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1. Existing generative models for MD sample trajectories frame-by-frame. ;
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We tokenize a trajectory as SE(3)-invariant roto-translation offsets from one . Z z i ﬁ
or more key-frames, which are the frames we condition on for the
corresponding taks. Additionally, we have 7 torsion angles per residue. MDGen path in FES
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Thus, with L residues and T frames in an MD trajectory, we obtain an array
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2. Interpolation—given the frames at the two endpoints of a trajectory, we
sample a plausible path connecting the two. In chemistry, this is known
as transition path sampling and is important for studying reactions and
conformational transitions.

3. Upsampling—aqgiven a trajectory with timestep At between frames, we
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upsample the “framerate” by a factor of M to obtain a trajectory with C'V'. Ours 10ms 1ns 100ps | 100ns Tet tide i inti
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