
A Training Energy-based Priors using MCMC

In this section, we show how a VAE with energy-based model in its prior can be trained. Assuming
that the prior is in the form pEBM(z) = 1

Z r(z)p(z), the variational bound is of the form:

Epd(x)[LVAE] = Epd(x)

[
Eq(z|x)[log p(x|z)]− KL(q(z|x)||pEBM(z))

]
= Epd(x)

[
Eq(z|x)[log p(x|z)− log q(z|x) + log r(z) + log p(z)]

]
− logZ,

where the expectation term, similar to VAEs, can be trained using the reparameterization trick. The
only problematic term is the log-normalization constant logZ, which captures the gradient with
respect to the parameters of the prior pEBM(z). Denoting these parameters by θ, the gradient of logZ
is obtained by:

∂

∂θ
logZ =

1

Z

∫
∂(r(z)p(z))

∂θ
dz =

∫
r(z)p(z)

Z

∂ log(r(z)p(z))

∂θ
dz = EPEBM (z)[

∂ log(r(z)p(z))

∂θ
],

(5)
where the expectation can be estimated using MCMC sampling from the EBM prior.

B Maximizing the Variational Bound from the Prior’s Perspective

In this section, we discuss how maximizing the variational bound in VAEs from the prior’s perspective
corresponds to minimizing a KL divergence from the aggregate posterior to the prior. Note that this
relation has been explored by Hoffman & Johnson [30], Rezende & Viola [63], Tomczak & Welling
[72] and we include it here for completeness.

B.1 VAE with a Single Group of Latent Variables

Denote the aggregate (approximate) posterior by q(z) , Epd(x)[q(z|x)]. Here, we show that
maximizing the Epd(x)[LVAE(x)] with respect to the prior parameters corresponds to learning the
prior by minimizing KL(q(z)||p(z)). To see this, note that the prior p(z) only participates in the KL
term in LVAE (Eq. 1). We hence have:

argmax
p(z)

Epd(x)[LVAE(x)] = argmin
p(z)

Epd(x)[KL(q(z|x)||p(z))]

= argmin
p(z)

−Epd(x)[H(q(z|x))]− Eq(z)[log p(z)]

= argmin
p(z)

−H(q(z))− Eq(z)[log p(z)]

= argmin
p(z)

KL(q(z)||p(z)),

where H(.) denotes the entropy. Above, we replaced the expected entropy Epd(x)[H(q(z|x))] with
H(q(z)) as the minimization is with respect to the parameters of the prior p(z).

B.2 Hierarchical VAEs

Denote hierarchical approximate posterior and prior distributions by: q(z|x) =
∏K

k=1 q(zk|z<k,x)

and p(z) =
∏K

k=1 p(zk|z<k). The hierarchical VAE objective becomes:

LHVAE(x) = Eq(z|x)[log p(x|z)]−
K∑

k=1

Eq(z<k|x) [KL(q(zk|z<k,x)||p(zk|z<k))] , (6)

where q(z<k|x) =
∏k−1

i=1 q(zi|z<i,x) is the approximate posterior up to the (k− 1)th group. Denote
the aggregate posterior up to the (K − 1)th group by q(z<k) , Epd(x)[q(z<K |x)] and the aggregate
conditional for the kth group given the previous groups q(zk|z<k) , Epd(x)[q(zk|z<k,x)].
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Here, we show that maximizing Epd(x)[LHVAE(x)] with respect to the prior corresponds to learning
the prior by minimizing Eq(z<k) [KL(q(zk|z<k)||p(zk|z<k))] for each conditional:

argmax
p(zk|z<k)

Epd(x)[LHVAE(x)] = argmin
p(zk|z<k)

Epd(x)

[
Eq(z<k|x) [KL(q(zk|z<k,x)||p(zk|z<k))]

]
= argmin

p(zk|z<k)

−Epd(x)q(z<k|x)q(zk|z<k,x) [log p(zk|z<k)]

= argmin
p(zk|z<k)

−Eq(zk,z<k) [log p(zk|z<k)]

= argmin
p(zk|z<k)

−Eq(z<k)

[
Eq(zk|z<k) [log p(zk|z<k)]

]
= argmin

p(zk|z<k)

Eq(z<k)

[
−H(q(zk|z<k))− Eq(zk|z<k) [log p(zk|z<k)]

]
= argmin

p(zk|z<k)

Eq(z<k) [KL(q(zk|z<k)||p(zk|z<k))] . (7)

C Conditional NCE for Hierarchical VAEs

In this section, we describe how we derive the NCE training objective for hierarchical VAEs given in
Eq. (4). Our goal is to learn the likelihood ratio between the aggregate conditional q(zk|z<k) and
the prior p(zk|z<k). We can define the NCE objective to train the discriminator Dk(zk, z<k) that
classifies zk given samples from the previous groups z<k using:

min
Dk

− Eq(zk|z<k)[logDk(zk, z<k)]− Ep(zk|z<k)[log(1−Dk(zk, z<k))] ∀z<k. (8)

Since z<k is in a high dimensional space, we cannot apply the minimization ∀z<k. Instead, we sample
from z<k using the aggregate approximate posterior q(z<k) as done for the KL in a hierarchical
model (Eq. (7)):

min
Dk

Eq(z<k)

[
− Eq(zk|z<k)[logDk(zk, z<k)]− Ep(zk|z<k)[log(1−Dk(zk, z<k))]

]
. (9)

Since q(z<k)q(zk|z<k) = q(zk, z<k) = Epd(x)[q(z<k|x)q(zk|z<k,x)], we have:

min
Dk

Epd(x)q(z<k|x)

[
− Eq(zk|z<k,x)[logDk(zk, z<k)]−Ep(zk|z<k)[log(1−Dk(zk, z<k))]

]
. (10)

Finally, instead of passing all the samples from the previous latent variables groups to D, we can
pass the context feature c(z<k) that extracts a representation from all the previous groups:

min
Dk

Epd(x)q(z<k|x)

[
− Eq(zk|z<k,x)[logDk(zk, c(z<k))]−Ep(zk|z<k)[log(1−Dk(zk, c(z<k)))]

]
.

(11)

D NVAE Based Model and Context Feature

Context Feature: The base model NVAE [74] is hierarchical. To encode the information from
the lower levels of the hierarchy to the higher levels, during training of the binary classifiers, we
concatenate the context feature c(z<k) to the samples from both p(z) and q(z). The context feature
for each group is the output of the residual cell of the top-down model and encodes a representation
from z<k.

Image Decoder p(x|z): The base NVAE [74] uses a mixture of discretized logistic distributions for
all the datasets but MNIST, for which it uses a Bernoulli distribution. In our model, we observe that
replacing this with a Normal distribution for the RGB image datasets leads to significant improvements
in the base model performance. This is also reflected in the gains of our approach.

E Implementation Details

The binary classifier is composed of two types of residual blocks as in Fig. 6. The residual blocks use
batch-normalization [32], the Swish activation function [61], and the Squeeze-and-Excitation (SE)
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Figure 6: Residual blocks used in the binary classifier. We use s, p and C to refer to the stride
parameter, the padding parameter and the number of channels in the feature map, respectively.

block [31]. SE performs a squeeze operation (e.g., mean) to obtain a single value for each channel.
An excitation operation (non-linear transformation) is applied to these values to get per-channel
weights. The Residual-Block-B differs from Residual-Block-A in that it doubles the number of
channels (C → 2C), while down-sampling the other spatial dimensions. It therefore also includes a
factorized reduction with 1× 1 convolutions along the skip-connection. The complete architecture of
the classifier is:

Conv 3x3 (s1, p1) + ReLU
↓

Residual-Block-A
↓

Residual-Block-A
↓

Residual-Block-A
↓

Residual-Block-B
↓

Residual-Block-A
↓

Residual-Block-A
↓

Residual-Block-A
↓

Residual-Block-B
↓

2D average pooling
↓

Linear + Sigmoid

Optimizer Adam [37]
Learning Rate Initialize at 1e-3, CosineAnnealing [49] to 1e-7

Batch size 512 (MNIST, CIFAR-10), 256 (CelebA-64), 128 (CelebA HQ 256 )
Table 10: Hyper-parameters for training the binary classifiers.
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F Additional Examples - Nearest Neighbors from the Training Dataset

Query Image Nearest neighbors from the training dataset .

Figure 7: Query images (left) and their nearest neighbors from the CelebA-HQ-256 training dataset.

18



G Additional Qualitative Examples

Figure 8: Additional samples from CelebA-64 at t = 0.7.
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Figure 9: Additional samples from CelebA-HQ-256 at t = 0.7.
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Figure 10: Selected good quality samples from CelebA-HQ-256.
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H Additional Qualitative Examples

In Fig. 11, we show additional examples of images generated by NVAE [74] and our NCP-VAE. We
use temperature (t = 0.7) for both. Visually corrupt images are highlighted with a red square.

Random Samples from NVAE at t = 0.7

Random Samples from NCP-VAE at t = 0.7

Figure 11: Additional samples from CelebA-64 at t = 0.7.
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I Additional Qualitative Examples

In Fig. 12, we show additional examples of images generated by our NCP-VAE at t = 1.0.

Figure 12: Additional samples from CelebA-64 at t = 1.0.

J Experiment on Synthetic Data

In Fig. 13 we demonstrate the efficacy of our approach on the 25-Gaussians dataset, that is generated
by a mixture of 25 two-dimensional Gaussian distributions that are arranged on a grid. The encoder
and decoder of the VAE have 4 fully connected layers with 256 hidden units, with 20 dimensional
latent variables. The discriminator has 4 fully connected layers with 256 hidden units. Note that the
samples decoded from prior p(z) Fig. 13(b)) without the NCP approach generates many points from
the the low density regions in the data distribution. These are removed by using our NCP approach
(Fig. 13(c)).
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Figure 13: Qualitative results on mixture of 25-Gaussians.

We use 50k samples from the true distribution to estimate the log-likelihood. Our NCP-VAE obtains
an average log-likelihood of −0.954 nats compared to the log-likelihood obtained by vanilla VAE,
−2.753 nats. We use 20k Monte Carlo samples to estimate the log partition function for the calculation
of log-likelihood.
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