A Training Energy-based Priors using MCMC

In this section, we show how a VAE with energy-based model in its prior can be trained. Assuming
that the prior is in the form pggm(z) = +7(z)p(z), the variational bound is of the form:

Ep. ) [LvaE] = Ep,(x) [Eq(ax [log p(x]2)] — KL(q(2[x)||pesm(2))]
pa(x) [Eq(alx [log p(x|2) — log q(z]x) + logr(2) + log p(z)]] —log Z,
where the expectation term, similar to VAEs, can be trained using the reparameterization trick. The
only problematic term is the log-normalization constant log Z, which captures the gradient with

respect to the parameters of the prior pggm(z). Denoting these parameters by 6, the gradient of log Z
is obtained by:

0 o(r(z)p(z r(z)p(z) 0log(r(z)p(z Olog(r(z)p(z
o 7 = %/%dz:/ ( )Zp< ) g((;e)p( ”dz:EPEBM(z)[%],
&)

where the expectation can be estimated using MCMC sampling from the EBM prior.

B Maximizing the Variational Bound from the Prior’s Perspective

In this section, we discuss how maximizing the variational bound in VAEs from the prior’s perspective
corresponds to minimizing a KL divergence from the aggregate posterior to the prior. Note that this
relation has been explored by Hoffman & Johnson [30], Rezende & Viola [63]], Tomczak & Welling
[72] and we include it here for completeness.

B.1 VAE with a Single Group of Latent Variables

Denote the aggregate (approximate) posterior by g(z) = E,,x)lq(z|x)]. Here, we show that
maximizing the E,,, x)[Lvag(x)] with respect to the prior parameters corresponds to learning the
prior by minimizing KL(q(z)||p(z)). To see this, note that the prior p(z) only participates in the KL
term in Lyag (Eq.[I). We hence have:

arg max Epa(x) [Lvae(x)] = arg(rr)lin Epa(x) [KL(q(z[x)||p(2))]
pl\z p(z

= arg(rr)lin —E,,x)[H(q(z|x))] — Eq(z)[log p(z)]
p(z

= argmin —H (q(z)) — Eq()[log p(z)]

p(z)

— arg minKL(q(2)|[p(2)),

p(z)
where H (.) denotes the entropy. Above, we replaced the expected entropy E,,, ) [H (¢(z|x))] with

H(q(z)) as the minimization is with respect to the parameters of the prior p(z).

B.2 Hierarchical VAEs

Denote hierarchical approximate posterior and prior distributions by: ¢(z|x) = Hle q(2zk|z<, %)
and p(z) = Hszl p(2zk|Z<k). The hierarchical VAE objective becomes:

K

Lirvag (%) = Eg(ap log p(xX2)] = > Egia_, x) [KL(g(2k |22k, %) [[p(24]2<1))],  (6)
k=1

where q(z<x|x) = Hf 11 q(z;|z<;,%) is the approximate posterior up to the (k — 1) group. Denote
the aggregate posterior up to the (K — 1)™ group by q(z<i) £ E,, (x)[¢(2< k)] and the aggregate
conditional for the k™ group given the previous groups ¢(zx|z<i) = E,, (x) [(2zk|z<k, X)].
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Here, we show that maximizing E, ) [£nvag(x)] with respect to the prior corresponds to learning
the prior by minimizing Ey(,_, ) [KL(q(2x|z<)||p(2k|Z<))] for each conditional:

argmax B, x)[Luvae(x)] = argmin E,,  x) [Eq(zd\x) [KL(Q(Zk|Z<kaX)||p(zk‘z<k))]]

p(zk|z<k) p(zk|z<k)

= arg min 7]Epd(x)q(z<k|x)q(zk\z<k,x) [lng(Zk|Z<k)]
p(zk|z<k)

= argmin —E;,, ,_,) [logp(zx|z<4)]
p(zk|z<k)

argmin —Egq_,) []Eq(zk\zd) [IOgP(Zk|Z<k)H

p(zk|z<k)

= arg min IEq(z<;€) [7H(q(zk‘z<k)) - ]Eq(zk.\z<k) [logp(zk|z<k)u

p(zk|z<k)

= argmin Eg,_,) [KL(q(zk|z<k)||lp(2k|2<k))] - @)

p(zk|z<k)

C Conditional NCE for Hierarchical VAEs

In this section, we describe how we derive the NCE training objective for hierarchical VAEs given in
Eq. {@). Our goal is to learn the likelihood ratio between the aggregate conditional ¢(zx|z<y) and
the prior p(zy|z<)). We can define the NCE objective to train the discriminator Dy (zy, Z<) that
classifies zj, given samples from the previous groups z ., using:

I%lkn - Eq(zk|z<k)[10g Dk(zk, Z<k)] - E;D(Zklz<k)[10g(1 - Dk(Zk,Z<k))] VZ</€. (8)

Since z is in a high dimensional space, we cannot apply the minimization Vz .. Instead, we sample
from z ., using the aggregate approximate posterior ¢(z<) as done for the KL in a hierarchical

model (Eq. (7)):

II[l)lkIl Eq(z<k) [ - Eq(zk|z<k)[log Dy (zy, Z<k)] - EP(Zk|Z<k)[log(1 — Dy(z;, Z</€))}:|' ©))

Since q(z<x)q(zk|z2<k) = q(Zk, Z<k) = Ep,(x)[0(Z<k[X)q(zk|Z<k, X)], We have:
min By, gz ) [— Eq(an 2108 D (2k, Z2<k)] = Ep(zy [2,) [log (1 —Dk(Zk»Z<k))1] (10)

Finally, instead of passing all the samples from the previous latent variables groups to D, we can
pass the context feature ¢(zy,) that extracts a representation from all the previous groups:

Hf)i:l Epd(x)q(Z<k\x) { - IEq(z1¢|z<z\~,,x) [IOg Dk(zk’ C(Z<k))] - EP(ZMZG«) UOg(l - Dk(zk’ C(Z<k)))]} :
(11

D NVAE Based Model and Context Feature

Context Feature: The base model NVAE [74] is hierarchical. To encode the information from
the lower levels of the hierarchy to the higher levels, during training of the binary classifiers, we
concatenate the context feature c(z ) to the samples from both p(z) and ¢(z). The context feature
for each group is the output of the residual cell of the top-down model and encodes a representation
from z .

Image Decoder p(x|z): The base NVAE [74] uses a mixture of discretized logistic distributions for
all the datasets but MNIST, for which it uses a Bernoulli distribution. In our model, we observe that
replacing this with a Normal distribution for the RGB image datasets leads to significant improvements
in the base model performance. This is also reflected in the gains of our approach.

E Implementation Details

The binary classifier is composed of two types of residual blocks as in Fig.[6] The residual blocks use
batch-normalization [32f], the Swish activation function [61], and the Squeeze-and-Excitation (SE)

16



C 2C
( Squeeze & | Squeeze &
Excitation | . Excitation
C 2C
Conv 3x3 Conv 3x3
(1, p1) L, p1)
C _
=3 20 2C
Batch-Norm ‘('; El Batch-Norm
+Swish g e s + Swish
28 A aa
C 3 E Conv 1x1 2C
B3 (s2, p0)
Conv 3x3 S E Conv 3x3
3]
(s1,p1) Sf c (s2,p1)
C | (o}
Swish
Batch-Norm Batch-Norm
+ Swish + Swish

Residual-Block-A Residual-Block-B

Figure 6: Residual blocks used in the binary classifier. We use s, p and C to refer to the stride
parameter, the padding parameter and the number of channels in the feature map, respectively.

block [31]]. SE performs a squeeze operation (e.g., mean) to obtain a single value for each channel.
An excitation operation (non-linear transformation) is applied to these values to get per-channel
weights. The Residual-Block-B differs from Residual-Block-A in that it doubles the number of
channels (C' — 2C'), while down-sampling the other spatial dimensions. It therefore also includes a
factorized reduction with 1 x 1 convolutions along the skip-connection. The complete architecture of
the classifier is:

Conv 3x3 (s1, p1) + RelLU

<

Residual-Block-A

<

Residual-Block-A

<

Residual-Block-A

<

Residual-Block-B

<

Residual-Block-A

<«

Residual-Block-A

<

Residual-Block-A

<

Residual-Block-B
1

2D average pooling

1

Linear + Sigmoid

Optimizer Adam [37]]
Learning Rate Initialize at 1e-3, CosineAnnealing [49] to 1e-7
Batch size 512 (MNIST, CIFAR-10), 256 (CelebA-64), 128 (CelebA HQ 256 )

Table 10: Hyper-parameters for training the binary classifiers.
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F Additional Examples - Nearest Neighbors from the Training Dataset

Query Image Nearest neighbors from the training dataset

Figure 7: Query images (left) and their nearest neighbors from the CelebA-HQ-256 training dataset.
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G Additional Qualitative Examples

Figure 8: Additional samples from CelebA-64 at ¢ = 0.7.
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Figure 9: Additional samples from CelebA-HQ-256 at ¢t = 0.7.
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H Additional Qualitative Examples

In Fig.[TT] we show additional examples of images generated by NVAE [[74] and our NCP-VAE. We
use temperature (¢t = 0.7) for both. Visually corrupt images are highlighted with a red square.

Figure 11: Additional samples from CelebA-64 att = 0.7.
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I Additional Qualitative Examples

In Fig.[12] we show additional examples of images generated by our NCP-VAE at ¢ = 1.0.

Figure 12: Additional samples from CelebA-64 at ¢t = 1.0.

J Experiment on Synthetic Data

In Fig. [T3]we demonstrate the efficacy of our approach on the 25-Gaussians dataset, that is generated
by a mixture of 25 two-dimensional Gaussian distributions that are arranged on a grid. The encoder
and decoder of the VAE have 4 fully connected layers with 256 hidden units, with 20 dimensional
latent variables. The discriminator has 4 fully connected layers with 256 hidden units. Note that the
samples decoded from prior p(z) Fig. [I3[b)) without the NCP approach generates many points from
the the low density regions in the data distribution. These are removed by using our NCP approach

(Fig. [[3{c)).
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(a) Samples from the true distribution  (b) Samples from VAE (c) Samples from NCP-VAE
Figure 13: Qualitative results on mixture of 25-Gaussians.

We use 50k samples from the true distribution to estimate the log-likelihood. Our NCP-VAE obtains
an average log-likelihood of —0.954 nats compared to the log-likelihood obtained by vanilla VAE,
—2.753 nats. We use 20k Monte Carlo samples to estimate the log partition function for the calculation
of log-likelihood.
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