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ABSTRACT

Cognition arises from the coordinated interaction of brain regions with distinct
computational roles. Despite improvements in our ability to extract the dynam-
ics underlying circuit computation from population activity recorded in individual
areas, understanding how multiple areas jointly support distributed computation
remains a challenge. As part of this effort, we propose a multi-region neural
dynamics model composed of two building blocks: i) within-region (potentially
driven) nonlinear dynamics and ii) communication channels between regions, pa-
rameterized through their impulse response. Together, these choices make it pos-
sible to learn nonlinear neural population dynamics and understand the flow of
information between regions by drawing from the rich literature of linear systems
theory. We develop a state noise inversion free variational filtering and learning
algorithm for our model and show, through neuroscientifically inspired numerical
experiments, how the proposed model can reveal interpretable characterizations
of the local computations within and the flow of information between neural pop-
ulations. We further validate the efficacy of our approach using simultaneous
population recordings from areas V1 and V2.

1 INTRODUCTION

Perception, choice and action engage neural circuits distributed across the brain (Chen et al., 2024;
Khilkevich et al., 2024; Noel et al., 2024; Pinto et al., 2022; Machado et al., 2022; Ebrahimi et al.,
2022). Despite technological advances that facilitate recording from multiple, anatomically distinct,
populations of neurons (Steinmetz et al., 2021), understanding neural computation at the level of
multiple interacting populations remains a statistical and theoretical challenge. Making progress
requires new theoretical frameworks describing how global computations arise from multiple inter-
acting circuits (Perich & Rajan, 2020), each with potentially complex local nonlinear dynamics, and
new statistical tools that extract such structure directly from recorded neural activity during behavior.

One prominent set of approaches for measuring interarea interactions based on neural data focus on
communication subspaces (Semedo et al., 2019). Rather than modeling local circuit dynamics ex-
plicitly, these approaches aim to partition population response variability into ‘private’ dimensions,
that are local to an area, and ‘shared’ dimensions reflecting the flow of information across areas.
In its simplest form, this partitioning is formalized as low-rank regression or canonical correlation
analysis, for directional or undirectional communication, respectively (Semedo et al., 2020). Ad-
ditionally, Gaussian Process (GP) priors for the latents enforce temporal regularities, and explicitly
model features like communication delays (Gokcen et al., 2022; 2024), frequency and phase delays
(Li et al., 2024) or additional task-relevant covariates (Balzani et al., 2023).

Building upon a decade of progress in latent state estimation from neural population activity (Panin-
ski et al., 2010; Cunningham & Yu, 2014; Duncker & Sahani, 2021), other approaches directly model
the dynamics within each areas and the interactions between them. The simplest such models use
linear dynamical systems (LDS) for capturing within area dynamics. For instance, gLARA (group
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latent autoregressive analysis) (Semedo et al., 2014) assumes that within- and between- popula-
tion dynamics are both governed by LDSs. More recently, the state-space representation of finitely
differentiable GPs (Li et al., 2024) blurs the distinction between GP-prior based communication sub-
spaces and LDS methods, although these are mainly leveraged for efficient inference. Oftentimes,
multi-area approaches can be seen as special cases of single area models, with additional parameter
constraints. For instance, Glaser et al. (2020) adapts recurrent switching linear dynamical systems
(rSLDS) to construct a multi-population sticky rSLDS (mp-srSLDS) of neural dynamics. This al-
lows for nonlinear within area dynamics and instantaneous linear information flow between them.
The most complex multi-area model is MR-SDS (multi-region switching dynamical systems), which
uses neural networks to parametrize arbitrary nonlinearities for within area dynamics and across ar-
eas communication and uses switching to capture global transitions between such nonlinear systems
to model behavioral state (Karniol-Tambour et al., 2022). Closest to the circuit level, multi-region
recurrent neural networks (RNNs) can be fit directly to single neuron responses Perich et al. (2020),
which provides direct current estimates but leaves understanding the low dimensional dynamical
systems structure of the solution to post-hoc investigation. Overall, different approaches provide
different trade-offs between flexibility and interpretability (see Appendix Table S1). None of the
existing methods fully reflect the nature of distributed computation as formalized in current circuit
level theories (Bredenberg et al., 2024; Langdon et al., 2023; Mišić & Sporns, 2016).

Here we develop a probabilistic generative model that accounts for the nonlinear nature of neural dy-
namics and characterizes communication between regions using channels that are parameterized by
their impulse response – blending expressive nonlinear region specific dynamics with interpretable
characterizations of the flow of information between regions. Our major methodological contribu-
tions include i) the generative model of latent neural dynamics that combines node-specific nonlin-
ear dynamical systems parameterized by deep neural networks with linear communication channels
between regions, which we term MRDS-IR (for MultiRegion Dynamical Systems with Impulse
Response communication channels) ii) an end-to-end variational methodology, using a state-noise
inversion free filtering algorithm, streamlining the treatment of approximate inference in state-space
graphical models with hybrid stochastic/deterministic transitions. Through several neuroscientifi-
cally inspired numerical experiments including integration, gating of information flow and rhythmic
timing, we demonstrate the use of our approach to make sense of the underlying computation behind
observed multi-population neural responses. We also show that our approach reveals meaningful
features of neural activity in joint population recordings from visual areas V1 and V2.

2 MODELING MULTI-AREA NEURAL DYNAMICS DURING BEHAVIOR

2.1 BACKGROUND

State-space models. State-space graphical models provide a principled framework for data driven
learning of neural population dynamics (Paninski et al., 2010). For a single neural population,
recorded neural activity, yt ∈ RN , at time, t, is modeled as reflecting a lower-dimensional popula-
tion latent state, zt ∈ RL, which evolves as a dynamical system parameterized by θ,

zt = fθ(zt−1, ct) +wt (latent process) yt | zt ∼ p(yt | zt) (observation model) (1)
where wt ∼ N (0,Q), and ct denotes (optional) inputs/stimuli.

Generalizing this formalism to simultaneous recordings from K regions, a natural choice is to par-
tition the latent space into K groups of latent variables, with population responses in any given
depending only on the latents of that region (Gokcen et al., 2022; Li et al., 2024; Karniol-Tambour
et al., 2022; Semedo et al., 2014), p(y(k)

t | z(1)t , z
(2)
t , . . . , z

(K)
t ) = p(y

(k)
t | z(k)t ), where y

(k)
t and

z
(k)
t are the population activity and latent state associated with region k, respectively. Within this

common structure, different multi-region models make different choices for the functional form of
the latent space and the dependencies linking latents across regions. This structure determines not
only the model’s expressiveness but also its ability to capture crucial aspects of neural population
dynamics. One important such feature is the latency in communication between regions, reflecting
the time delays inherent in signal propagation, which is absent in most process models (Glaser et al.,
2020; Karniol-Tambour et al., 2022) or realized by introducing dependence on a finite state his-
tory (Semedo et al., 2014). To provide a more flexible framework for modeling signal propagation
between regions, we consider principles from linear system theory.
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Characterizing communication channels via their impulse response. The general premise of
our approach for modeling communication channels is that signal propagation between regions can
be well approximated by sufficiently expressive linear filters, allowing for propagation delays and
temporal filtering, e.g. preferential transfer of information in a specific frequency band (Bastos
et al., 2015), while keeping the model tractable. Two fundamental concepts for understanding a
linear system are i) its impulse response and ii) its transfer function; they offer complementary
perspectives on the system’s input to output map, characterizing information flow in both time and
frequency (Kailath, 1980; Chen, 1984; Brockett, 2015). Consider an Nin dimensional input signal,
ut, driving a linear system to produce an Nout dimensional output signal, xt. The impulse response
of the system, ht, is a Nout × Nin dimensional matrix, with entry (i, j) given by the [xt]i output
when [ut]j is the unit impulse. By superposition, xt and ut are related by convolution so that,

xt =

t∑
τ=−∞

ht−τuτ . (2)

An alternative characterization, more suited to understanding frequency-domain properties, is the
transfer function, which for discrete-time systems is the Z-transform of the impulse response,

H(z) =
∞∑

t=−∞
z−t ht (3)

where the transfer function, H(z), is also an Nout × Nin dimensional matrix whose (i, j) entry
characterizes how frequency content changes from input dimension j to output dimension i. If x(z)
and u(z) are the Z-transform of xt and ut respectively, then in the Z-domain they can be related
by x(z) = H(z)u(z). Importantly, if the entries of H(z) are all rational in z and the degree of the
denominator exceeds that of the numerator, then a finite-dimensional realization of that system can
be implemented by an LDS.1 This means that for any strictly proper2 transfer function satisfying
those properties, there exists a tuple (A,B,C) that parameterize an LDS,

xt = Cγt γt = Aγt−1 +But (4)
whose impulse response and transfer function match ht and H(z) respectively, and can be written in
terms of the LDS parameters as,

ht = CAt−1B H(z) = C(zI−A)−1B (5)
Consequently, impulse response descriptions of communication channels can be directly incorpo-
rated into state-space model descriptions of multi-region neural dynamics. For understanding tem-
poral characteristics such as delays in communication channels, the impulse response can provide
an informative description; how information may be attenuated or amplified at different frequencies
is better understood through the transfer function.

2.2 THE MRDS-IR GENERATIVE MODEL

We consider region specific latent states driven by their own recurrent dynamics subject to filtered
content of other region’s latent state history, with dynamics of the form,

z
(k)
t = fk(z

(k)
t−1) +

∑
ℓ ̸=k

Hk,ℓ(z
(ℓ)
1:t−1) + Gk(c

(k)
t ) +w

(k)
t (6)

where Gk maps region specific stimuli/inputs to the latent space, andHk,ℓ transforms the latent state
history of region ℓ into an input to region k – acting as a directed and causal3 channel that controls the
transmission of information between regions. This state-space structure is mathematically general,
with many existing multi-region neural dynamics models in the literature as special cases.

We model channels between regions,Hk,ℓ, as linear filters parameterized by their impulse response,
as explained above, which allows us to build a fully Markovian representation in a higher dimen-
sional state-space (Åström & Wittenmark, 2013). We structure the latent state-space according to
the following coupled difference equations,

z
(k)
t = fk(z

(k)
t−1) +

∑
ℓ ̸=k

Ck,ℓγ
(k,ℓ)
t−1 +Gkc

(k)
t +w

(k)
t (7)

γ
(k,ℓ)
t = Ak,ℓγ

(k,ℓ)
t−1 +Bk,ℓz

(ℓ)
t−1 (8)

1There exist infinite state-space model realizations of minimum state dimension (Rosenbrock, 1970).
2Hence the lack of the D matrix that may be familiar in a more general treatment (Chen, 1984)
3‘Causal’ is used in the sense of systems theory, to mean that current outputs do not depend on future inputs.
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where z
(k)
t are Lk dimensional region specific states, w(k)

t ∼ N (0,Qk) , γ(k,ℓ)
t are LℓMk,ℓ di-

mensional states of the channel from ℓ to k, Ak,ℓ is LℓMk,ℓ × LℓMk,ℓ, Bk,ℓ is LℓMk,ℓ × Lℓ and
Ck,ℓ is Lk × LℓMk,ℓ. We parameterize fk(·) as deep neural networks capable of learning highly
nonlinear transition operators (specifically, we use the minimally gated unit (Heck & Salem, 2017),
similar to Schimel et al. (2021)). The channel parameters, (Ak,ℓ,Bk,ℓ,Ck,ℓ), are learned alongside
the other generative model parameters, and are constrained so that channel dynamics remain stable.

To streamline notation, we define Γ
(k)
t as an extended latent state containing the latent state vectors

of the LDS that processes messages entering node k,

Γ
(k)
t :=

(
γ
(k,1)
t , . . . ,γ

(k,k−1)
t ,γ

(k,k+1)
t . . . ,γ

(k,K)
t

)
For further brevity we also define s

(k)
t := (z

(k)
t ,Γ

(k)
t ), and adopt the notational convention that

variables without a superscript represent the concatenation of all variables with that name,

zt :=
(
z
(1)
t , . . . , z

(K)
t

)
Γt =

(
Γ
(1)
t , . . . ,Γ

(K)
t

)
st = (zt,Γt)

So that the full latent dynamics model, pθ(st | st−1) = N (st |mθ(st−1),Q) factors as,
pθ(st | st−1) =

∏
k

pθ(z
(k)
t | z(k)t−1,Γ

(k)
t−1)

∏
ℓ ̸=k

δ(γ
(k,ℓ)
t | γ(k,ℓ)

t−1 , z
(ℓ)
t−1) (9)

where δ(·) is the Dirac delta function, and appears as a consequence of communication channel dy-
namics having no noise component. More than notational brevity, this representation also simplifies
the algebraic complexity of developing an efficient message passing algorithm for posterior infer-
ence; since, as we discuss shortly, a state-noise inversion free algorithm can be developed, allowing
us to formulate deterministic transitions as degenerate Gaussian distributions, or delta measures.

For the observation model, similar to other latent variable models of multiregion communication,
each region’s instantaneous activity is made dependent only on the latent variables associated with
that region. This leads to a factorized likelihood, which in the linear Gaussian or Poisson GLM
(generalized linear model) case we parameterize each region as,

p(y
(k)
t | z(k)t ) = N (y

(k)
t | Dkz

(k)
t + dk,Rk) (10)

p(y
(k)
t | z(k)t ) = Poisson

(
y
(k)
t | exp(Dkz

(k)
t + dk)

)
(11)

An important concept worth noting, is that because one regions’ latent variables do not instan-
taneously affect another region’s activity, causal message passing algorithms should also not use
observations of one region to update the filtering belief of another. For linear and Gaussian observa-
tion models, this structure arises naturally, but for amortized approximate inference (full details in
Appendix D), we make sure to adhere to this principle when causally updating our filtered beliefs.

Parameterizing channels. The recurrent dynamics of between channel filters are parameterized
as real representations of a diagonal matrix with M complex-conjugate roots,

Ak,l = diag

([
ak,l,1ILℓ

−bk,l,1ILℓ

bk,l,1ILℓ
ak,l,1ILℓ

]
, . . . ,

[
ak,l,MILℓ

−bk,l,MILℓ

bk,l,MILℓ
ak,l,MILℓ

])
(12)

Increasing M increases the order of the linear filter and makes it possible to learn linear filters
with increasingly nuanced frequency responses (as a result of adding additional pole-zero struc-
tures) (Stoica et al., 2005). Constraining Ak,l to be diagonal might first seem like a restrictive
choice, however, with Bk,ℓ and Ck,ℓ free, this parameterization is able to capture any rational trans-
fer function with greatest common denominator of order M and no repeated poles (Aoki, 2013), and
is the basis for Gilbert’s method of constructing minimal realizations (Gilbert, 1963). Additionally,
considering that diagonal matrices are dense in the space of square matrices (Golub & Van Loan,
2013), it is not possible to learn non-trivial Jordan block structures through gradient descent without
enforcing those structures.

We parameterize the complex conjugate roots of each block using their representation in polar co-
ordinates and enforce stability during optimization through clipping if a root’s radius exceeds 1;
however, an alternative that allows for unconstrained optimization would be the stable exponential
parameterization introduced in Orvieto et al. (2023). For the readout/readin matrices, Ck,ℓ and Bk,ℓ,
their parameters are optimized without any additional constraints or structure. While we make this
choice for practical simplicity, more sophisticated a priori pole-zero specifications could be intro-
duced by considering the sparsity structure of these matrices (Kailath, 1980; Kay, 1988).
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Inference and end-to-end learning. While the choice of a nonlinear dynamics for local popula-
tion activity is well motivated by the inability of linear dynamics models to capture key features of
neural computation, such as attractor structure (Khona & Fiete, 2022), this choice also renders the
exact posterior intractable – necessitating approximate inference. We approach this problem using
an end-to-end variational inference methodology (Blei et al., 2017), so that gradients of the evidence
lower bound (ELBO),

L(q) =
∑
t,k

Eqt

[
log p

(
y
(k)
t | z(k)t

)]
− Eqt−1

[
DKL

(
q(s

(k)
t | s(k)t−1)

∣∣∣∣∣∣ pθ(s(k)t | s(k)t−1)
)]

(13)

can be used to optimize the parameters of an approximation q(st | st−1) ≈ p(st | st−1,yt),
and parameters of the generative model (derivation of the ELBO in Appendix B). A Monte-Carlo
approximation of the ELBO, suitable for gradient based optimization, can be obtained by recursively
sampling sst ∼ q(st | sst−1) from the conditional variational approximation. For efficient sampling
amenable to the reparameterization trick (Kingma & Welling, 2014), we parameterize the variational
conditional as the product of a Gaussian potential, depending on yt, and the prior transition model
by setting,

q(st | st−1) = N (st |mt|t−1,Pt|t−1) ∝ ϕ(yt | st)× pθ(st | st−1) (14)
with pθ(st | st−1) = N (st | mθ(st−1),Q). This parameterization, inspired by conjugate potential
amortized inference networks such as the structured variational autoencoder (SVAE) (Johnson et al.,
2016), forces the backpropagated gradients of the ELBO to traverse through the latent dynamics
model – an important component for learning meaningful dynamics models capable of long horizon
forecasts (Karl et al., 2017; Klushyn et al., 2021). Each Gaussian potential has the form,

ϕ(yt | st) ∝ exp
(
k(yt)

⊤st + ||K(yt)st||2
)

(15)
When the observation model is not conjugate k(·) and K(·) are parameterized by neural networks
whose parameters are learned maximizing the ELBO, but in the case of a linear and Gaussian obser-
vation model, p(yt | st) = N (yt | Dst,R), have optimal closed form solutions,

k(yt) = D⊤R−1yt K(yt)K(yt)
⊤ = D⊤R−1D (16)

Now, given a sample sst−1, forming the conditional Gaussian approximation statistics,
mt|t−1 = mθ(s

s
t−1) +Qgt Pt|t−1 = Q−QKt(I+K⊤

t QKt)
−1K⊤

t Q (17)
with gt = kt − Kt(I + K⊤

t QKt)
−1K⊤

t (Qkt −mθ(s
s
t−1)), we can sample sst ∼ q(st | sst−1).

Having formulated the recursive belief updates without requiring inversion of the state-noise further
allows us to treat hybrid/stochastic latent transitions similarly (Appendix A). Proceeding with this
recursion until time T produces a completely differentiable trajectory sampled from the series of
causally constructed beliefs which can be used to evaluate the ELBO. We offer a more in depth dis-
cussion of the approximate filtering algorithm in Appendix D; there, we also cover in greater detail
how block structures appearing in kt and Kt due to the multi-region observation model and deter-
ministic channel transitions can be exploited to reduce the computational complexity of inference.

3 RESULTS

3.1 MRDS-IR RECOVERS GROUND TRUTH DYNAMICS

We first validated the efficacy of our inference algorithm by simulating a synthetic dataset with
matched generative model structure (Fig. 1A). The synthetic three region system was crafted so
that each area’s recurrent dynamics are characterized by slow dynamic structures believed to play
important roles for neural computation (Fig. 1B from left to right – a stable limit cycle produced
by van der Pol’s oscillator, a stable spiral, and a ring attractor), with a limited set of connections
between them, themselves modeled as linear with predefined impulse response functions (Fig. 1C
and D, black). From this system we generate 1000 trials of 200 time points each and project each
region’s latent state to a 100 dimensional observation space via a linear gaussian likelihood. We
fitted a MRDS-IR model with three nodes and all-to-all connections between them, and a linear
gaussian observation model to this simulated data, and assessed whether the estimated model could
i) recover individual region dynamics ii) recover the linear filters between channels and iii) correctly
identify whether a channel was ‘open’ or ‘closed.’

Examining the estimated flow fields of each of the regions (Fig. 1B, bottom row), one can see that our
estimator was able to learn the true autonomous dynamical systems structure, up to expected model
invariances(axis rotation, and re-scaling). Fig. 1C shows the ground truth and recovered impulse
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Figure 1: Ground truth model recovery. A) Structure of the ground truth data: three nodes and the
flow of information between them. B) Single node population dynamics for the (top) ground truth
data and (bottom) learned dynamical system after fitting the model; trajectories from the autonomous
dynamics in light gray. C) Learned and ground truth impulse responses for the open/used (left) and
closed/unused (right) channels. D) Pole-zero plot of the impulse response channel (black: ground
truth, red: estimates). E) negative ELBO and predicted neural responses R2 for MRDS-IR (ours)
and the linear (LN) and nonlinear (NL) baseline models, see text for details.

responses of the (left) open channels and (right) closed channels. We found that the recovered
impulse responses match in periodicity, although the units of amplitude are arbitrary. Importantly,
the model learned to prune inactive channels by setting their amplitude close to zero.4 The pole-
zero plot in Fig. 1D confirms that the estimated active channels have frequency responses matching
ground truth. Reassuringly, we found that our model –which matches the true data statistics– is
revealed as the better fit in model comparison using either the ELBO or the R2 of latent trajectory
predictions for a forecast horizon of 150 time points regressed to ground truth examples(Fig. 1E);
where the latter metric helps to assess prediction capability of the learned dynamics. This is not a
given, as a simpler model could in principle fit the data better (due to finite data, fewer parameters,
and a smaller inductive bias), but we confirmed that our model fitting procedure can still recover a
fuller description of the underlying multi-region population activity.

3.2 REVERSE ENGINEERING DISTRIBUTED COMPUTATION IN AN INTEGRATION TASK

Next, we tested the ability of MRDS-IR to reveal the principles underlying multi-region neural com-
putation in a distributed temporal integration task (Fig. 2A), which requires long time scales in the
dynamics and gating of information flow between regions. Rather than engineering a multi-region
dynamical system computation directly, we chose to use trained RNNs and reverse engineered their
function using either the ground truth trained RNN parameters or the MRDS-IR corresponding esti-
mates. We also included CURBD (Perich et al., 2020) as baseline comparison. Unlike the previous
experiment, here there is a model mismatch between ground truth and the MRDS-IR estimator.
Since CURBD uses RNNs for multi-region dynamics, it provides a particularly stringent compari-
son, but our explicit input conditioning which links the underlying dynamics to task meaning may
help MRDS-IR to better identify the underlying computations behind the measured neural activity.

Concretely, the simulated circuit used three regions, each with a low-rank RNN architecture (Mas-
trogiuseppe & Ostojic, 2018; Beiran et al., 2023) so that low-dimensional dynamics could be easily
visualized and compared. The activity in each region k evolves as

y
(k)
t = (1− ∆

τk
)y

(k)
t−1 +

∆
τk

Wkϕ(y
(k)
t−1) +

∑
ℓ ̸=k

Wk,ℓϕ(y
(ℓ)
t−1) +Gkc

(k)
t + ϵ

(k)
t

 , (18)

where c
(k)
t is input to region k, read out linearly by Gk, Wk = MkN

⊤
k and Wk,ℓ = Mk,ℓN

⊤
k,ℓ

are low-rank within/between population weight matrices, of ranks 1 and 2, respectively, ϵt ∼
N (0, σ2I). Each RNN region had 128 neurons with tanh nonlinearities, and linear readouts for
region-specific outputs.

The task requires each of the three nodes to integrate their respective inputs (which are constant
over the course of a trial), with their computation gated by delays and region-specific go cues.
Fig. 2B shows one particular example trial. At the beginning of each trial, continuous ‘cue 1’ and

4Loosely defined, the closed channel amplitude is much smaller than local signals in the receiving area,
although this can be more precisely validated by model comparison.
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Figure 2: A distributed working memory circuit. A) A diagram of circuit connectivity. B) Struc-
ture of a single trial. Cues 1 and 2 determine speed of temporal integration; go signals start integra-
tion in the corresponding region; computation in region 2 is gated by state of region 1 with a temporal
delay. C) Ground truth versus inferred dynamics comparison. (left) RNN autonomous dynamics and
and example trajectories colored by the sum of the cues received by population 1 and 2; (middle)
the dynamics learned and (right) corresponding single trajectories estimated by our MRDS-IR. D)
Estimated inter-area communication compared to ground truth RNN signals and CURBD; numbers
indicate goodness of fit measured by the R2 to single trial RNN currents. E) Comparison of MRDS-
IR and CURBD in terms of ability to predict single trial future neural responses over a forecast
horizon up to 225 bins (R2 of model predicted observations matched to true data, left) with one
example neuron predictions for each region (right); dashed grey line marks beginning of forecasting
window; black line shows ground truth neuron activity.

‘cue 2’ become active – with their amplitude proportional to a value, randomly chosen from the
set (10, 25, 50, 75, 90), indicating different speeds of integration, determining the number of time
bins taken for a linear transition from ‘-1’ to ‘1’ of the respective region’s output. The ‘go 1’
event (transient, binary) starts the integration process in region 1. Then, 25 time bins after that
signal saturates, region 2’s activity should start ramping with speed determined by ‘cue 2.’ Finally,
when ‘go 3’ is received, region 3 should start ramping with a speed given by the sum of ‘cue 1’ and
0.8×‘cue 2’. The RNN is trained by BPTT with a supervised objective to match this target mapping.

Reflecting the two-state nature of the outputs and the working memory aspects of the task, the
low-dimensional dynamics learned by the RNN (Fig. 2C, left column), have several fixed points
that operate alongside the supplied input to produce the desired trajectories. Using neural activity
from this RNN (all units) we then trained a three region, all-to-all connected MRDS-IR, with 2-
dimensional local latent states, L1 = L2 = 2, order M = 1 filters for the channels, and a linear
Gaussian observation model with diagonal noise. Fig. 2C (middle column) shows the phase portraits
of the corresponding dynamical systems recovered by our model for each region. Similar to the
ground truth RNN, the latent trajectories inferred by the MRDS-IR, Fig. 2C (right column), are
driven by a combination of fixed point structures and the inputs provided by the ‘go’ signals. For
example, focusing on Fig. 2C, the trajectories of both the RNN (left panel, bottom) and MRDS-IR
(right panel, bottom), in region 3, after receiving the ‘go 3’ signal, are slingshot in the direction of
the ‘go 3’ readout vector, with the autonomous dynamics then reducing their momentum according
to the sum of cues for that trial.

When comparing the estimated communication to ground truth inter-region RNN currents (cue-
conditioned across trial averages), we also find a good match (Fig. 2D). As their RNN counterparts,
the estimated channels show ramping signals that separate across the stimuli conditions and saturate
early on in the trial. Similar to the trained RNN, the relative scale of channel contents also remains
in proportion; in particular, the trained RNN chose to weakly use the 1 to 3 connection, something
which the estimator also picks up on. Importantly, the match to RNN communication is substantially
tighter than the CURBD baseline, trained on the same data with default hyperparameters (Fig. 2D,
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Figure 3: Rhythmic timing task. A) A two-node version of a rhythmic timing task: cue communi-
cates target frequency, go the onset of the oscillation, with additional on-off switch gating outputs
from region 2. B) Structure of an individual trial. C) two orientation angles showing input con-
ditioned latent states produced by the learned autonomous dynamics of the MRDS-IR color marks
different frequency cue values. D) Phase portrait of the dynamics for region 2 with overlayed latent
trajectories, color coded by the value of the gating input. E) Recovered 2D latent state of region
1 (top) and the output of the channel from region 1 to region 2 (bottom) for 3 example frequency
conditions. F) Comparison to CCA, R2-measured match to ground truth above. G) Magnitude of
the frequency response for the channel from region 1 to region 2. Each line represents one com-
munication dimension between region 1 to region 2 (since region 1 is 3-dimensional, region 2 is
2-dimensional, and a second order filter was used, hence 6 filters total).

compare R2). Moreover, the closed channels estimates are close to zero for our method, but not
for CURBD (Suppl. Fig.S2), so the baseline would draw incorrect conclusions about the nature of
inter-region communication in this dataset. Although it is not easy to derive the low-dimensional
dynamical system structure of the multi-region dynamical system estimated by CURBD for a flow
fields comparison, we can directly estimate the quality of the solution in terms of the ability of
the estimated dynamics to predict neural responses (Zhao & Park, 2020; Hernandez et al., 2018)
at increasingly large horizons into the future (Fig. 2E). By this metric, our approach shows better
ability to match ground truth RNN dynamics across forecast horizons and a slower degradation
of predictability over long time scales, reflecting a more accurate understanding of the dynamical
system structure of the system.

3.3 A MULTIREGION RHYTHMIC TASK WITH OUTPUT GATING

While the integration task involves interesting inter-area interaction structure, it does not have a
direct task equivalence to a known neuroscience experiment. For a more direct neural equivalence,
we considered a variant of the rhythmic timing task introduced in Zemlianova et al. (2024), which
is motivated by rhythmic timing experiments in primates (de Lafuente et al., 2022) (Fig. 3A). The
oscillatory nature of the computations involves gives us an opportunity to not only expose a different
form of local nonlinear dynamics than the ones considered before, but also allows us to focus on the
spectral structure of the communication subspace between areas.

In the original RNN implementation of this task context/stimulus inputs indicate the desired fre-
quency of a sinusoid (via a ‘cue’) to be linearly read out from the population activity after a ‘go’
trigger. For a multi-region variant, we assumed that the RNN passes its outputs to a second region,
which aims to reproduce the same sinusoid, except, the second region has an ‘on’-‘off’ switch – so
its output should follow the same sinusoid region 1 produces when the switch is on, and output a
value of 0 when the switch is off, as a simple form of behavioral output gating. Fig. 3B shows an
example trial and the expected linear readout of the neural state for each region; each trial in the
training data is chosen to have a random period ranging from 60 to 150 time bins in intervals of
15. As in the previous experiment, the RNN was trained by BPTT with each region having 128
neurons, rank 2 recurrent weights, and rank 1 cross region weights. We then fit an MRDS-IR model
using latent dimensions L1 = 3 and L2 = 2 and order M = 2 channels with a linear and Gaussian
observation model with independent noise for each region’s 128 neurons.
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In Fig. 3C, input conditioned samples from the learned dynamics model for region 1, show how
the go input propels the latent state into a plane of state-space producing oscillations at a particular
frequency – similar to computational mechanisms hypothesized to reproduce precise time inter-
vals (Beiran et al., 2023; Zemlianova et al., 2024). The learned dynamics of region 2 reveal latent
states for on and off switch conditions that occupy a distinct region of state-space (Fig. 3D). The
communication channel from region 1 to 2 learned by MRDS-IR has clear periodic structure re-
flecting the target periodicity (Fig. 3E), which better matches ground truth RNN signals compared
to a CCA baseline (Fig. 3F). Finally, a detailed characterization of the channel frequency response
(Fig. 3G) reveals a passband at low frequencies (demarcated by the shaded region) which spans the
range of frequencies that generated the data, and another passband at higher frequencies, presumably
to allow for fast transitions that might occur at the time of the go signal if the gating signal is ‘on.’
This suggests that our method can extract interesting spectral structure for inter-area communication.

3.4 V1/V2 RECORDINGS

Our final experiment asked whether our method can reveal neural correlates of cross-region com-
munication from real neurophysiological recordings. To examine this, we considered simultaneous
neural recordings taken from areas V1 and V2 of a macaque monkey as it observed gratings of
different orientations on a screen (Zandvakili & Kohn, 2015). This dataset has been used in other
studies to examine the efficacy of intraregional models of neural signaling (Gokcen et al., 2024;
Li et al., 2024), making it a natural testbed for comparison. Like Li et al. (2024) and Gokcen et al.
(2024), we used spiking activity from session 106r001p26. To most directly model this data we used
the Poisson GLM (generalized linear model) form of the likelihood (Weber & Pillow, 2017). To fa-
cilitate comparison, the latent space dimensionalities follow those used in Li et al. (2024), and were
chosen to be L1 = 3 and L2 = 2, and channels were parameterized as M = 2 order filters, with
all-to-all connectivity between regions. Since it is not clear how to best encode stimulus identity to
match the biophysical circuit structure, we chose to use inputs that remained constant throughout
the trial and had an amplitude proportional to the stimulus ID as a first pass.

Fig. 4A shows the stimulus-averaged latent trajectories for area V1 (top) and area V2 (bottom)
extracted by the model. A key feature of these latents is their oscillatory structure, reflecting the
periodicity of the drifting grating experimental stimulus. This is apparent in single trial trajecto-
ries (not shown), and remains visible in trial averages, despite potential across-trial fluctuations in
phase. Moreover, different stimuli map into distinguishable regions of the latent space, reflecting
the encoding of different stimuli. In Fig. 4B, we examine the V1 inferred trajectories more closely;
we performed linear discriminant analysis (LDA) (Bishop, 2006) in order to find a projection that
maximized the variance between trajectories with different stimulus ids and minimized variance be-
tween trajectories with the same stimulus id. The dimension of highest variance explained, shown
in Fig. 4B (bottom) shows that trajectories can be separated according to their stimulus ID; while
the other two dimensions, Fig. 4B (top), account for oscillations in latent space.

Investigating the interaction between the areas revealed similar oscillatory structure (Fig. 4C), qual-
itatively consistent with previous communication subspace based estimates (Gokcen et al., 2024).
Interestingly, the amplitude of these oscillations differed markedly between feedforward and feed-
back information flow. As expected for sensory-driven initial communication: the V1 to V2 signal
was most prominent immediately after stimulus onset, whereas the V2 to V1 communication slowly
ramped up over the course of the trial, as one would expect from a top-down cognitive refinement of
local information. Overall, while not in themselves surprising given the details of the experiment,
the model results confirm that the extracted within area dynamics recover interpretable, known fea-
tures of visual neural activity in V1/V2, which cannot be readily identified with alternative methods
(see DLAG estimates in Suppl.Fig.S1).

Finally, we used the same data to quantitatively compare our approach to contemporary multi-
region probabilistic methods. Specifically, we fit separately MRDS-IR, controls LN and NL
(Supp.Sec. C.2), and MRM-GP (Li et al., 2024) to each of the 8 stimuli conditions. To keep the
models on equal grounding, we did not make use of stimulus conditioning in MRDS-IR and used
linear Gaussian observation models for each region after square-rooting the spike counts to make
their statistics more Gaussian (Yu et al., 2009). Then, on a test set of 50 trials, we computed the MSE
of a held-out set of neurons whose firing rate was inferred from a separate set of held-in neurons.
Following a similar procedure as Li et al. (2024), we used 10 random partitions of held-in/held-out
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Figure 4: Distributed computation in monkey areas V1/V2. A) Stimulus averaged trajectories
of the latent state associated with areas V1 (top) and V2 (bottom) B) Projection of the latent state
of area V1 using LDA, where the most significant dimension (bottom) shows trajectories separate
in space across time depending on the stimulus ID and (top) oscillations explained in the other two
dimensions. C) Inferred messages transmitted across channels for one example stimulus, the darker
set of lines show the two-dimensional signal transmitted while the thin line shows their spectral
envelope. D) Signal amplitude in feedforward (FF, V1 to V2) and feedback (FB, V2 to V1) messages
transmitted across channels averaged across all 8 stimulus conditions. E) MSE of held-out neuron
predictions for each 8 stimuli for each method, averaged over 3 random seeds. F) R2 of held-out
neuron firing rate predictions (session 107l003p143, stimulus 1).

neurons, where 10% of neurons are held-out, and then reported the average across partitions. Across
stimuli, MRDS-IR consistently achieved the smallest errors across models (Fig. 4E). Predicted re-
sponses on a single stimulus condition also proved competitive when compared to DLAG (Fig. 4F),
using published pre-processing and R2 of held-out neuron activity as a metric (Gokcen et al., 2022).
Overall these results confirm that our approach is competitive to and generally outperforms state of
the art methods on real multi-region data.

4 DISCUSSION

Despite accumulating evidence of the complex distributed nature of across-area interactions during
behavior, how different aspects of the process are orchestrated across circuits remains poorly under-
stood. To bring us closer to a process model of the distributed circuit computations that give rise to
observed neural activity, we proposed a new probabilistic generative model which combines non-
linear dynamics that can capture potentially complex underlying local computations with an easy to
interpret linear filtering model of inter-area communication. This unique combination of features
allows for an approximate inference algorithm that uses variational principles to optimize model
parameters and possible inference network parameters in an end-to-end fashion through maximiza-
tion of the ELBO. Modeling channels between regions using impulse response descriptions of their
input-output relationship makes it possible to use mature and principled tools from linear systems
theory to understand their properties. Across a series of neurally-motivated datasets, our results
demonstrate the utility of MRDS-IR in helping to determine the causal structure of multi-area com-
putation, and recover known properties of inter-area communication in early sensory processing.

While we have allowed the model to consider all possible patterns of inter-area interactions, allowing
the data to determine their relevance for explaining the observed activity, in scenarios with limited
data or additional known interaction structure it may be useful to enforce additional constraints on
the architecture. Future work could incorporate further regularization promoting sparse connectivity
structure, for example through automatic relevance determination as in Gokcen et al. (2024), or
group lasso penalties (Yuan & Lin, 2006). Another possible future direction would be exploring
more structured specifications of the readout/readin matrices of the dynamics and communication
channels to equip the generative model with better inductive biases.
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A STATE-NOISE INVERSION FREE FILTERING

To maintain a strict interpretation of channels between nodes as linear filters that deterministically
process information from one region propagating to another, their recurrent dynamics do not have
state-noise. For this reason, it is desirable to have a filtering algorithm that does not require inversion
of the state-noise term. We accomplish this by parameterizing q(zt | zt−1) ≈ p(zt | zt−1,yt) as,

q(zt | zt−1) = ϕ(yt) pθ(zt | zt−1) (19)
where ϕ(yt) is a Gaussian potential in terms of zt, so it can be written as,

ϕ(yt) = exp
(
k⊤
t zt + ||Ktzt||2

)
(20)

This allows sampling trajectories causally in time by exploiting conjugacy and recursively finding,
Pt|t−1 = Q−QKt(I+K⊤

t QKt)
−1K⊤

t Q (21)

mt|t−1 = mθ(zt−1) +Qgt (22)

(23)
and then drawing a sample zst conditioned on the previous sample zst−1. Here, gt, is a quantity we
define as the residual information, and is given by,

gt = kt −Kt(I+K⊤
t QKt)

−1K⊤
t (Qkt −mθ(zt−1)) (24)

where we used the Woodbury identity to write,
mt|t−1 = Pt|t−1

(
Q−1mθ(zt−1) + kt

)
(25)

= (Q−QKt(I+K⊤
t QKt)

−1K⊤Q)(Q−1mθ(zt−1) + kt) (26)
= mθ(zt−1) +Qgt (27)

With these expressions, the KL term in the ELBO,
DKL

(
qt|t−1

∣∣∣∣ pt|t−1

)
= 1

2

[(
(mt|t−1 −mθ(zt−1))

⊤Q−1(mt|t−1 −mθ(zt−1)
)

(28)

+ tr(Q−1Pt|t−1) + log |Q| − log |Pt|t−1| − L
]

(29)
can be efficiently evaluated by rearranging and simplifying terms to find,

DKL
(
qt|t−1

∣∣∣∣ pt|t−1

)
= 1

2

(
g⊤
t Qgt − tr(ΥK⊤QKΥ⊤) + log |ΥΥ⊤|

)
(30)

where
ΥΥ⊤ = (I+K⊤

t QKt)
−1 (31)

B ELBO

We use a causal amortized variational filtering procedure that operates by drawing samples recur-
sively from approximations, q(zt | zt−1) ≈ p(zt | zt−1,yt). To bound the log-marginal likelihood
using causally constructed approximations of the latent state, we first bound the one-step predictive
log-likelihood of an observation through standard variational arguments as,

log p(yt | zt−1) ≥ Eqt|t−1
[log p(yt | zt)]− DKL(q(zt | zt−1)|| p(zt | zt−1)) (32)

:= E(yt | zt−1) (33)
where the bound is tight when q(zt | zt−1) = p(zt | yt, zt−1). Using this bound, we proceed by
applying logEp(zt−1|y1:t−1)[exp(·)] to both sides,

logEp(zt−1|y1:t−1) [p(yt | zt−1)] = log p(yt | y1:t−1) (34)

≥ Ep(zt−1|y1:t−1) [E(yt | zt−1)] (35)
allowing us to construct the following lower bound on the log-marginal likelihood of y1:T as,

log p(y1:T ) =
∑

log p(yt | y1:t−1) (36)

≥ Ep(zt−1|y1:t−1) [E(yt | zt−1)] (37)
This quantity depends on the intractable filtering distribution, so we approximate it using the varia-
tional approximation,

log p(y1:T ) ≥
∑

Ep(zt−1|y1:t−1)

[
Eqt|t−1

[log p(yt | zt)]− DKL(q(zt | zt−1)|| p(zt | zt−1))
]

≈
∑

Eqt [log p(yt | zt)]− Eqt−1
[DKL(q(zt | zt−1)|| pθ(zt | zt−1))] (38)

:= L(q) (39)
Now, although this is fundamentally an approximation to the log-marginal likelihood, we retain a
strict lower bound on the data log-marginal likelihood, since, as shown in Krishnan et al. (2016),
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DLAG V1/V2 communication latents

time
Figure S1: Example of DLAG across-region latent variables for session 107l003p143 for stimulus
1; each column represent samples of the three-dimensional across-area latent trajectory and the
direction of the arrow indicates the direction of signal propagation as inferred by DLAG. These do
not show a natural segregation into a FF-like early transient and a ramping up FB-like amplitude.

any variational approximation factorizing forward in time as q(z1:T ) = q(z1)
∏

q(zt | zt−1), can
be used to lower bound log p(y1:T ) as,

F(q) = Eqt [log p(yt | zt)]− Eqt−1
[DKL(q(zt | zt−1)|| pθ(zt | zt−1))] (40)

the bound being tight when q(zt | zt−1) = p(zt | zt−1,yt:T ). This means that, conditional varia-
tional approximations that are designed without using future data will lead to a looser bound. How-
ever, the benefit is that the causal structure of the generative model is enforced during inference.

C MULTIAREA METHODS COMPARISON

Below we quantify existing probabilistic models of multiple populations of neurons.

Table S1: Tabulating existing multipopulation models. Our model situates itself uniquely, allowing
for nonlinear region specific dynamics but interpretable communication channels between regions.

method single node latents communication channel conditions on stimulus reference
ours nonlinear impulse response yes
gLARA LDS linear, autoregressive no Semedo et al. (2014)
mp-srLDS switching LDS linear, instant no Glaser et al. (2020)
dLAG GP GP (time-delay) no Gokcen et al. (2024)
MRM-GP GP GP (frequency/phase delays) no Li et al. (2024)
mr-srLDS switching nonlinear switching nonlinear instantaneous yes Karniol-Tambour et al. (2022)
CURBD RNN linear instantaneous no Perich et al. (2020)

C.1 DLAG V1/V2 COMMUNICATION LATENTS

We wondered whether qualitative evidence of feedforward/feedback signaling similar to those re-
vealed by MRDS-IR appeared naturally in the latent variables recovered by DLAG. In Fig. S1, we
plot examples of those recovered latents suggesting those signaling characteristics are absent.

C.2 LN/NL MODELS

To asses whether the introduction of temporal processing in the communication channels and lo-
cal nonlinear dynamics actually led to substantial improvements in estimation quality over simpler
model choices, we considered two simpler models in which we removed the history dependence in
the channels while preserving the local nonlinear dynamics (nonlinear, NL model) and additionally
swapped nonlinearities for linear local dynamics (linear, LN model; equivalent to a multi-region
LDS), resulting in dynamics of the form,

z
(k)
t = fk

(
z
(k)
t−1

)
+

∑
ℓ̸=k

Ck,ℓz
(ℓ)
t−1 +w

(k)
t (NL model)

z
(k)
t = Fkz

(k)
t−1 +

∑
ℓ ̸=k

Ck,ℓz
(ℓ)
t−1 +w

(k)
t (LN model)

where fk and Fk are learnable nonlinear/linear recurrent dynamics functions.
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100 bins

RNN ours CURBD

Figure S2: Inferred channels from MRDS-IR and CURBD as compared to the ground truth RNN
currents. Three of the RNN inter-region connections are absent in the architecture and a forth (3←
1) is present but weakly functional, as a result of the training procedure. Our approach recovers the
right scaling for all messages, whereas CURBD infers comparable size currents for all possible pairs
of regions, missing the true underlying network communication structure.

C.3 MRDS-IR V1/V2 CHANNELS

Since the ELBO is not convex in terms of model parameters, we wondered whether the feedback-
/feedforward structure of latent channels inferred by MRDS-IR was a feature that could be repro-
duced across different seeds. In Fig. S3 we show 8 separate seeds and the channel contents inferred
by each of those models sorted left to right by decreasing ELBO values on held out data – notably,
similar inferred structure is found across a majority of seeds.

C.4 INTEGRATION TASK CHANNELS

In Fig. S2, we show all 6 channels of inferred by MRDS-IR and CURBD compared to the channels
of the ground truth RNN that solve the task; examining the figure, we note that CURBD infers that
the closed channels, not used by the RNN, have similar activity levels compared to the channels that
were used by the RNN to solve the task.

D FILTERING UPDATES

Recalling that,
log p(yt | zt−1) ≥

∑
Eqt|t−1

[log p(yt | zt)]− DKL(q(zt | zt−1)|| pθ(zt | zt−1)) (41)
if we write pθ(zt | zt−1) and q(zt | zt−1) through their exponential family representation (Wain-
wright & Jordan, 2008),

pθ(zt | zt−1) = h(zt) exp
(
λθ(zt−1)

⊤t(zt)−A(λθ(zt−1))
)

(42)

q(zt | zt−1) = h(zt) exp
(
λ⊤
t|t−1t(zt)−A(λt|t−1)

)
(43)

where h is the base measure, A(·) is the log-partition function, t(zt) are the sufficient statistics, and
λθ(zt−1) with λt|t−1 natural parameters of the conditional prior and approximation respectively.
Then, through the Bayesian learning rule (Khan & Rue, 2023; Khan & Lin, 2017; Khan & Nielsen,
2018), the optimal variational approximation has natural parameters given by,

λt|t−1 = λθ(zt−1) +∇µt|t−1
Eqt|t−1

[log p(yt | zt)] (44)
For linear and Gaussian models with p(yt | zt) = N (Dzt,R), the RHS term can be solved for in
closed form, and after some algebra we get,

P−1
t|t−1 = Q−1 +KtK

⊤
t (45)

mt|t−1 = Pt|t−1

(
Q−1mθ(zt−1) + kt

)
(46)

where the terms natural parameter updates, kt and Kt, are given by
kt = D⊤R−1yt (47)

KtKt = D⊤R−1D (48)
However, when the observation model is nonlinear or non-Gaussian closed form updates aren’t
available due to the implicit nature of the solution. In this case, we amortize inference by using
neural networks to parameterize conjugate potential updates as in Johnson et al. (2016); for example,
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200 ms

V1 V2

V2 V1 decreasing ELBO

Figure S3: The stimuli averaged power content of communication channels for the area V1/V2 data
across 8 different random seeds.

by directly parameterizing,
q(zt | zt−1) ∝ ϕ(yt | zt)× pθ(zt | zt−1) (49)

where ϕ : yt 7→ (kt,Kt) is parameterized by a deep neural network. The parameters of the
inference network can be learned alongside the generative model parameters through end-to-end
learning using the ELBO objective. While for non-conjugate or non-Gaussian observations, the
inference network could be parameterized in a completely black-box fashion, optionally, we can use
the form of ideal implicit solutions to design a better inference network. For example, when the
observation model is Poisson and p(yt | zt) = Poisson(yt | exp(Dzt + d)), then the implicit and
intractable optimal parameter updates are are given by,

kt = D⊤(yt − rt − diag(rt)Dmθ(zt−1)) (50)

KtK
⊤
t = D⊤ diag(rt)D (51)

where, rt = exp
(
Dmθ(zt−1) +

1
2diag(DQD⊤) + d

)
. The way we amortize inference, inspired

by these optimal updates, is to set,
αt = NN(yt) (52)
rt = exp (αt + b) (53)

kt = D⊤ (yt − rt) (54)

KtK
⊤
t = D⊤ diag(rt)D (55)

For our experiments analyzing recordings from areas V1 and V2, we use an MLP architecture with
128 hidden units and Swish nonlinearity (Ramachandran et al., 2017) to parameterize the inference
network.

Importantly, close examination of these updates shows that only latent variables read out by the
likelihood will have their latent state belief updated (those unread variables can be associated with
fictitious 0 columns of D, and therefore the associated elements of kt and Kt would be 0). In the
context of multiregion models where one region’s latent variables are not read out by another regions
observation model, those other regions observations should play no part in updating our probabilistic
belief if we causally filter data. Similarly, the belief over channel states is never updated directly
through the observed data; intuitively this makes sense, showing our beliefs of the channel states
can only be formed indirectly through our beliefs over the read out latent variables.

Furthemore, recalling the recursive belief updates are,
mt|t−1 = mθ(s

s
t−1) +Qgt (56)

Pt|t−1 = Q−QKt(I+K⊤
t QKt)

−1K⊤
t Q (57)

and that st = (zt,Γt) represents the extended state, so that the blocks of Q associated with Γt

are zero, we see that for the deterministic states their conditional covariance is 0, and mt|t−1 =
mθ(Γ

s
t−1), as expected.

Gaussian likelihood example. To gain some more intuition about the sparsity structure of the com-
plete generative model, we can examine its block structure in more depth. For illustrative purposes,
consider the following generative model with linear and Gaussian observations,

pθ(st | st−1) =
∏
k

pθ(z
(k)
t | z(k)t−1,Γ

(k)
t−1)

∏
ℓ ̸=k

δ(γ
(k,ℓ)
t | γ(k,ℓ)

t−1 , z
(ℓ)
t−1) (58)

p(y
(k)
t | z(k)t ) = N (yt | Dkzt,Rk) (59)
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where again, st = (zt,Γt). Now, if we construct the block matrices,

D =


D1 0 · · · 0 0
0 D2 · · · 0 0
...

...
...

. . .
...

0 0 · · · DK 0

 R =


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · RK

 (60)

where the last block column of D has as many columns as Γt has entries, then the observation model
could also be written as,

p(yt | st) = N (yt | Dst,R) (61)
So that natural parameter updates inherit a similar block structure,

kt = D⊤R−1yt =


D1R

−1
1 y

(1)
t

D2R
−1
2 y

(2)
t

...
DKR−1

K y
(K)
t

0

 KtK
⊤
t = D⊤R−1D = diag


D⊤

1 R
−1
1 D1

D⊤
2 R

−1
2 D2

...
D⊤

KR−1
K DK

0

 (62)

We can determine construct similar block parameter representations of the latent dynamics by con-
sidering block operator dynamics and block state-noise, so that we can write,

pθ(st | st−1) = N (st |mθ(st−1),Q) (63)
by setting,

mθ(st) =



f1(z
(1)
t ) +

∑
ℓ ̸=1 C1,ℓγ

(1,ℓ)
t

f2(z
(2)
t ) +

∑
ℓ ̸=2 C2,ℓγ

(2,ℓ)
t

...
fK(z

(K)
t ) +

∑
ℓ ̸=K CK,ℓ

A1,2γ
(1,2)
t +B1,2z

(2)
t

...
AK,K−1γ

(K,K−1)
t +BK,K−1z

(K−1)
t


Q = diag


Q1

Q2

...
QK

0

 (64)

Using these block representations makes it more clear that the sampling procedure used for approx-
imate inference only requires carrying out expensive linear algebraic operations with block matrices
smaller than the full latent state dimension.
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