran-
sitions (Section 3.3). This enables each transi-
tion on the retrieved path to consist of realistic video frames. After the above three steps, TANGO
reliably produces realistic, audio-synchronized gesture videos.

3.1 GRAPH CONSTRUCTION

Graph initalization. TANGO is represented as a graph structure G(N,E) with nodes and edges.
Similar to Gesture Video Reenactment (GVR) (Zhou et al., 2022), nodes N = {n1,n2, . . . ,ni}
are defined as 1-frame, non-overlapping clips from reference videos, containing both RGB im-
age frames and audio waveforms. The existence of valid transitions between nodes (edges)

Algorithm 1 Graph Pruning Method for Enhancing Connectivity
Graph G Enhanced Graph G′

Collect all SCC subgraphs in G as Gscc = {G0, G1, . . . , Gn} and m = argmaxk|Gk|, where | · |
denotes the size of a subgraph
for each subgraph Gi( ̸= Gm) in Gscc do

if any nodes in Gi not in Gm then
for each node u in Gm do

for each node v in Gi do Calculate the distance d(u, v) between nodes u and v
(i, j) = argminu,v d(u, v)
Add bi-directional edges ei,j and ej,i to G

4
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Figure 5: AuMoCLIP. AuMoCLIP is a pipeline to train hierarchical joint embedding. The audio
waveform and extracted 3D motions are encoded in a learned embedding space where paired audio
and motion have a closer distance than non-paired samples. It employs dual-tower encoder architec-
ture; each encoder is split into low and high-level sub-encoder. Besides, it includes the pretrained
Wav2Vec2 and BERT features to make it work. The embedding is trained with a frame-wise and
clip-wise contrastive loss for local and global cross-modal alignment, respectively. We design the
frame-wise loss by frames within a close temporal window (i± t) are positive, while distant frames
(i− kt, i− t) and (i+ t, i+ kt) are negative.

E = {e1,1, e1,2, . . . , ei,j} is determined on the basis of the similarities from both 3D motion space
and 2D image space.We calculate the similarity in 3D space from the positions of full body 3D
joints. The 3D pose is extracted using a state-of-the-art open-source SMPL-X (Pavlakos et al.,
2019) estimation method (Yi et al., 2023). The pose dissimilarity Dpose(ni,nj) between any pair of
clips is determined by taking the average of the Euclidean distances for their positions and velocities
across all joints.

The similarity in 2D image space is the Intersection-over-Union (IoU) for body segmentation and
hand boundary boxes. The body segmentation represents the visible foreground area in the image,
computed by MM-Segmentation (Contributors, 2020), and the bounding boxes for hands are ob-
tained from MediaPipe (Lugaresi et al., 2019). The (1 − IoU ) of their visible surface areas then
estimates the image space dissimilarity for each pair of frames as Diou(ni,nj).

By employing the distance di,j = Dpose(ni,nj)+Diou(ni,nj), for any pair of nodes ni,nj , an edge
ei,j exists if their distances di,j fall below predefined thresholds. We leverage an adaptive threshold
by averaging the transition distances ti,j = (di,i−1 + di,i + di,i+1)/3 in the original video.

Graph Pruning. The initial motion graph obtained from GVR is limited in connectivity, as shown in
Figure 4, which reduces the efficiency of sampling a longer-length path. Search algorithms such as
Beam search and dynamic programming typically encounter dead endpoints—nodes without outgo-
ing edges—in the motion graph. In particular, the probability of sampling a path that ends at a dead
endpoint increases with sample length, reaching 75.9% for randomly sampling a 10-second video
and 98.6% for a 30-second video. To address this issue, we introduce a graph pruning method by
merging the strongly connected component (SCC) subgraphs. A strongly connected component is a
maximal subgraph where each node is reachable from any other node within the subgraph. Specifi-
cally, we employ Algorithm 1 to obtain a strongly connected component that can sample videos of
any length starting from any point in the graph. More details for graph merging are in Appendix.

3.2 AUDIO-CONDITIONED GESTURE RETRIEVAL

The original Gesture Video Reenactment utilized onset and hard-coded keywords for audio-based
path searching. However, this method has several limitations: i) speakers may not move syn-
chronously with the audio onset; ii) the binary nature of onset results in weak distinction among
similar samples; iii) there is no matching result if a keyword is not present in the reference video
clips. These limitations lead to misaligned results. Therefore, we introduce a learning method
to implicitly model the temporal association between audio and motion. As shown in Figure 5,
our approach learns a hierarchical audio-motion joint embedding to consider short audio-motion
beat alignment and longer-term content similarity simultaneously. To the best of our knowledge,
our AuMoCLIP is the first pipeline to learn CLIP-like features between gesture audio and motion

5
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modalities. We discuss our design in three key aspects: i) model architecture, ii) loss design, and iii)
training schedule.

Architecture of AuMoCLIP. Inspired by the CLIP-based contrastive learning framework and Mo-
CoV2 (Chen et al., 2020), we start from a dual-tower architecture trained with a global InfoNCE
loss. Our key design for audio-motion modalities is the split between low-level and high-level en-
coders. Following Wav2Vec2 (Baevski et al., 2020), we represent audio as a raw waveform and use
a 7-layer CNN (low-level) and a 1-layer Transformer (high-level) for the audio encoder. For motion,
inspired by NeMF (Guo et al., 2022), we use a 15D representation and a motion encoder consisting
of a 28-layer CNN (modified from TM2T (Guo et al., 2022)) and a 1-layer Transformer. The first
10 layers of the CNN are used as the low-level motion encoder. As shown in Figure 5, we use a
Projection MLP to map low-level features, while a Projection Self-Attention to obtain the CLS token
to summarize high-level features.

Since Wav2Vec2 is trained on large-scale human speech audio, we concatenate the frozen pretrained
low-level and high-level features from Wav2Vec2 to enhance performance. However, encoding
only audio waveforms is insufficient for high-level mapping between speech audio and gesture mo-
tion because gestures are often related to speech transcripts, while Wav2Vec2 and our audio en-
coder focus on ”audio texture.” To address this, we include timing-aligned BERT features using the
Wav2Vec2CTC model and pretrained BERT. We design a word timing alignment method to align
BERT features correctly without relying on MFA (see Appendix for details). This allows the audio
branch to contain the necessary features for training the joint embedding.

Local and Global Contrastive Loss. We retain the InfoNCE loss for the CLS token in the mini-
batch as the global contrastive loss and introduce a local contrastive learning task. Specifically, as
shown in Figure 5, we define the frame-wise loss where frames within a close temporal window
(i ± t) are considered positive, while distant frames (i − kt, i − t, i + t, i + kt) are considered
negative. In this paper, we set t = 4 and k = 4 for 30 FPS motion. This design proposes an easier
learning task by accounting for slight misalignments in natural talking scenarios.

Stop Gradient for Low-Level Encoders. We aim to maximize both low-level and high-level re-
trieval accuracy during training. Our observation shows that directly optimizing both losses de-
creases the performance of the low-level encoder but improves the high-level encoder. This suggests
that: i) the low-level encoder should not be trained jointly with the high-level encoder, and ii) in-
cluding low-level features benefits the high-level encoder. Therefore, we stop the gradient from the
global contrastive loss to the low-level encoder. This operation enables us to maximize the perfor-
mance of both feature sets.

Feature-Based Gesture Retrieval. After training, we obtain two types of features: low-level fea-
tures that can distinguish whether the current 8-frame audio-motion pair is matched, and high-level
features that can evaluate if the current 4-second audio-motion clip is paired. We leverage these
features for retrieval by combine these two features, First, for each 4-second clip groundtruth mo-
tion, we pre-calculate the high-level feature and repeat it for each frames. Next, we pre-calculate
low-level feature and directly use its per-frame feature value. We then search for the best-matched
path Pboth match by maximizing the both low-level and high-level similarity between the motion
and the target audio over the entire path via Dynamic Programming (DP).

3.3 DIFFUSION-BASED VIDEO FRAME INTERPOLATION

The transition frames, synthesized from previous flow-based methods, often suffer from blur arti-
facts. To improve this, as shown in Figure 6, we leverage the power of the two-stage (pose2image
and image2video) video generation diffusion model, AnimateAnyone (Hu et al., 2023). Our method,
ACInterp, generates target interpolation frames t ∈ (i, j) using the existing start frames t ∈ (i−k, i]
and end frames t ∈ [j, j + k), along with linear-blended 2D pose images and homography back-
ground offsets.

Homography Offset-Refined Pose2Image Stage. As shown in Figure 6, The Pose2Image stage
aims to sample a random noise zt and denoises it for estimated image latent ẑ0. As same as An-
imateAnyone(Hu et al., 2023), ACInterp i) implements denosing progress in a latent space with
pretrained VAE Encoder and Decoder EVAE,DVAE; ii) adds pose features from PoseGuider G to
noisy latent space as the input to DenoisingNet D; iii) incorporates a ReferenceNet R and CLIP Im-
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Figure 6: ACInterp. Our Appearance Consistent Interpolation (ACInterp) model generates target
interpolation frames t ∈ (i, j) using the existing start frames t ∈ (i − k, i] and end frames t ∈
[j, j+k), along with linear-blended 2D pose images and homography background offsets. Based on
AnimateAnyone, ACInterp enhances appearance consistency in two ways. First, during the pose-to-
image stage, estimated background pixel offsets are introduced to produce background-stable image
results. Second, it uses the start and end frames as temporal priorities for the Motion Module to
ensure human identity consistency. Achieving appearance consistency in transition frames is crucial
for making Gesture Video Graph results appear natural.

age Encoder C to preserve consistent objects’ appearances. Hierarchical features from the merged
reference latent are concatenated to corresponding layers of the target DenoisingNet D to embed
identity information. iv) calculates v-prediction (Rombach et al., 2022) loss for training.

Figure 7: Appearance Artifacts in AnimateAny-
one (Hu et al., 2023). The generated results (in
the second frame) show i) position jitters due to
training data camera movement, and ii) identity
inconsistencies after the Motion Module refine-
ment. Best viewed with Acrobat Reader. Click the
images to play the clip.

Different from AnimateAnyone, we introduce
additional homography background offset flow
to eliminate artifacts due to camera parame-
ter changes. As shown in Figure 7, the gen-
erated images often cause the drift of objects
in a background, ignoring their fixed posi-
tion in the reference background image. This
is caused by overfitting the camera parameter
changes in in-the-wild videos. To address this,
we calculate an image-level background off-
set flow Hi,k ∈ Rh×w×2 and add it by Back-
groundGuider B, the B has the same archi-
tecture with G. Specifically, we compute the
homography matrix between the reference and
target images to calculate the pixel movement
∆x,∆y for the background region. In particu-
lar, we masked the foreground by human seg-
mentation results from DeepLabv3, then ap-
plied SIFT, FLANN, and RANSAC to keypoint detection, keypoint matching, and homography
matrix computation, respectively.

Reference Motion Module-based Image2Video Stage. As shown in Figure 6, the Image2Video
stage captures temporal dependencies among video frames to mitigate the jitter effects in the
Pose2Image stage. AnimateAnyone (Hu et al., 2023), as same as AnimateDiff (Guo et al., 2023), op-
timizes a residual self-attention-based motion module M within DenoisingNet D in this stage. The
motion module reshapes a feature map x ∈ Rb×t×h×w×c to x ∈ R(b×h×w)×t×c and then performs
temporal attention along the t dimension. However, as illustrated in Figure 7, this approach tends
to produce averaged appearances across image sequences, resulting in diminished identity consis-
tency. While this artifact may be negligible for other tasks where human identity is not important, it
substantially degrades the realism of our gesture video graph.

Our analysis identifies that the key issue is the expansive solution space for the motion module, as
self-attention is applied exclusively along the temporal dimension t. To address this, we introduce
additional conditioning to constrain the solution space. We train the motion module by randomly
selecting start and end pixels to effectively reduce uncertainty. During training, for the feature
map x ∈ R(b×h×w)×t×c, we introduce a probability p to incorporate 4-frame ground truth latent
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Table 1: Evaluation for co-speech video generation on Show-Oliver and YouTube Video dataset.
Show-Oliver YouTube Talking Video

FVD ↓ FGD ↓ BC ↑ Diversity ↑ FVD ↓ FGD ↓ BC ↑ Diversity ↑
Ground Truth - - 0.326 3.514 - - 0.435 3.746
SpeechDrivenTemplate (Qian et al., 2021) 2.239 5.722 0.401 1.950 7.612 5.559 0.461 2.081
ANGIE (Liu et al., 2022c) 2.079 5.112 0.359 2.577 - - - -
S2G-Diffusion (He et al., 2024a) 2.007 4.799 0.393 3.398 5.835 5.011 0.439 2.625
GVR (Zhou et al., 2022) 1.615 4.246 0.270 4.623 4.027 2.900 0.331 3.573
TANGO (Ours) 1.379 3.714 0.375 5.393 3.133 2.068 0.479 4.128

features as reference. Leveraging classifier-free guidance, our conditional diffusion-based motion
module supports inference with or without these reference frames. The 4-frame segment alignment
corresponds to the node length in the Gesture Video Reenactment. Finally, During inference, we
introduce 4 × α and 4 × β start and end conditional frames, generating intermediate 8 frames for
transition edges.

4 EXPERIMENTS

4.1 DATASET

Our experiments are conducted on the open-source Show dataset (Yi et al., 2023) and a newly
collected YouTube Video dataset. The Show dataset comprises 26 hours of talking videos featuring
four speakers with varying backgrounds and irregular camera movements. We selected the speaker,
Oliver, as these videos contain fewer interactions with the background. The YouTube Video data is
a small-scale, less than one hour dataset from in-the-wild YouTube videos characterized by clean
backgrounds and fixed camera positions. More details of split for each dataset is in the APPENDIX.

4.2 EVALUATION OF GENERATED VIDEOS

We compare our method with the previous state-of-the-art Generative method SDT (Qian et al.,
2021), ANGIE (Liu et al., 2022c), S2G-Diffusion (He et al., 2024a) and reassemble-based method
GVR (Zhou et al., 2022). We use the pertained weights from SDT and finetune the pose2img stage
with a specific cloth. We evaluate ANGIE with the original paper test samples provided on Show-
Oliver. For GVR, we reproduce the onset-based graph search and pose-aware neural rendering
according to the implementation details in their paper.

Table 2: User Study on Talkshow-Oliver.
SDT GVR TANGO (Ours) GT

Video Texture Quality ↑ 4.1% 26.7% 33.8% 35.5%
Audio-Motion Alignment ↑ 29.2% 10.9% 28.7% 31.2%
Overall Preference ↑ 4.9% 20.6% 36.9% 37.6%

Objective Evaluation We employ both video
and kinematic Feature Distance (FVD (Carreira
& Zisserman, 2017) and FGD (Yoon et al.,
2020)) to quantify feature-level discrepancies.
Additionally, we utilize Beat Consistency (BC)
(Liu et al., 2022d) and Diversity (Li et al., 2021) metrics to evaluate audio-motion synchronization
and gesture diversity, respectively. As shown in Table 1, our method outperforms GVR and SDT
across all metrics except for BC. The fully generated baseline exhibits greater flexibility in the out-
put motion space, which results in better BC performance. However, compared to SDT, our method
significantly improves video quality. Furthermore, compared to GVR, our approach consistently
shows improvement across all metrics, demonstrating that TANGO generates more realistic and
audio-synchronized videos.

Subjective Evaluation As shown in Table 2, we conducted a user study across four results. 47
Participants were asked to assess each video based on i) which video is more physically accurate, ii)
which video’s content aligns more closely with the audio, and iii) overall, which video is more like
a real video. Users compared videos from all four results in a single row, with the order of videos
randomly shuffled. A total of 60 video clips, each spanning 6 sec. We didn’t include ANGIE in
the user study due to not having enough result video clips. Some snapshots of a transition period
are shown in Figure 8, and the supplementary material includes video results. Our method scored
comparable to the ground truth video and outperforms the existing generative method SDT and
retrieval method GVR with a clear margin.
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4.3 EVALUATION OF AUMOCLIP

We evaluate the effectiveness of AuMoCLIP by retrieving gesture motion sequences using target
audio features and measure performance using retrieval accuracy. As shown in Table 3, we compute
low-level and high-level retrieval accuracy. Low-level retrieval accuracy is calculated by randomly
selecting an audio feature at frame i and finding the motion frame within (i − 16, i + 16) with the
highest cosine similarity. If this frame lies within (i − 4, i + 4), it is marked as accurate. The final
accuracy is averaged over 16K random pairs, so the random search will have an accuracy of 25%.
Similarly, high-level retrieval accuracy is measured by selecting an audio high-level feature and
comparing it against 256 motion candidates (1 paired motion + 255 negatives). If the highest cosine
similarity corresponds to the paired motion, it is marked as accurate. This accuracy is averaged
over 3K random pairs, and the random search will perform 0.391%. If the performance beats the
random search, that means the model works correctly. The onset and keyword matching in GVR
has a performance of 35.38% (low-level) and 1.288% (high-level), which is better than the random
search. We then discuss the performance roadmap to the final AuMoCLIP.

Generative Features. One straightforward approach is to directly train an audio-to-motion network
(Liu et al., 2022b) and compute the joint level distance between the generated motion and motion
candidates for retrieval. However, this method yields lower-than-expected performance, achieving
only 29.03% on low-level retrieval and 1.403% on high-level retrieval.

Table 3: Comparison of features for audio-motion
retrieval

Low Level High Level
Random Search 25.00% +00.00% 0.391% +00.00%
Generative Features 29.03% +16.10% 1.403% + 258.8%
Keyword (Zhou et al., 2022) - 1.288% + 229.4%
Onset (Zhou et al., 2022) 35.38% +41.51% -
Baseline (Max Pooling) - 5.312% + 1360%
Baseline (CLS Token) - 11.84% + 3028%
+ Wav2Vec2 - 12.73% + 3255%
+ BERT - 15.68% + 4010%
+ Wav2Vec2&BERT - 16.40% + 4194%
+ Split (Low + High) 47.94% + 99.76% 17.83% +4460%
+ Split (Low only) 65.57% + 162.2% -
AuMoCLIP (+ Stop Grad.) 65.68% + 163.8% 19.54% + 4897%

MaxPooling or CLS Token. We then switch to
a MoCoV2-based dual-tower contrastive learn-
ing framework, starting with high-level features
only. MoCoV2 is originally designed for im-
ages, not sequential data like motion. One so-
lution is to apply max pooling along the time
axis for the global token, similar to (Ao et al.).
However, while max pooling focuses on ac-
curate local alignment, it is less effective for
global retrieval, resulting in a performance of
only 5.312%. To address this, we adopt an
adaptive global feature merge approach using
the CLS token, which significantly improves performance to 11.84%. We keep CLS token in the
remained experiments.

Pretrained Audio Features from Wav2Vec2 and BERT. As shown in Table 3, incorporating pre-
trained audio features, specifically time-aligned BERT features, significantly enhances the baseline’s
performance from 11.84% to 15.68%. This improvement occurs because BERT captures high-
dimensional language semantics rather than just ”audio textures.”, which is critical for co-speech
gesture retrieval task.

Discussion of Low-Level Contrastive Learning. Including the low-level contrastive learning task
consistently benefits high-level retrieval performance, suggesting that adding a more robust low-
level feature improves high-level performance. Interestingly, we found that training only the low-
level contrastive learning task achieves significantly better performance, reaching 65.57%. These
observations suggest that we should: i) incorporate learned low-level features into high-level em-
bedding learning, and ii) avoid the influence of high-level learning on low-level features. Therefore,
we propose simply stopping the gradient to achieve the best performance for both features.

4.4 EVALUATION OF VIDEO BLENDING METHODS

Table 4: Comparison of video blending methods.
PSNR ↑ LPIPS ↓ MOVIE ↓ FVD ↓

FiLM (Reda et al., 2022) 35.43 0.072 74.85 1.358
VFIF (Lu et al., 2022) 34.91 0.077 79.42 1.777
AnimateAnyone (Hu et al., 2023) 32.63 0.127 86.06 1.421
PANR (Zhou et al., 2022) 35.18 0.071 75.02 1.190
ACInterp (Ours) 35.63 0.065 72.65 0.922

We compare the effectiveness of the pro-
posed diffusion-based video frame interpo-
lation method by evaluating the quality of
blended videos. The test set is from the same
videos as other sections. Since the test videos
in other sections vary in length (e.g., 3 to 10
seconds). In this section, we evenly sampled 8-
frame clips, resulting in a 368-video test set for evaluating blending. Our approach is compared
with the Pose Aware Neural Rendering in the original GVR (Zhou et al., 2022), the state-of-the-
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12

Animate Anyone                FiLM                   VFIFormer           Pose Aware     Ours               Ground Truth
        Neural Rendering 

Figure 8: Comparison for Transition Frames Generation. From top to bottom, we show four
snapshots in the same frames across different methods. Our method shows fewer artifacts in the hand
regions and maintains appearance consistency with the GT frames. AnimateAnyone can recover the
hands but loses appearance consistency. The flow-based methods FiLM and VFIFormer fail to
estimate the flow for complex motions, resulting in the disappearance of hands. Pose Aware Neural
Rendering shows better hand results but still suffers from artifacts such as blurring.

art flow-based blending method FiLM (Reda et al., 2022), VFIFormer (Lu et al., 2022), and the
diffusion-based pose-guided video generation method AnimateAnyone (Hu et al., 2023). All meth-
ods are re-trained on the Show-Oliver dataset with a training and inference resolution of 768× 768.
We evaluate both image-level and video-level quality. For single images, we utilize Image Error
(L1 pixel-level distance), Learned Perceptual Image Patch Similarity (LPIPS), and Peak Signal-to-
Noise Ratio (PSNR). For videos, we adopt the Mean Opinion Video Quality Estimation (MOVIE)
and feature-level distance (FVD). The features for calculating LPIPS and FVD are obtained from
pretrained AlexNet and I3D networks, respectively.

The objective comparisons are shown in Table 4. The flow-based interpolation method (Reda et al.,
2022) tends to have lower average pixel-level error. The AnimateAnyone (Hu et al., 2023) performs
worse due to appearance inconsistency. Overall, our diffusion-based interpolation model outper-
forms both previous flow-based and diffusion-based methods by a clear margin, e.g., FVD 0.922 vs.
the previous best 1.190. See Figure 8 and supplementary material for the resulting video.

5 CONCLUSION

We presented TANGO, a framework for generating high-fidelity videos where body gestures align
with the target speech audio. TANGO is evaluated on the Show-Oliver and YouTube Video datasets
to demonstrated its ability to produce realistic videos, outperforming state-of-the-art generative and
retrieval based methods. Besides, to the best of our knowledge, TANGO is the first work to present
CLIP-Like contrastive learning on audio and motion modalities, and it is the first open-source motion
graph and audio-driven video generation pipeline. In the future, we aim to extend the gesture video
graph on general human motion videos, such as dance, sports and more.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tenglong Ao, Zeyi Zhang, and Libin Liu. Gesturediffuclip: Gesture diffusion model with clip
latents. ACM Trans. Graph. doi: 10.1145/3592097.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. Advances in neural information
processing systems, 33:12449–12460, 2020.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6299–6308, 2017.

Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody dance now. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 5933–5942, 2019.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

MMSegmentation Contributors. Mmsegmentation: Openmmlab semantic segmentation toolbox and
benchmark, 2020.

Duolikun Danier, Fan Zhang, and David R. Bull. St-mfnet: A spatio-temporal multi-flow network
for frame interpolation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3511–3521, 2022.

Duolikun Danier, Fan Zhang, and David R. Bull. LDMVFI: video frame interpolation with latent
diffusion models. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1472–
1480, 2024.

David Fleet and Yair Weiss. Optical flow estimation. pp. 237–257, 2006.

Shiry Ginosar, Amir Bar, Gefen Kohavi, Caroline Chan, Andrew Owens, and Jitendra Malik. Learn-
ing individual styles of conversational gesture. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3497–3506, 2019.

Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. Tm2t: Stochastic and tokenized modeling for
the reciprocal generation of 3d human motions and texts. In European Conference on Computer
Vision, pp. 580–597. Springer, 2022.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. Animatediff:
Animate your personalized text-to-image diffusion models without specific tuning. arXiv preprint
arXiv:2307.04725, 2023.

Chengan He, Jun Saito, James Zachary, Holly Rushmeier, and Yi Zhou. Nemf: Neural motion fields
for kinematic animation. Advances in Neural Information Processing Systems, 35:4244–4256,
2022.

Xu He, Qiaochu Huang, Zhensong Zhang, Zhiwei Lin, Zhiyong Wu, Sicheng Yang, Minglei Li,
Zhiyi Chen, Songcen Xu, and Xiaofei Wu. Co-speech gesture video generation via motion-
decoupled diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2263–2273, 2024a.

Xu He, Qiaochu Huang, Zhensong Zhang, Zhiwei Lin, Zhiyong Wu, Sicheng Yang, Minglei Li,
Zhiyi Chen, Songcen Xu, and Xiaofei Wu. Co-speech gesture video generation via motion-
decoupled diffusion model. arXiv preprint arXiv:2404.01862, 2024b.

Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, and Liefeng Bo. Animate anyone:
Consistent and controllable image-to-video synthesis for character animation. arXiv preprint
arXiv:2311.17117, 2023.

Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. Real-time intermediate
flow estimation for video frame interpolation. In European Conference on Computer Vision, pp.
624–642. Springer, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2462–2470, 2017.

Siddhant Jain, Daniel Watson, Eric Tabellion, Aleksander Holynski, Ben Poole, and Janne Kon-
tkanen. Video interpolation with diffusion models. CoRR, abs/2404.01203, 2024. URL
https://doi.org/10.48550/arXiv.2404.01203.

Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik G. Learned-Miller, and Jan
Kautz. Super slomo: High quality estimation of multiple intermediate frames for video interpola-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 9000–9008, 2018.

Lingtong Kong, Boyuan Jiang, Donghao Luo, Wenqing Chu, Xiaoming Huang, Ying Tai, Chengjie
Wang, and Jie Yang. Ifrnet: Intermediate feature refine network for efficient frame interpolation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1969–1978, 2022.

Lucas Kovar, Michael Gleicher, and Frédéric H. Pighin. Motion graphs. pp. 51:1–51:10, 2008.

Jing Li, Di Kang, Wenjie Pei, Xuefei Zhe, Ying Zhang, Zhenyu He, and Linchao Bao. Au-
dio2gestures: Generating diverse gestures from speech audio with conditional variational au-
toencoders. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11293–11302, 2021.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

Zhen Li, Zuo-Liang Zhu, Linghao Han, Qibin Hou, Chun-Le Guo, and Ming-Ming Cheng. AMT:
all-pairs multi-field transforms for efficient frame interpolation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9801–9810, 2023b.

Haiyang Liu, Naoya Iwamoto, Zihao Zhu, Zhengqing Li, You Zhou, Elif Bozkurt, and Bo Zheng.
Disco: Disentangled implicit content and rhythm learning for diverse co-speech gestures synthe-
sis. In Proceedings of the 30th ACM International Conference on Multimedia, pp. 3764–3773,
2022a.

Haiyang Liu, Zihao Zhu, Naoya Iwamoto, Yichen Peng, Zhengqing Li, You Zhou, Elif Bozkurt, and
Bo Zheng. Beat: A large-scale semantic and emotional multi-modal dataset for conversational
gestures synthesis. arXiv preprint arXiv:2203.05297, 2022b.

Xian Liu, Qianyi Wu, Hang Zhou, Yuanqi Du, Wayne Wu, Dahua Lin, and Ziwei Liu. Audio-driven
co-speech gesture video generation. Advances in Neural Information Processing Systems, 35:
21386–21399, 2022c.

Xian Liu, Qianyi Wu, Hang Zhou, Yinghao Xu, Rui Qian, Xinyi Lin, Xiaowei Zhou, Wayne Wu,
Bo Dai, and Bolei Zhou. Learning hierarchical cross-modal association for co-speech gesture
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 10462–10472, 2022d.

Ziwei Liu, Raymond A. Yeh, Xiaoou Tang, Yiming Liu, and Aseem Agarwala. Video frame synthe-
sis using deep voxel flow. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 4473–4481, 2017.

Liying Lu, Ruizheng Wu, Huaijia Lin, Jiangbo Lu, and Jiaya Jia. Video frame interpolation with
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 3532–3542, 2022.

12

https://doi.org/10.48550/arXiv.2404.01203


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays,
Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Mediapipe: A framework
for building perception pipelines. arXiv preprint arXiv:1906.08172, 2019.

Muhammad Hamza Mughal, Rishabh Dabral, Ikhsanul Habibie, Lucia Donatelli, Marc Habermann,
and Christian Theobalt. Convofusion: Multi-modal conversational diffusion for co-speech ges-
ture synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1388–1398, 2024.

Simon Niklaus and Feng Liu. Context-aware synthesis for video frame interpolation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–
1710, 2018.

Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5436–5445,
2020.

Simbarashe Nyatsanga, Taras Kucherenko, Chaitanya Ahuja, Gustav Eje Henter, and Michael Neff.
A comprehensive review of data-driven co-speech gesture generation. Comput. Graph. Forum, 42
(2):569–596, 2023.

Kunkun Pang, Dafei Qin, Yingruo Fan, Julian Habekost, Takaaki Shiratori, Junichi Yamagishi, and
Taku Komura. Bodyformer: Semantics-guided 3d body gesture synthesis with transformer. ACM
Transactions on Graphics (TOG), 42(4):1–12, 2023.

Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim. BMBC: bilateral motion estimation
with bilateral cost volume for video interpolation. In European Conference on Computer Vision,
volume 12359, pp. 109–125, 2020.

Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric bilateral motion estimation for video
frame interpolation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 14519–14528, 2021.

Junheum Park, Jintae Kim, and Chang-Su Kim. Biformer: Learning bilateral motion estimation via
bilateral transformer for 4k video frame interpolation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 1568–1577, 2023.

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dim-
itrios Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body from a
single image. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pp. 10975–10985, 2019.

KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri, and CV Jawahar. A lip sync expert is
all you need for speech to lip generation in the wild. In Proceedings of the 28th ACM international
conference on multimedia, pp. 484–492, 2020.

Xingqun Qi, Jiahao Pan, Peng Li, Ruibin Yuan, Xiaowei Chi, Mengfei Li, Wenhan Luo, Wei Xue,
Shanghang Zhang, Qifeng Liu, et al. Weakly-supervised emotion transition learning for diverse
3d co-speech gesture generation. arXiv preprint arXiv:2311.17532, 2023.

Shenhan Qian, Zhi Tu, Yihao Zhi, Wen Liu, and Shenghua Gao. Speech drives templates: Co-
speech gesture synthesis with learned templates. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 11077–11086, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, and Brian Curless.
FILM: frame interpolation for large motion. In European Conference on Computer Vision, pp.
250–266. Springer, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. XVFI: extreme video frame interpolation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14469–
14478, 2021.

Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano, and Daniel Cohen-Or. Motionclip: Ex-
posing human motion generation to clip space. In European Conference on Computer Vision, pp.
358–374. Springer, 2022.

Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal. MCVD - masked conditional video
diffusion for prediction, generation, and interpolation. In NeurIPS 2022, 2022.

Yue Wu, Qiang Wen, and Qifeng Chen. Optimizing video prediction via video frame interpolation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
17814–17823, 2022.

Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T. Freeman. Video enhancement
with task-oriented flow. International Journal of Computer Vision, 127(8):1106–1125, 2019.

Sicheng Yang, Zhiyong Wu, Minglei Li, Zhensong Zhang, Lei Hao, Weihong Bao, Ming Cheng,
and Long Xiao. Diffusestylegesture: Stylized audio-driven co-speech gesture generation with
diffusion models. arXiv preprint arXiv:2305.04919, 2023a.

Sicheng Yang, Zhiyong Wu, Minglei Li, Zhensong Zhang, Lei Hao, Weihong Bao, and Haolin
Zhuang. Qpgesture: Quantization-based and phase-guided motion matching for natural speech-
driven gesture generation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR, pp. 2321–2330. IEEE, June 2023b.

Hongwei Yi, Hualin Liang, Yifei Liu, Qiong Cao, Yandong Wen, Timo Bolkart, Dacheng Tao, and
Michael J Black. Generating holistic 3d human motion from speech. In CVPR, 2023.

Youngwoo Yoon, Bok Cha, Joo-Haeng Lee, Minsu Jang, Jaeyeon Lee, Jaehong Kim, and Geehyuk
Lee. Speech gesture generation from the trimodal context of text, audio, and speaker identity.
ACM Transactions on Graphics (TOG), 39(6):1–16, 2020.

Guozhen Zhang, Yuhan Zhu, Haonan Wang, Youxin Chen, Gangshan Wu, and Limin Wang. Ex-
tracting motion and appearance via inter-frame attention for efficient video frame interpolation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 5682–5692, 2023a.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023b.

Yang Zhou, Jimei Yang, Dingzeyu Li, Jun Saito, Deepali Aneja, and Evangelos Kalogerakis. Audio-
driven neural gesture reenactment with video motion graphs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3418–3428, 2022.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation
representations in neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5745–5753, 2019.

Lingting Zhu, Xian Liu, Xuanyu Liu, Rui Qian, Ziwei Liu, and Lequan Yu. Taming diffusion models
for audio-driven co-speech gesture generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10544–10553, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASETS

Show-Oliver. The Show dataset comprises 26 hours of talking videos featuring four speakers with
varying backgrounds and irregular camera movements. We selected the speaker, Oliver, as these
videos contain fewer interactions with the background. The full Show-Oliver dataset contains 6546
video clips, ranging from 3 to 10 seconds. We evaluate our approach using multiple few-shot sets,
each derived from a total of 10 minutes of randomly selected video clips with consistent clothing.
These sets are divided into 80%, 10%, and 10% splits for training, validation, and testing, respec-
tively.

YouTube Video Dataset. We further collect and process a small-scale, few-shot dataset from in-the-
wild YouTube videos characterized by clean backgrounds and fixed camera positions. These videos
feature 12 speakers delivering presentations lasting 1 to 2 minutes. We select four speakers of them
and picks 6 to 10-second video subsets as the test set and use the remaining videos for training and
constructing the Gesture Video Reenactment.

We first collect raw YouTube videos featuring 12 different identities. These videos are then seg-
mented into multiple clips based on the detected sentence boundaries in the audio. Face detector
is utilized to ensure that all clips contain clear faces. Subsequently, post-processing is employed to
eliminate background obstructions and automatically adjust the camera position for consistency. Fi-
nally, we obtained 304 clips for different identities, with from total duration of 1 hour data. For each
identity, the longer video clips are used for the validation set, while the remaining clips constitute
the training set.

A.2 TIMING-ALIGNED BERT FEATURES WITHOUT MFA

To achieve time-aligned BERT features for audio without forced alignment (MFA), we combine
Wav2Vec2 and BERT models through the following steps:

Transcription (ASR). We use Wav2Vec2 with a Connectionist Temporal Classification (CTC)
head to obtain the logits, which represent the model’s confidence scores for each possible to-
ken at each time step. The logits are processed to generate a sequence of predicted to-
ken IDs for the audio input. These token IDs are then decoded into a transcription us-
ing the Wav2Vec2 processor’s vocabulary. For example, we have the alphabet sequence
[””, ””, ”T”, ””, ””, ”h”, ”e”, ””, ”F”, ”i”, ”r”, ”s”, ”t”] in this step.

BERT Embedding. The transcription is tokenized using the BERT tokenizer, and the embeddings
are obtained from the BERT model. The tokenizer in BERT conver the alphabet sequence into word
sequence [”CLS”, ”The”, ”First”, ”POS”].

Time Alignment. We align the Wav2Vec2-generated tokens with the BERT tokens using character-
level matching. In particular, for each audio frame, we assign the aligned BERT embedding as its
feature. If a match is not found, we fill the gap by using the nearest neighboring non-zero features,
ensuring a smooth transition in the feature sequence over time.

A.3 15D MOTION REPRESENTATION

We refer to NeMF (He et al., 2022) represent the motion at each time step t using a 15-dimensional
(15D) feature vector for each joint. This representation captures only local motion. The 15D motion
representation, Xt ∈ RJ×15, includes:

Firstly, the joint positions xp
t ∈ RJ×3 represent the 3D coordinates of each joint relative to the root

joint, providing the skeletal pose at time t. Secondly, the joint velocities ẋp
t ∈ RJ×3 capture the rate

of change of joint positions.

Additionally, the representation includes joint rotations xr
t ∈ RJ×6, which encode the orientation of

each joint in a 6D rotation format (Zhou et al., 2019), allowing for a more robust and unambiguous
rotation representation. Lastly, the angular velocities ẋr

t ∈ RJ×3 describe the rotational speed of
each joint. This unified representation enables a detailed and comprehensive modeling of both the
position and movement dynamics of each joint.
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A.4 LIMITATIONS

The ACInterp inputs 2D pose images from linear 2D pose blending. During inference, the image-
level pose guidance is obtained by linearly blending detected 2D pose sequences. Since the linear
blending is applied independently to each axis, the result of potential 3D blending (x1, y1, z1) →
(x2, y2, z2) is equivalent to blending 2D (x1, y1) → (x2, y2) for the x- and y-axes. However, when
the GT motion between 8-interpolated frame is non-linear, the generated results is slightly differ
from the GT. We calculate the linear blending could work, i.e., with a 2D pose error smaller than
threshold 0.005, on 83% clips for Talkshow-Oliver Dataset.

Besides, our method requires reference videos with low-dynamic backgrounds, such as TalkShow
Oliver and YouTubeTalk datasets. Our methods do not work well on speakers with high-dynamic
backgrounds. For example, other speakers in TalkShow often interact with the background black-
board or move around while talking, resulting in non-stable backgrounds. The blending of highly
different backgrounds within very short durations, e.g., half a second, makes the results unnatural.

A.5 TRAINING DETAILS AND SETTINGS

We trained AuMoCLIP with a learning rate of 5 × 10−4, a batch size of 64, on a single Nvidia L4
(24 GB) GPU for 30 hours. For ACInterp we leveraged the pre-trained weights from the reproduced
AnimateAnyone by Moore-Thread, then it was finetuned with a learning rate of 1 × 10−5, a batch
size of 16 for the image stage, and a batch size of 4 for the video stage, using 4 A100 (80 GB)
GPUs. The image and video stages were trained for 30k and 20k iterations, respectively, requiring
5-6 days.

A.6 DETAILS OF MERGING SMALLER SCCS TO THE LARGEST SCC

The graph pruning methodology enhances the connectivity of the motion graph G by merging its
strongly connected components (SCCs). We firstly decompose the graph G into strongly connected
components (SCCs), which are maximal subgraphs where every node is reachable from every other
node within the same subgraph, denoted as GSCC = {G0, G1, . . . , Gn}, where |Gk| represents
the size (number of nodes) of the k-th SCC. Then, we select the largest SCC Gm as the primary
component for merging.

Each smaller SCC Gi (Gi ̸= Gm) is analyzed to determine whether any of its nodes are not in Gm.
We will try to merge the Gi to Gm If 1) disconnected nodes are found and there is more than 30
disconnected nodes (1-second video), and 2) if the number of nodes in an SCC is smaller than n (set
to n = 100 in our implementation). These rules are to prevent merging small and isolated nodes
into the main SCC.

Then, for each node u in Gm and each node v in Gi, we compute the distance d(u, v), where the
distance is the similarity for pose positions on 3D space and IOU distance on 2D space. We found
the closest pair of nodes (u, v) that minimizes the distance. After determining the closest pair, we
add bi-directional edges eu,v and ev,u to the original graph G, for effectively merging Gi into Gm.
Finally, this iterative process produces an enhanced graph G′ where paths of any desired length
could be sampled from any starting node.
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