
Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We used a variety of environments from MiniGrid and BabyAI (Chevalier-Boisvert et al., 2018) that
provide a partial and egocentric view of the state of the environment to the agent. The reward is
sparse and a positive reward is received only if the agent successfully reaches the goal. A penalty is
awarded based on the number of steps taken to reach the goal, calculated as 1� 0.9n/nmax, where
nmax is the maximum number of steps allowed for a given environment and depends on the difficulty
of the environment such that more difficult environments have a larger value of nmax. If the agent
is not able to complete the task within nmax steps, the episode ends and it gets a zero reward. The
environments have an increasing level of difficulty in an systematically incremental manner. These
settings of partial observability, sparse rewards and a systematic increase in the difficulty levels make
the task for reinforcement learning algorithms sufficiently difficult.

The observation received by the agent consists of two parts: (1) an RGB image for the partial
observation of the agent’s field of view, and (2) a language instruction containing the mission
statement that defines the task. The image part of the observation is processed through an encoder,
and an embedding is computed for the textual mission statement, which are then fed to an ensemble
of recurrent modules; see Fig. 1 for a full visualization of the architecture layout.

We used the Proximal Policy Optimization (Schulman et al., 2017) with parallelized data collection
of rollouts collected by multiple parallel processes. For generalized advantage function, we used
� = 0.99, and discounted future rewards by a factor of � = 0.99. Throughout the experiments, we
present the mean-reward (R) and success-rate (S) of the agent, where the mean reward is the average
reward across multiple runs, and the success rate represents the percentage of times the agent is able
to successfully reach the goal within the nmax timesteps. For all of our environments, we used n = 5
total modules, with only k = 3 of them active at any given time. Further details on the specifics of
each environment are provided in the Section A.2.

A.2 ENVIRONMENTS: MINIGRID AND BABYAI

We trained our agents on several environments from MiniGrid and BabyAI (Chevalier-Boisvert
et al., 2018), such as GoToLocal, PickupDist, Dynamic Obstacles, DoorKey, PutNear, Fetch, Four-
RoomsS13, GoToObj, GoToRedBall, GoToRedBallGrey, MultiRoom, LavaCrossingS9N1 and Pick-
UpLoc. In each of these environments, the observation consists of an RGB image of the agent’s
partial field of view, and an instruction textual string that contains the mission that the agent needs to
solve. Fig. 1 visualizes the model architecture and the processing of the input observation. Further
details on these environments, with the hyperparameters used for the recurrent modules, are provided
below.

Hyperparameters: For all of the environments, we used a total of n = 5 modules with k = 3
active at any give time. More details on each environment are provided below.

Figure 8: Zero-shot transfer environments: A series of DoorKey environments with an increasing
level of difficulty from left to right; as the rooms get larger, the trajectories become longer and
the rewards become sparser, making the tasks progressively more difficult. At the same time
however, these environments share an underlying structure, making them suitable for evaluating
policy generalization and transfer. We trained our agent in the leftmost (easiest) setting and evaluated
it on the more difficult environments.

11



Under review as a conference paper at ICLR 2021

GoToLocal: The agent is presented with a number of objects in a single room with no doors, and
is asked to go to one of them as specified in the mission statement.

PickupDist: A single room, with no doors, has a number of objects and the agent needs to pick
the object instructed in the mission statement.

Dynamic Obstacles: This environment contains moving obstacles in a single room, and the agent
has to reach the goal located in a corner of the room while not colliding with these dynamically moving
obstacles. A large penalty is subtracted if the agent collides with an obstacle. This environment is
particularly useful to train moving robots in a dynamically moving objects setting.

DoorKey: In this environment, the agent needs to find a key in the current room, pick the key and
unlock a door, and then reach the goal located in the other room.

PutNear: The mission statement specifies an object that has to be put near another object. In a
room of multiple objects, the agent has to find the correct objects and put them in the right location as
specified by the instruction statement, thus requiring both spatial and visual understanding of multiple
objects.

Fetch: The agent is presented with multiple objects of different colors and shapes, and it needs to
find the object that is instructed to be fetched in the mission instruction string. A negative reward is
given if a wrong object is picked.

MemoryS13Random: The agent starts in a room in which it sees an object, and has to remember
this object when it reaches the end of the hallway which ends in a split. One of the sides of this
split randomly contains the same object as it saw in the beginning and it has to choose that matching
object.

FourRoomsS13: This is a multi-room environment, consisting of four rooms, connected by four
gaps in the walls, such that the goal is randomly placed in one of the rooms. The location of the agent
is also random when the episode starts.

GoToObj: This is a single room environment with a single object, specified in the mission string,
that the agent needs to reach to.

GoToRedBall: The goal is to reach a red ball in a room containing distractors and other obstacles.

GoToRedBallGrey: The room consists of multiple grey distractors and the agent needs to reach
the red ball, without requiring any unblocking.

MultiRoom: The environment consists of a series of interconnected rooms, and the agent has to
unlock the door to navigate to the goal in the next room.

LavaCrossingS9N1: The environment consists of horizontal and vertical strips of lava running
across the room, and the agent has to reach the goal while avoiding them. If the agent touches the
lava, it dies and the episode ends with no reward.

PickUpLoc: A single room environment in which the goal is to pick up an object described by its
location.

A.3 ABLATION: VISUALIZING MODULE ACTIVATIONS

In the proposed setup, the modules are dynamically selected and activated based on their relevance
to the current input. In order to visualize the diversity and frequency of module activations, and to
analyze the effect of environment dynamics on the activation patterns of the modules, we tracked
the module activations of a trained agent along a fixed length input sequence obtained by tracking

12



Under review as a conference paper at ICLR 2021

the agent navigating across the environment. We plotted these activated modules for two different
environments - DynamicObstacles and PutNear, see Fig. 6 (b).

We find that for environment DynamicObstacles, in which the agent has to take more frequent
decisions to figure out the best action due to quite engaging environment dynamics, such as multiple
distractor objects and dynamically moving obstacles, the module activations are more diversely
activated. In both the environments, different modules are active for different inputs, and all of
them get activated at some point depicting an active engagement throughout the agent’s interaction.
However for the environment, PutNear, which has relatively fewer moving parts during the interaction,
some modules are consistently more active than the others. However, all modules do get activated at
some point, leaving no dead or always inactive modules.

This study has a direct analogy with how humans engage with their environments: a visual input with
an enriched set of objects and more frequent interactions with the environment will need a higher
engagement and continuous application of a wider set of skill sets. On the contrary, an environment
which is relatively simple and has simpler input observations would need a lower engagement, and
only a few components / skill-sets would mostly be able to handle and decide the best course of
actions.

13


	Introduction
	Meta Learning of Recurrent Independent Mechanisms
	Recurrent Independent Mechanisms
	Meta-Learning Attention to Modulate Information between Modules

	Related Work
	Experiments
	Improved sample efficiency
	Better policy generalization
	Efficient pre-training and knowledge transfer for curriculum learning
	Ablation and analysis

	Conclusion
	Appendix
	Implementation Details
	Environments: MiniGrid and BabyAI
	Ablation: Visualizing Module Activations


