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ABSTRACT

Statistical watermarking offers a theoretically-sound method for distinguishing
machine-generated texts. In this work, we first present a systematic theoretical
analysis of the statistical limits of watermarking, by framing it as a hypothesis test-
ing problem. We derive nearly matching upper and lower bounds for (i) the optimal
Type II error under a fixed Type I error, and (ii) the minimum number of tokens
required to watermark the output. Our rate of ©(h~!log(1/h)) for the minimum
number of required tokens, where h is the average entropy per token, reveals a
significant gap between the statistical limit and the O(h~2) rate achieved in prior
works. To our knowledge, this is the first comprehensive statistical analysis of
the watermarking problem. Building on our theory, we develop SEAL (Semantic-
awarE speculAtive sampLing), a novel watermarking algorithm for practical ap-
plications. SEAL introduces two key techniques: (i) designing semantic-aware
random seeds by leveraging a proposal language model, and (ii) constructing a
maximal coupling between the random seed and the next token through speculative
sampling. Experiments on open-source benchmarks demonstrate that our water-
marking scheme delivers superior efficiency and tamper resistance, particularly in
the face of paraphrase attacks.
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Figure 1: Overview of our results. In (a), we present upper and lower bounds for the best achievable
Type Il error and the number of required tokens, where « is the Type I error, « is the probability of the
most likely output, and h is the entropy per token. Our theoretical bounds demonstrate near-optimality,
providing significant improvements over existing results. In (b), we empirically compare SEAL with
two of the state-of-the-art watermarking methods, the exponential scheme (Aaronson, 2022b)) and the
distribution shift scheme (Kirchenbauer et al., 2023a)), at sampling temperature 1. SEAL maintains
comparable quality while being more tamper-resistant to various perturbations and efficient in size
(smaller size indicates requiring fewer tokens to watermark).

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language tasks (Brown et al., [2020;
Bubeck et al.| 2023} |Chowdhery et al.,[2023). LLMs excel at generating human-like texts that can be
difficult to distinguish from those written by human (OpenAl, 2023} [Team et al.,|2023; |Anthropic,



Under review as a conference paper at ICLR 2025

2024). This capability raises several societal concerns regarding the misuse of LLM outputs. For
instance, LLM-generated texts might contaminate training datasets for future language models (Shu-
mailov et al., [2023} |Das et al.,|2024), facilitate the spread of misleading information (Zellers et al.,
2019; [Vincent, [2022)), or be used in academic misconduct (Jarrah et al.| 2023} [Milano et al., 2023)).
The widespread use of LLMs underscores the need for effective detection methods to identify whether
a human-like text is produced by an LLM system.

To detect machine-generated content, recent research works (Kirchenbauer et al.| |2023a; Kuditipudi
et al.,[2023; (Christ et al.} 2023; Yoo et al., 2023} [Fernandez et al., 2023} |Fu et al., 2023; Wang et al.,
2023 |Yang et al.| [2023; |Liu et al., [2023;|Zhao et al.,|2023; Hu et al.,|2023} Koike et al.,|2023;|Li et al.,
2024; Ren et al.|, 2024; [Liu & Bu, 2024; Hou et al., 2024bjja) have proposed the use of statistical
watermarks. These are signals embedded within generated texts to reveal their source. Statistical
watermarking modifies the decoding mechanism of LLMs so that the text output X is sampled jointly
with a sequence of random seeds S. Consequently, outputs from a watermarked LLM are always
correlated with the accompanying random seeds, while texts generated from other sources (e.g.,
human writers) are not. Therefore, detecting whether X is generated by an LLM reduces to testing
the independence of S and X . This procedure can be framed as a hypothesis test with two competing
hypotheses:

Hj : X is sampled independently from .S,
H; : (X, S) is sampled from a joint distribution

Here, the null hypothesis Hy implies that X is not generated by the watermarked LLM, while
the alternative hypothesis H; implies that X is sampled from the watermarked LLLM with joint
distribution P.

The major benefit of statistical watermarking is that it comes with formal statistical guarantees (Aaron-
son,, 2022bj, Kuditipudi et al.| [2023} |Christ et al.| [2023} Zhao et al.| [2023} [Li et al.} 2024). Specifically,
these guarantees control the following three quantities:

1. Distortion (Bias): The distance between the watermarked LLM and the original LLM.

2. Type I error: The probability that an independently sampled output X is incorrectly rejected
as being generated by the watermarked LLM.

3. Type II error: The probability that an output from the watermarked LLM fails to be detected.

Despite these statistical guarantees, theoretical understanding of their statistical limits remains
unsatisfied. For example, one may wonder, a la Neyman-Pearson:

Q1: What is the best achievable Type Il error under a fixed Type I error constraint?

In practice, users often modify text outputs from large language models (LLMs) or insert their
own human-written content. This complicates the task of identifying whether an article is entirely
generated by LLMs, while highlighting the need to detect specific sequences of words produced
by LLMs. For practitioners, a key consideration is to minimize the number of tokens used for
watermarking and detection of a sequence. This leads to an important question:

Q2: What is the minimum number of tokens required to watermark the output?

To the best of our knowledge, these questions have not been addressed in prior research. As discussed
in Section previous rates on the number of tokens consistently fails to surpass h~2 where h is the
average entropy per token, and it remains unknown whether this rate is optimal at all.

A key objective of theoretical analysis is to guide the development of practical algorithms. In light
of the aforementioned questions raised, it is essential to translate theoretical insights into improved
watermarking design. Therefore, we pose a final question:

Q3: Can statistical theory be leveraged to design more effective and robust watermarking
algorithms?

In this paper, we address these three questions. Our contributions can be summarized in three-fold:

1. First, we establish the optimal Type II error achievable subject to a Type I error upper
bound of o. We distinguish between two scenarios: in the model-nonagnostic case, where
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the detector has access to the fixed generation model p, the instance-dependent optimal
Type II error is given by Za:EQ:p(x)>a (p(x) — a). In the model-agnostic case, where the

generation model belongs to a known class Hx = {p : max,eq p(w) < Kk} but is itself

inaccessible to the detector, the minimax-optimal Type II error scales as (1 — a)'/*. To our
knowledge, this is the first formal result on the statistical limits of watermarking.

2. Second, we derive the minimum number of tokens required to watermark LLM outputs. In
the theoretical setting where tokens are independent and identically distributed (iid) with
entropy h, we demonstrate (nearly) matching upper and lower bounds on the number of

required tokens, with the rate % explicitly dependent on the entropy. Generalizing to
non-iid tokens, which are practical, we show that if n and H satisfy n, H 2 log i—i—log log %,

then outputs with entropy at least H and length at least n can be watermarked with Type
I error < o and Type II error < 3. Our results improve upon the previous bound of h~2,
revealing a gap between existing algorithms and theoretical limits.

3. Finally, drawing on the theory we develop, we propose a novel watermarking algo-
rithm, Semantic-awarE speculAtive sampLing (SEAL), that bridges the gap between the
theoretically-optimal watermark and state-of-the-art practical implementations. Our ap-
proach overcomes the limitations of prior methods by allowing the random seeds to adapt to
the semantic information of preceding tokens, and furthermore enhances statistical efficiency
through speculative sampling between random seed and token distributions. Experiments on
MarkMyWords benchmark (Piet et al., 2023)) show that our watermarking method achieves
superior efficiency and tamper resistance, and especially outperforms state-of-the-art ap-
proaches in tamper resistance to paraphrase attacks.

1.1 RELATED WORKS

Watermarking is a powerful white-box method for detecting LLM-generated texts (Tang et al.| [2023)).
Watermarks can be injected either into a pre-existing text (edit-based watermarks) or during the
text generation (generative watermarks), while our work falls in the latter category. Edit-based
watermarking (Rizzo et al 2019} |Abdelnabi & Fritz, 2021} [Yang et al 2022} |Kamaruddin et al.,
2018) has been the focus of several studies in the past. The concept of generative watermarking
dates back to the work of Venugopal et al.|(2011), while our work is more relevant to the seminal
works by |Aaronson| (2022a)); Kirchenbauer et al.|(2023a)) that introduce statistical watermarking as
a provable method of embedding statistical signals into language model generations. To develop
formal guarantees, Kuditipudi et al.| (2023) introduces the notion of distortion-free and inverse
transform sampling as a new watermarking method. Following Kirchenbauer et al.[(2023a)), several
works (Ren et al., [2024; [Liu & Bu, [2024} Hou et al., 2024b;a; |[Fu et al., 2024)) leverage the semantics
of preceding tokens to determine the green list and adjust the bias applied to green-list tokens.
Specifically, Hou et al.|(2024bza) use the partition of semantic space to serve as green&red lists
for sentence embeddings and perform rejection sampling to sample the sentences conditional on
certain green region in the semantic space; |Fu et al.[|(2024) add some semantically-similar tokens
into the green list; |[Ren et al.| (2023)) use a trained MLP to generate semantic values. However, these
approaches lack formal guarantees for Type I error, with challenges to precisely control the probability
associated with green-list membership due to their heuristic designs. In contrast, our work focuses
on statistical watermarking with provable Type I error guarantees, therefore distinguishing us from
previous semantic-aware approaches. While the statistical watermarking commonly uses private keys
for generation and detection, watermarks can also be injected with private forgeability and public
verifiability (Fairoze et al., 2023} Liu et al.| 2023), hence functioning effectively as digital signatures.

Several prior studies provide upper bounds on the minimum number of tokens required for watermark-
ing. The theoretical challenge in statistical watermarking lies in the regime h < 1, where h is the
average entropy per token. Specifically, Aaronson|(2022b) asserts that the Type II error will be small
when the number of tokens scales as n > h~2. Similarly, (Christ et al.|(2023) show watermarking
guarantees for outcomes with empirical entropy at least /n. This implies that to watermark a
sequence of tokens with average entropy per token h, the sequence length n should satisfy hn 2> \/n,
leading to the same rate of n. 2> h~2. In|Zhao et al.[(2023)), the number of tokens required scales as
n > 1/62, where 4 is the bias of green-list tokens following |[Kirchenbauer et al. (2023a). Given that
any green-list token has a probability of at least exp(d) in their watermarked distribution, the average
entropy per token h is at least (). Consequently, Zhao et al. (2023) also suggests the same rate of
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n > h~2. If one uses statistics Y}, score function h, and detection rule 1 (3°7"_, h(Yi) > Yn.a), Li
et al.| (2024) proves that asymptotically the number of tokens needed to watermark distributions in
class P is given by the minimax problem — infy sup pep OE g, [2(Y)] +log Egr, [e~%*(¥)]. However,
this doesn’t directly give explicit dependence on the entropy and it is unclear what is the closed-form
solution of this minimax problem for the optimal watermark.

Despite its success, watermarking techniques face threats from various attack algorithms (Kirchen-
bauer et al.,2023azbj Sato et al., 2023; Zhang et al., 2023; |Kuditipudi et al.} 2023). With the superior
ability of attacking methods to destroy watermarks while preserving quality, tamper resistance (ro-
bustness) becomes an important consideration. A somewhat surprising result by |[Zhang et al.| (2023)
asserts that it is only feasible to achieve tamper resistance to a well-specified set of attacks, instead of
all. To address the tamper resistance challenge, several works (Christ & Gunnl [2024; |Golowich &
Moitra, [2024) design robust pseudo-random codes as the basis for constructing robust watermarks.
However, these methods remain largely theoretical and have yet to see practical implementation.
Zhao et al.| (2024) design a new LLM decoding method and a tailored watermarking scheme for
this decoding method, which improves tamper resistance. To support the long-term advancement of
watermarking techniques, benchmark efforts (Piet et al.|[2023; Molenda et al., [2024)) are crucial in
evaluating quality, efficiency, and tamper resistance of practical watermarking methods.

2 THEORETICAL RESULTS

In this section, we present our theoretical contributions that address the first two questions posed in
the introduction. Due to space limitations, the formal statistical framework and theorem statements
can be found in Appendix [B]and [C|

The best achievable Type II error. Let err;(A, p), ¢ = 1,2 represent the Type I and II error of
watermarking algorithm .4 on watermarked distribution p over output space €2, respectively. Our first
result establishes the best achievable Type II error to watermark a distribution p, subject to a fixed
upper bound « on the Type I error. More precisely, this is defined as:

um = i A, .
Xump(p) = i Saerrz( p)

Theorem 2.1 (Informal statement of Theorem [C.2).

Xump(p) = Z (p(l’) - Oé) :

zeQp(z)>a

This result defines a fundamental limit on statistical watermarking: no watermarking method can
achieve a Type II error smaller than } ¢ ), (P(2) — ) on distribution p. Notably, this is
an instance-dependent result: the bound explicitly depends on the characteristics of the water-
marked distribution. Intuitively, -, cq.,(,)q (P(%) — @) quantifies the amount of randomness
in p: define H, = {p : max,ecq p(w) < a} as a set of “a-random” distributions, the quantity
> re:p(z)>a (P(T) — o) measures the {1 distance between p and H., increasing when « decreases.

Achieving this bound requires the detector to have access to the exact watermarked distribution
p. However in practice, the watermarked distribution (i.e., the watermarked model) is generally
unknown to detectors. For example, without access to GPT-4’s internal parameters, we would still
want to detect whether a text was generated by GPT-4. Hence, it makes more practical relevance to
watermark (and detect) a family of distributions and focus on the worst-case Type II error in that
family (Li et al.| |2024). This leads to our next result, which studies the minimax-optimal Type II
error over distribution classes M, where H,, := {p : max,ecq p(w) < k} for k € [0,1]. Here, x
represents the level of randomness within the distribution class. More precisely, the minimax-optimal
Type II error over H,, is defined as

Xminimax (ﬁ) max errp (.A, p)

= min

A: erry (A, p)<a,VpeH,, pEHx
where the minimum is taken over all algorithms that can watermark (and detect) any distribution in
‘H,, with Type I error at most «, and the maximum is taken over all distributions in H,.
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Theorem 2.2 (Informal statement of Theorem|[C.8). Let m denote the cardinality of the sample space,
then
(/")
Xminimax(ﬁ) = (/T)
1/k

In this minimax setting, the result is not instance-dependent, meaning it no longer depends on
a specific model distribution. Instead, the minimax-optimal Type II error is determined by the
randomness level « of the distribution class. Simplifying this expression, we have % =
1/k
(1- a)l/ ", since the sample space m is typically huge in practice (e.g., Cartesian products of token
spaces). When « is large, the rate becomes €2(1), while for x € (0, «), the rate scales exponentially
with 1/k. This aligns with the intuition that outputs with higher entropy are easier to watermark, as x
scales roughly inversely with entropy.

The minimum number of tokens required. We investigate the minimum number of tokens
necessary to achieve guarantees for both Type I and Type II errors. To obtain explicit rates, we first
consider a theoretical setting where tokens are sampled independently and identically distributed
(i.i.d.). Following |Aaronson| (2022b), we focus on the dependence on the average entropy per token.

Theorem 2.3 (Informal statement of Theorem|[C.9). If each token is drawn i.i.d. from a distribution
with entropy h, then the minimum number of tokens required to achieve 0.01 Type I and II error
scales (ignoring other parameters than h) as

log(1/h)
L),

Our result establishes that M serves as both (nearly) upper and lower bound on the number of
required tokens. Notably, this rate applies to both instance-dependent and distribution-family-based
watermarking. Compared to existing works, this result improves the dependence on h from % to

w. This improvement is significant in the regime h < 1, while for h = Q(1), watermarking
can be easily accomplished with a constant number of tokens.

In practice, tokens are generated auto-regressively and are not i.i.d.. This complicates theoretical
analysis and makes it difficult to establish a priori Type II error bounds. For example, the entire
sequence maybe nearly deterministic with high probability, despite the average entropy per token
being high a priori. As a consequence, the Type II error may still be £2(1) even with a sufficiently
large number of tokens (see Example[C.13|for a formal description of this failure case). Therefore,
we turn to establish a posteriori Type Il guarantees: the conditional probability of false negative
among outputs with high empirical entropy.

Theorem 2.4 (Informal statement of Theorem|C.14). For any n € Z and H > 0 such that

~ 1 1
n, H 2 log — + loglog —
a B

there exists a watermark with a Type I error < «, such that among all outputs with at least n tokens
and empirical entropy H, the probability of correct detection is at least 1 — (3.

This result implies that outputs with sufficient length and empirical entropy are watermarked with
high probability. Importantly, the number of tokens and empirical entropy scale logarithmically with
the Type I error and double-logarithmically with the Type II error. [Christ et al.|(2023) prove a similar
a posteriori result, bounding the joint probability that an output exhibits high entropy yet fails to be
detected, with a requirement that H 2> \/n. Our result relaxes the entropy condition and strengthens
the bound from joint probability to conditional probability, thereby leading to a more efficient rate.

3  FROM THEORY TO PRACTICE

In this section, we present our novel watermarking algorithm, Semantic-awarE speculAtive sampLing
(SEAL). SEAL incorporates two key theoretical insights. First, by comparing the instance-dependent
watermarking (Theorem [2.1) and distribution-family based watermarking (Theorem [2.2)), we observe
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Figure 2: SEAL Watermarking pipeline. In the generation phase (indicated by the red arrows), we
first employ a proposal LLM to extract semantic information from the K last tokens. Then we adopt
a hash function to compress the semantic information into distribution of random seeds. Finally, we
use speculative sampling to construct the maximal coupling between the distributions of random seed
and the target LLM’s next-token, and sample the true next token using a pseudo-random generator. In
the detection phase (indicated by the blue arrows), we reproduce the distribution of random seeds,
and invoke the same pseudo-random generator (and secret key) to sample the detector’s next token. A
text is flagged as machine generated if the number of hash collisions exceeds certain threshold.

that the distribution of random seeds performs better when it aligns closely with the model’s distri-
bution, rather than being fixed. This insight led us to develop semantic-aware random seeds, which
adapt to the underlying distribution of the tokens. Second, our analysis of both Theorem [2.3]and
[2.4]reveals that, given an appropriate choice of random seeds, optimal watermarking is achieved by
constructing a maximal coupling between the random seed distribution and the pushforward of the
token distribution onto the same measure space (g.v. Eq. (I3) ef seqq.). This inspired us to employ
speculative sampling (Leviathan et al., [2023)) to build the joint probability of the random seeds and
the next tokens, resulting in a maximal coupling between them.

3.1 METHODS

We introduce two key techniques: semantic-aware random seeds and maximal coupling construction
via speculative sampling. The overall watermarking pipeline, Semantic-awarE speculAtive sampLing
(SEAL), is illustrated in Figure[2] with pseudocode available in Appendix

3.1.1 SEMANTIC-AWARE RANDOM SEEDS

Proposal model. We apply a proposal model to capture the semantic context of the preceding
tokens. The proposal model should meet two criteria: (1) it is publicly accessible to detectors, and (2)
its token space should be (almost) equivalent to that of the watermarked model. These criteria are
easily met because all language models are trained to fit the same distribution of human language. For
computational efficiency, we recommend using a smaller model for the proposal. To ensure robustness
against attacks, the proposal model only attends to the last K tokens, ¢;_ x.;—1, rather than the entire
preceding sequence and the prompt. The next-token probability distribution ¢; = ¢(+|t;— k.;—1) from
the proposal model serves as a semantic summary of the context.

Information compression. We sample a random hash function h; from a family of hash functions
that maps the token space €2, to a space of hash codes €2j,. This compresses the extracted semantic
information into a lower dimensional space, enhancing efficiency and generality. The random seed
lying in §2y, is set as the hash of the proposal model’s output. The pushforward measure of ¢; by h;,
defined formally as h;fq;(A) := ¢;(h; ' (A)), VA C Q, (where we define h; ' (A) := {z : hi(z) €
A}), serves as the distribution of random seeds. Therefore, our random seeds capture semantic
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information instead of being drawn from a fixed distribution as in previous works (Aaronson, 2022b;
Kirchenbauer et al.,[2023a}; (Christ et al., [2023)).

3.1.2 MAXIMAL COUPLING CONSTRUCTION

Speculative sampling. We construct a maximal coupling P between h;#q; and h;8p;, where
pi = p(-|prompt, ¢1.;_1) is the next-token distribution from the watermarked model p. The coupling
defines a joint random variable of the random seed and the next token whose marginal distributions
correspond to their distributions respectively, while a maximal coupling is one that maximizes
the probability that the random seed matches the hash of the next token. We adopt speculative
sampling (Leviathan et al., 2023) to construct this coupling: first, sample the random seed s; from
h;flq;; then, assign the next token’s hash code ¢; to be s; with probability min (1, h;fp;(s;)/hitig: (i),
otherwise sample ¢; proportional to max (0, h;#p;(-) — hifig;(+)); finally, sample the next token ¢;
from the conditional distribution p; (-|h(¢;) = ¢;).

Bootstrapping efficiency with logits bias. We have the flexibility to introduce a bias J to the
logits corresponding to the random seeds to improve the probability of hash collisions, following
Kirchenbauer et al.|(2023a). This enhances detection success rates at the cost of introducing distortions
into the watermarked outputs. Specifically, let [ denote the logits of next token conditioning on the
random seed s. Then the d-biased next-token probability is given by

(1G)+8) /7 .
N = Z ; h(]) =S
p(j) = Q@) .
——, otherwise
where 7 is the normalizing constant and 7 is the model temperature. Notably, when the cardinality
of €, is 2 (i.e., a green-red list scenario) and the proposal model’s distribution is uniform (i.e.,
uniform random green list), our biased algorithm reduces to a strengthened version of |[Kirchenbauer
et al.| (2023a), as we couple the distribution of the green list with the next-token distribution, further
increasing the likelihood of green-list tokens.

3.1.3 DETECTION RULE

During the detection phase, we replicate the semantic summary ¢;, the hash function h;, and the
random seed s;, all of which are deterministically generated by the same pseudo-random function
and secret key used by the watermark generator. The sequence 1., is flagged as machine-generated

if the number of hash collisions exceeds a certain threshold:

> L(hiti) = si) > C (o {hiti (ha(ti) }ir) Q)

i=K
where the threshold function C (e, {h;fig; (hi(;))}.— ;) ensures that the Type I error remains below
«, and the first K tokens only serve to warm-up the semantic summary. The threshold can be
approximated using a Bernoulli concentration inequality or computed exactly via dynamic program-
ming. Intuitively, under Hy (not watermarked), the left-hand side is a sum of Bernoulli random
variables with expectations h;fig;(h;(t;)) fori = K, ..., n respectively. Under H; (watermarked),
the expectation of the left-hand side is lower-bounded by one minus the total variation distance
between the proposal and the watermarked models, which increases as the proposal model becomes
more aligned with the watermarked model. The gap between these two cases facilitates our detection.

Crucially, the detector does not need access to the watermarked model p or the prompt. This makes
SEAL model-agnostic (Kuditipudi et al.,|2023)), a highly practical feature for real-world applications.

3.2 THEORETICAL GUARANTEES
Like previous statistical watermarking schemes, SEAL enjoys formal statistical guarantees. One of
the key properties of SEAL is that it can operate distortion-freely when the bias § is set to zero.

Theorem 3.1 (Informal statement of Theorem @]) When the bias parameter is set to zero, SEAL is
distortion-free (unbiased), in the sense that for any sequence t,.;_ and any token w,

Psgar(t; = wlp, t1.j-1) = pj(w|p, t1:-1)
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where Pspap, denotes the next-token probability under the SEAL algorithm, p is the prompt, and p;
represents the original model’s next-token distribution.

This distortion-free guarantee ensures that the watermarked outputs have the same marginal distri-
bution as the original model outputs, implying that the quality will not degrade after watermarking.
Thus, SEAL is able to preserve the fidelity of the watermarked text to the original, unwatermarked
output.

Theorem 3.2 (Informal statement of Theorem |[G.5). The Type I error of SEAL is upper-bounded by
.

This Type I error guarantee controls the false positive error, ensuring that human-generated texts will
not be mistakenly flagged as machine-generated. The formal statements and proofs of the above
theorems can be found in Appendix [G.4}

When the proposal LLM is identical to the target LLM, the hash function is identity mapping, and the
attention window K is unlimited (consuming the prompt), SEAL reduces to the statistically optimal
watermark in Theorem [2.1] and therefore enjoys optimal Type II error. However, this reduction is not
agnostic to the target LLM and the prompt. Therefore, in practice SEAL does not achieve the optimal
Type 11 error, but still improves statistical efficiency upon existing works.

4 EXPERIMENTS

In this section, we present our experimental setup and results. We evaluate the performance of our
watermarking scheme by comparing it with several baselines.

4.1 SETUP

We select Llama2-7B-chat (Touvron et al.l [2023) as the model to be watermarked and Phi-3-mini-
128k-instruct (Abdin et al.| [2024) as the proposal model. We evaluate our watermark using the
MARKMYWORDS benchmark (Piet et al.| 2023).

MARKMYWORDS is an open-source benchmark designed to evaluate symmetric key watermarking
schemes. It measures efficiency (watermark strength), quality (impact on utility), and tamper-
resistance (ability to withstand simple perturbations without quality degradation). It has been used to
benchmark multiple prior schemes applied to Llama2-7B-chat (Touvron et al.,|2023)) and Mistral-
7b (Jiang et al., 2023). Mark My Words performs a grid search over watermarking parameters. It
selects the set of parameters with the best efficiency, defined as the number of tokens needed to detect
the watermark at a fixed p-value (0.02 in the original paper) while preserving the original model’s
generation quality.

Dataset. MARKMYWORDS generates 300 outputs spanning three tasks — book summarization,
creative writing, and news article generation — which mimic potential misuse scenarios. Outputs are
truncated after 1000 tokens.

Perturbations. Watermarked outputs undergo a set of transformations: (1) character level pertur-
bations (contractions, expansions, misspellings and typos); (2) word level perturbations (random
removal, addition, and swap of words in each sentence, replacing words with synonyms); (3) text-level
perturbations (paraphrasing, translating the output to another language and back).

Baselines. The paper evaluates four watermarking schemes, coined “Distribution Shift” (Kirchen-
bauer et al.,[2023a), “Exponential” (Aaronson, 2022b), “Binary” (Christ et al.,|2023)), and “Inverse
Transform” (Kuditipudi et al., 2023)).

4.2 COMPARISON TO BASELINES

In this section, we present a comprehensive comparison of SEAL against these baselines in terms
of quality, size, and tamper-resistance. We provide here a brief overview of each metric — detailed
descriptions of can be found in Section IV of |Piet et al.| (2023).
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Temp. Scheme Quality (1) Size () Tamper-resistance (1)
Exponential 0.899 £+ 0.001 00 0.060 £ 0.040
Inverse Transform | 0.910 + 0.001 00 0.000 £ 0.000

0.3 Binary 0.905 £ 0.007 00 0.028 £0.014
Distribution Shift 0.894 £+ 0.002 475+ 3.5 0.654 £+ 0.007
SEAL 0.893 £ 0.004 57.5+2.5 1.000 + 0.000
Exponential 0.901 £+ 0.001 178.8 £11.0 0.414 + 0.028
Inverse Transform | 0.908 +£0.002  524.5 4+ 24.7 0.194 £ 0.006
0.7 Binary 0.913 £+ 0.002 00 0.298 £ 0.003
Distribution Shift 0.894 £+ 0.005 53.0 £ 2.8 1.000 + 0.000
SEAL 0.885 4+ 0.003 453+ 1.3 1.000 4+ 0.000
Exponential 0.893 £ 0.002 89.2 +£2.0 0.807 £ 0.064
Inverse Transform | 0.908 +£0.002 201.8 6.0 0.444 + 0.138
1.0 Binary 0.906 £+ 0.001 391.3 £8.8 0.472 4+ 0.030
Distribution Shift 0.893 £ 0.005 109.0 2.8 0.756 £ 0.004
SEAL 0.873 = 0.007 73.3+1.5 1.000 + 0.000

Table 1: Comparison of SEAL with baselines across quality, size, and tamper-resistance at different
temperature settings. We compute the mean and variance over different privates keys. The best result
in each category is highlighted in bold. SEAL demonstrates high efficiency and tamper-resistance.
Its tamper-resistance consistently outperforms baselines and its efficiency outperforms baselines at
higher temperatures.

1. Quality measures the utility of the watermarked text. It is computed using Llama-3 (Dubey
et al.,[2024)) with greedy decoding as a judge model. Quality scores range from O to 1.

2. Size represents the median number of tokens required to detect the watermark at a given
p-value. All experiments enforce a Type I error constraint of « = 0.02. Lower values
indicate higher efficiency.

3. Tamper-resistance quantifies the resilience of the watermark under simple perturbations. It
is measured by the normalized area under the curve (AUC) of the watermark success rate
versus generation quality under different perturbations. This excludes more successful but
expensive attacks such as paraphrasing, which we analyze separately in Section[4.3]

Table[T| shows the metrics of SEAL and the baseline watermarking schemes at different sampling
temperature settings (7' = 0.3,0.7,1.0). We do not report results for greedy decoding (I' = 0): one
special case of SEAL is equivalent to distribution shift in this setting, which is the only functional
method at this temperature. SEAL is competitive across all metrics, particularly in terms of efficiency
(size) and tamper-resistance. Although SEAL’s quality is marginally lower than that of some baselines
(e.g., inverse transform and binary), it remains within an acceptable range and close to distribution shift
and exponential). SEAL excels in token efficiency, particularly at higher temperatures. At temperature
T =1.0and T = 0.7, SEAL requires the fewest tokens to detect the watermark, outperforming all
other methods, including distribution-shift and exponential. Even at lower temperatures (7' = 0.3),
SEAL remains highly competitive, requiring only a few more tokens than distribution shift while
providing maximal tamper-resistance. Unlike the baselines, SEAL’s parameters are not specifically
tuned for efficiency, suggesting that further gains could be achieved with parameter optimization.
Notably, SEAL demonstrates optimal tamper-resistance of 1.0 across all temperatures, outperforming
baseline schemes by a large margin.

4.3 TAMPER-RESISTANCE TO PARAPHRASE ATTACKS

Paraphrase attacks rewrite model outputs using non watermarked LL.Ms. Although more expensive,
these pose a realistic threat given the increasing number of competitive open-sourced language
models. As such, it is important to evaluate watermarking scheme’s robustness against these at-
tacks (Kirchenbauer et al.,|2023b; |Zhang et al., [ 2023).
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Paraphrasing using GPT-3.5 is a particularly effective attack, removing most watermarks from the
schemes in Piet et al.| (2023). However, we found SEAL to be more robust against this attack than its
predecessors.

Scheme / Temperature 0.3 0.7 1

Exponential 0.015+0.007  0.054 +£0.007  0.152 +0.035
Distribution Shift 0.093 +£0.007  0.250 +0.035 0.113 £ 0.007
SEAL 0.372+0.028 0.480+0.069 0.314+0.014

Table 2: Proportion of benchmark outputs still watermarked after paraphrasing, for SEAL, distribution-
shift and exponential schemes. SEAL consistently achieves high tamper-resistance and significantly
outperforms the baselines at mid-to-high temperatures.

Table [2] shows the proportion of outputs still watermarked after a paraphrase attack across different
temperature settings (I' = 0.3,0.7,1.0), for SEAL and the two most tamper-resistant schemes
from [Piet et al.|(2023)). In all temperature range, SEAL significantly outperforms all baseline methods.
This improvement can be attributed to SEAL’s use of semantic instead of syntactic information
from preceding tokens to set the random seed, making the watermark more resilient to paraphrasing.
Additionally, the distribution-shift’s ability to survive paraphrasing attacks varies more sharply than
SEAL as temperature increases: SEAL demonstrates strong tamper-resistance, particularly against
paraphrasing attacks.

5 DISCUSSIONS

In this paper, we advance the understanding of watermarking in large language models (LLMs)
through both theoretical analysis and practical algorithm designs. By deriving an explicit formula
for the optimal Type II error in Neyman-Pearson’s fashion, we demonstrate how statistical limits are
shaped by the properties of model distributions. Our nearly tight bound on the number of tokens
required to detect statistical watermarks, 2 ~! log(1/h), significantly improves upon the previous
h~2 rate, revealing a fundamental gap in prior work. Building on these theoretical insights, we
introduced SEAL (Semantic-aware Speculative Sampling), a novel watermarking algorithm that
achieves both high efficiency and robustness. SEAL leverages semantic-aware random seeds, making
it more resilient to paraphrase attacks compared to earlier methods. Additionally, SEAL’s use of
maximal coupling via speculative sampling allows it to achieve greater efficiency, particularly at
higher temperatures (e.g., temperature 1). These advantages make SEAL especially well-suited for
practical, real-world applications where the persistence of watermarks under adversarial conditions is
crucial. In future work, we aim to study embedding watermark in speculative decoding and explore
how advanced speculative decoding techniques might enhance SEAL’s performance.

Limitations and broader impacts. While our theory and method show promising results for
watermarking LLM outputs, there are some limitations. First, while we provide both upper and
lower bounds on the minimum number of tokens required in the theoretical i.i.d. setting, in the more
realistic non-i.i.d. setting, we only characterize the upper bound, and the lower bound remains an
open and challenging problem. Second, SEAL’s watermarking approach involves inference on a
smaller model, which can slow down the overall inference and detection speed.

In terms of broader societal impacts, our work has the potential to contribute positively by helping
to prevent and detect the misuse of LLMs. This includes mitigating issues such as misinformation,
academic misconduct, and data contamination. By providing a more robust watermarking solution,
we hope to promote responsible use of LLMs while minimizing potential harms.
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A NOTATIONS

Define ()4 := max{xz,0}, x Ay := min{z, y},z Vy = max{z,y}. For any set A, we write A as
the complement of set A, |A| as its cardinality, and 24 := {B : B C A} as the power set of A. We
use notations g(n) = O (f(n)), g(n) = Q(f(n)), and g(n) = © (f(n)) to denote that there exists
numerical constants C1, ¢z, Cs, ¢4 such that for all n > 0: g(n) < C; - f(n), g(n) > ¢z - f(n), and
cq - f(n) < g(n) < Cs - f(n), respectively. Throughout, we use In to denote natural logarithm.

The total variation (TV) distance between two probability measures y, v is denoted by TV (u||v). We
use supp(p) to denote the support of a probability measure p. Given a sample space (2, let A(Q)
denote the set of all probability measures over € (take the discrete o-algebra). We write d,, as the
1, z€A
0, z¢A
measures) is a joint distribution of them.

Dirac measure on z, i.e., 6, (A) = { A coupling for two distributions (i.e. probability

B WATERMARKING AS A HYPOTHESIS TESTING PROBLEM

In the problem of statistical watermarking, a service provider (e.g., a language model system), who
possesses a distribution p over a sample space €2, aims to make the samples from the service provider
distinguishable by a detector, without changing p. The service provider achieves this by sharing a
watermark key (generated from a distribution that is coupled with p) with the detector, with the goal
of controlling both the Type I error (an independent output is falsely detected as from p) and the Type
IT error (an output from p fails to be detected). This random key together with the detection rule
constitute a (random) rejection region. In the following, we formulate this problem as hypothesis
testing with random rejection regions.

Problem B.1 (Watermarking). Fix ¢ > 0. Given a probability measure p over sample space QP_-L an
e-distorted watermarking scheme of p is a probability measure P (a joint probability of the output
X and the rejection region R) over the sample space 2 ® 2 such that TV(P(-,2%)|p) < ¢, where
P(-,2%) is the marginal probability of X over €. In the generation phase, the service provider
samples (X, R) from P, provides the output X to the service user, and sends the rejection region R
to the detector.

In the detection phase, a detector is given a tuple (X, R) € Q ® 2 where X is sampled from an
unknown distribution and R, given by the service provider, is sampled from the marginal probability
P(Q, ) over 2.

The Type I error of P, defined as a(P) := sup.eca ) Py~r,(x,r)~p(Y € R), is the maximum
probability that an independent sample Y is falsely rejected. The Type II error of P, defined as
B(P) :=Px,r)~p(X ¢ R), is the probability that the sample (X, R) from the joint probability 7
is not detected.

Watermarked Model Any Other Model

Generation
Phase

&

g & = reject ;(S@ = accept

Detection
Phase

Detector {

Figure 3: Illustration of watermarking in practice.

A few remarks are in order.

Remark B.2 (Difference between classical hypothesis testing). In classical hypothesis testing,
the rejection region is often nonrandomized or independent from the test statistics. However, in

'Throughout we will assume that (2 is discrete, as in most applications.
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watermarking problem, the service provider has the incentive to facilitate the detection. The key
insight is that ‘P is a coupling of the random output X and the random rejection region R, so that
X € R occurs with a high probability (low Type II error), while any independent sample Y lies in R
with a low probability (low Type I error).

Remark B.3 (Implementation). In fact, it is imperative for the detector to observe the rejection
region that is coupled with the output: otherwise, the output from the service provider and another
independent output from the same marginal distribution would be statistically indistinguishable.

In practice, the process of coupling and sending the rejection region can be implemented by cryp-
tographical techniques: the service provider could hash a secret key sk, and use pseudo-random
functions Fy, Fy to generate (X, R) = (Fy(sk), F»(sk)). Now it suffices to send the secret key to
the detector, who can then reproduce the reject region using the pseudo-random function Fs. This
process is illustrated in Figure|3]

Thus, the difference between our theoretical framework and the practical implementation lies in our
usage of random oracles in place of cryptographic pseudorandom functions. With the coupled and
random rejection region, this allows us to focus solely on the statistical trade-offs.

For practical applications, it is additionally desirable for watermarking schemes to be model-agnostic,
i.e, the marginal distribution of the rejection region is irrelevant to the watermarked distribution.
Recall from Remark [B.3] that in practice, detectors usually adopt a pseudo-random function to
generate the reject region from the shared secret keys. If the watermarking scheme P depends on
the underlying distribution p, then the pseudo-random function, and effectively the detector, need
to know p. On the other hand, model-agnostic watermarking enables the detector to use a fixed,
pre-determined pseudo-random function to generate the reject region, and hence perform hypothesis-
testing without the knowledge of the underlying model that generates the output. This is an important
property enjoyed by existing watermarks (Aaronson, [2022bj |Kirchenbauer et al.,2023a; (Christ et al.}
2023; Kuditipudi et al.}2023). Therefore in the following, we formulate model-agnostic within our
hypothesis testing framework.

Problem B.4 (Model-Agnostic Watermarking). Given a sample space {2 and a set Q C A(Q2), a
Q-watermarking scheme is a tuple (1, {P,},cg) where 7 is a probability measure over 22, such
that for any probability measure p € Q, P, is a distortion-free watermarking scheme of p and its
marginal distribution over 2%, P,(£2, -), equals 7(-).

A model-agnostic watermarking scheme is a A(§2)-watermarking scheme.

A Q-watermarking scheme can be interpreted as a way to watermark all distributions in the set Q
while revealing no information of the model used to generate the output other than the membership
inside Q (i.e., observing the rejection region, one is only able to infer that the output comes from a

model in Q, but is unable to know which exactly the model is). By letting Q be A(£2), model-agnostic
watermarking thus reveals no information of the model.

B.1 EXAMPLES

In the following examples, we show how existing watermarking schemes fit in our framework. To
simplify the presentation, we use random oracles to replace cryptographic pseudorandom functions
in the generation of of secret keys.

Example B.5 (Text Generation with Soft Red List, Kirchenbauer et al.|(2023a))). In Algorithm 2 of
Kirchenbauer et al.|(2023a)), the watermarking scheme (over sample space {2 = V* where V is the
‘vocabulary’, i.e., the set of all tokens) of p is given as follows:

* Fix threshold C' € R, green list size v € (0, 1), and hardness parameter § > 0
e Fori=1,2,...

- Randomly partition V' into a green list Lg of size v|V|, and a red list Ly of size
(1—7)|V].
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— Sample the token X; from the following distribution from P where P(X; = z) =
{ p(z)-exp(6) ifz e La

2zec P(@)exp(8)+3 0 c g p(2)”

p(x :
S @O TS p@ LT ELR

* Let the rejection region R be
{X € Q : the number of green list tokens in X > C'} .
Here C' is the threshold for the z-test in Eq. (2) of Kirchenbauer et al.[(2023a).

The above sampling procedures as a whole define the joint distribution of the output X = X7 X5 - --
and the rejection region R, i.e., the ©(J)-distorted watermarking scheme PsoprrepList- The detector
observes the rejection region via the secret key that the service provider uses to generate the green
and red lists.

Example B.6 (Complete watermarking algorithm Wakgy, (Christ et al.|(2023)). In Algorithm 3 of
Christ et al.|[(2023), the watermarking scheme (over sample space @ = {0,1}*) of p is given as
follows:

Fix threshold C' € R and entropy threshold A > 0

* Select ¢ such that the empirical entropy of X; X5 ... X, is greater than or equal to A
e Forj=i+1,i+2,...

- Sample u; € [0, 1] uniformly at random.

1, lfu] SP(HX17---7XJ'—1)
0, otherwise

— Let the binary token X; be given by X; = {

* Let the rejection region R be given by

1
Xjuj + (1= X;5)(1 — uy)

k
X :3i <k <len(X), s.t. > log
j=i+1

>(k—i)+ MWk —i

The above sampling procedures as a whole define the joint distribution of the output X = X; X5 - - -
and the rejection region R, i.e., the O-distorted watermarking scheme Pyy.x_, . The detector observes
the rejection region via the index 7 and u;(j > 7).

Example B.7 (Inverse transform sampling Wakyrg, Kuditipudi et al.|(2023)). The inverse transform
sampling scheme in [Christ et al.[(2023)) (over sample space {2 = [IN]*) of p is given as follows:

¢ Fix threshold C' € R, resample size 7, and block size k
e Forj=1,2,...,
- Let,u — p(|X1, A 7Xj—1)~

— Sample &; = (uj,m;), € = (uj, 7)) (t = 1,....,T) i.id. according to the following
distribution:
# Sample u € [0, 1] uniformly at random;

* Sample 7 uniformly at random from the space of permutations over the vocabulary
[N].

— Let the token X; be given by
= (min{r(i) : p({j : 7(j) < 7(0)}) > u}).
* Let the rejection region R be

. {X NN 106D £6(X9) C}

T+1
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where § = (£1,..., &len(x))s €0 = (ff), ol 1(21()())’ C' is a threshold determined by
Type I error control, and ¢(y, &) is given by
. k— k—
- T ({yish= A€G+vmen hr ) }
j=1,....len(§)

Here d is an alignment cost, set as d(y, (u, 7)) = > <)

wi — 27| in Kuditipudi et al| 2023).

Additionally, a single permutation 7 (Vj,t) is used to reduce computation overhead. The above
sampling procedures as a whole define the joint distribution of the output X = X; X5 --- and the
rejection region R in Wakyrg.The detector observes the rejection region via &, &'.

C STATISTICAL LIMIT IN WATERMARKING

C.1 RATES UNDER THE GENERAL SETTING OF PROBLEM [B.1]

Given the formulation of statistical watermarking, it is demanding to understand its statistical limit.
In this section, we study the following notion of Uniformly Most Powerful (UMP) test, i.e., the
watermarking scheme that achieves the minimum achievable Type II error among all possible tests
with Type I error < a.

Definition C.1 (Uniformly Most Powerful Watermark). A watermarking scheme P is called Uni-
formly Most Powerful (UMP) e-distorted watermark of level «, if it achieves the minimum achievable
Type II error among all e-distorted watermarking with Type I error < a.

The following result gives an exact characterization of the UMP watermark and its Type II error.

Theorem C.2. For probability measure p, the Uniformly Most Powerful e-distorted watermark of
p*(x)- (1A %(,;)) . Ro={z}
level o, denoted by P*, is given by P*(X =z, R = Ro) =  p*(z) - (1 — p%(x)>+ , Ry=0

0, else
where p* = arg Milry(y | p)<e Dopeqnp ()50 (P'(T) — &) . Its Type Il error is given by

min "(z) — a),
TV(p’IP)SezGQ:pZ(;»a (W' () )

and when |Q| 2 L it simplifies to (ZIGQ'p(:E)>a (p(z) —a) — e) .
' +

As seen from the theorem, if p is deterministic, the Type II error (erﬂ'p(x)>a (p(z) —a) — e)
' +

reduces to 1 — a — € and shows limited practical utility of statistical watermarking. This is expected
since when the service provider deterministically outputs z, it would be impossible to distinguish the
watermark distribution with an independent output from 4. In general, Theorem [C.2]implies that
the Type II error decreases when the randomness in p increases, matching the reasoning in previous
works |Aaronson| (2022a)); |Christ et al.| (2023)).

Moreover, when a larger distortion parameter e is allowed, the Type II error would decrease. This
aligns with the intuition that adding statistical bias would make the output easier to detect (Aaronson)
2022a; [Kirchenbauer et al., [2023a). Among all choices of ¢, the case ¢ = 0 is of particular interest
since it preserves the marginal distribution of the service provider’s output. Therefore, we will focus
on this distortion-free case in the following sections.

Recall that in practice, the watermarks are implemented via pseudo-random functions. Therefore,
the uniformly most powerful test in Theorem [C.2]is effectively using a pseudo-random generator to
approximate the distribution p, combined with an a-clipping to control Type I error. This construction
reveals a surprising message: simply using pseudo-random generator to approximate the distribution
is optimal. We illustrate the practical implementation of the UMP watermark in Algorithm [I]and 2]

Remark C.3 (Watermarking guarantees). To achieve the upper bound of Theorem|C.2] the detector
needs to access the model and the prompt in order to generate the reject region, which is not always

17



Under review as a conference paper at ICLR 2025

accessible in many real-world applications. Therefore, the upper bound of Theorem|[C.2]achieves a
weaker watermarking guarantee compared with previous works (Aaronson, |2022al: |Kirchenbauer
et al} [2023d}; |Christ et al.| [2023). In Appendix[C.2} we study model-agnostic watermarking that
overcomes this limitation.

Nonetheless, the lower bound in Theorem|C.2) characterizes a fundamental limit of Problem thus
providing an information-theoretic lower bound for all watermarks.

Remark C.4 (Use cases of the UMP watermark). The utilization of the UMP watermark offers an
efficient approach for LLM service providers to determine if instruction-following datasets have
been generated by a specific model. In the context of instruction-following datasets, both the prompt
and response are explicitly provided to the detectors, enabling the UMP watermark to perform
accurate watermarking and detection without extra source of information. This usage is beneficial in
identifying and filtering out data points that have been comtaminated by texts generated from models
like GPT-4 ((OpenAl, |2023), thereby preserving the purity and quality of the training data.

C.2 RATES OF MODEL-AGNOSTIC WATERMARKING

It is noticeable that for large Q, a Q-watermarking scheme can not perform as good as a watermarking
specifically designed for p for any distribution p € Q. This means that Uniformly Most Powerful
Q-Watermarking might not exist in general. To evaluate model-agnostic watermarking schemes, a
natural desideratum is therefore the maximum difference between its Type II error and the Type II
error of the UMP watermarking of p over all distributions p, under fixed Type I error. Specifically,
we introduce the following notion.

Definition C.5 (Minimax most powerful model-agnostic watermark). We say that a Q-agnostic
watermark (n, {P,},c0) is of level-« if the Type I error of P, is less than or equal to « for any
p € Q. Define the maximum Type II error loss of (7, {P,},cq) as

y(n) := sup B(P,) — B(P})
peEQ
where P is the UMP distortion-free watermark of p of level a.

We say that a Q-agnostic watermarking scheme is minimax most powerful, if it minimizes the
maximum Type II error loss among all Q-agnostic watermarks of level a.

The following result characterizes the Type II error loss of the minimax most powerful model-agnostic
watermarking.

Theorem C.6. Let |Q)| = m and suppose am, é € Z. In the minimax most powerful model-agnostic
watermarking scheme of level-a, the marginal distribution of the reject region is given by

1 .
s Al =am
n*(A) = () 4] :
0, otherwise
The maximum Type Il error loss of the minimax most powerful model-agnostic watermarking scheme

(mr;mé )

of level-av is given by v(n*) = AR In the regime o — 0, m — +00, we have v(n*) — ¢ for

am

some constant ¢ < e~1, and when 1/(am) — 04 is further satisfied, ¢ = e~ 1.

Remark C.7. The e~ maximum Type II error loss does not contradict with the h™2 rates in previous
works (Aaronson, 2022a; |Christ et al., 2023} |Kuditipudi et al.||2023)), because as n 2, h~2, the model
distribution over the sequences of n tokens (with average entropy h per token) is beyond the worst
case. Indeed, such distributions have higher differential entropy than the hard instances in the proof.

Remark [C.7)highlights that the hard instance constructed in Theorem [C.6|may possess a lower entropy
than that of the actual model. Therefore, it raises an important question: for a smaller class Q that
contains distributions with higher entropy, what is the minimum achievable Type II error loss for
Q-agnostic watermarking? It is obvious that the minimax rate over a higher entropy level should
improve upon the previous rate of e~ 1.

2For the general case, it suffices to let a; = 1/([1/a]) and m1 = [a1m] /a1 and augment 2 with m1 —m
dummy outcomes. Then a1m,1/a1 € Z and hence the minimax bound for the new sample space with
cardinality m, and the new Type I error o1 yields a nearly-matching bound for (m, ).
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Towards answering this question, we consider the following class of distributions:

0, = {p sup p({w}) < }

where ~ represents the level of randomness and decreases as entropy increases. The maximum Type
II error loss of Q,.-agnostic watermarking (1, {P,},co. ) is thus given by
Y(n, k) = max B(P,) — B(P;
(. %) PEA(Q)isup,, e p({w}) <K (P) P
where P/ is the UMP distortion-free watermark of p. The following result gives an upper bound of
the above quantity, thus answering the question.

Theorem C.8. Let |}| = m and suppose am, % € Z. Then the maximum Type Il error loss of the
minimax Q. -agnostic watermarking of level-a is given by
m—am
* ( 1/k )
V(' k) = ——
(1/m>

The proof can be found in Appendix When x < «, the Type II error of model-nonagnostic
watermark vanishes, and therefore Theorem |C.8| provides an upper bound ( (1/”) ) for the worst-case

1/k
Type II error. This rate improves over e~ * in Theorem In the next section, we will apply
Theorem [C.8]to the i.i.d. setting where x can be exponentially small. This will lead to an negligible

maximum Type II error loss for model-agnostic watermarking.

C.3 RATES IN THE 1.1.D. SETTING

In practice, the sample space (2 is usually a Cartesian product in the form of Q%Z’". For example,
the output of LLMs takes form of a sequence of tokens, each coming from the same vocabulary set
V. The quantity of practical interest becomes the minimum number of tokens to achieve certain
statistical watermarking guarantees. In order to find the explicit rates on the minimum number of
required tokens, we study the theoretical setting where the tokens are samples i.i.d. from a fixed
distribution.

In this section, we consider the product distribution p = p§™ over Q" and the important setting of

e = 0 (distortion-free watermarking). We introduce the following two quantities:

* Let h denote the entropy of pg. We use nymp (h, @, 5) to denote the minimum number of
tokens required by the UMP watermark to achieve Type I error < « and Type II error < .

* Define nminimax (R, @, 8) as the minimum number of tokens required by minimax oh-
agnostic watermark to achieve Type I error < « and Type II error < 3, where Q" :=
{p=pg" : H(po) > h},i.e. contains all distributions p = p§™ such that the entropy of po
is > h.

Together, nymp (h, o, 8) and Ninimax (h, @, B) serve as critical thresholds beyond which the desired
statistical conclusions can be drawn regarding the output, making them essential parameters in
watermarking applications.

We start by inspecting the rates in Theorem in the i.i.d. setting. The following result gives a
nearly-matching upper bound and lower bound of nymp (h, @, 5).

h

In£.(In1Alnd 1
,wehavenump(h,a,ﬁ)§0<(nh (nha/\nﬁ)> vlnahlnk)'

Remark C.10 (Tightness). Up to a constant and logarithmic factor in k, our upper bound matches
the lower bound. Notice that since any model with an arbitrary token set can be reduced into a model
with a binary token set (Christ et al.}|2023)) (i.e. k = 2), our bound is therefore tight up to a constant
factor.

In %(In %/\ln[%) In L
Theorem C.9. Suppose o, 3 < 0.1. We have nymp(h,a, ) > Q[ | —=—F—25 | V == |.

Furthermore, let k = |

Using Theorem|C.8|and Theorem|C.9] we are now in the position to characterize numinimax (7, @, 3).
Suppose the sample space is a Cartesian product 2 = Q?"O and constrain to product measures over
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sequences of ng tokens, like in Appendix We start by the following relationshipﬂ

h
1
oA, T po({w}) 2 (1n<1/h>)
where a detailed derivation can be found in LemmalG.3] It follows that

o noh
/@S( max  max 0({w})> — o witm).

poiH(po)>h we

Using this observation and the derivation in Theorem|C.6} v(n*, k) can be bounded by
1/k i)
(1-a)/"<(1-a) .
This means that when g > 28/ . (In(1/a) + InIn(1/8)), the maximum Type II error loss given
by Theorem and the Type II error of the UMP watermarking given in Theorem can be
simultaneously bounded by f, thus establishing an upper bound. Furthermore, this rate matches the
lower bound in Theorem [C.9] where the guarantee is weaker (model-nonagnostic). Combining the
above arguments, we obtain an nearly-matching upper and lower bound.

Corollary C.11. Suppose o, f < 0.1. We have
In(1
Maminimas (1, @, ) = O (rl(h/h) - (In(1/a) + 1n1n(1/5))> :

nminimax(ha avﬁ) = Q (hl(lh/h) . (ln(l/a> A ln(l/ﬁ))> .

Remark C.12 (Comparison with previous works). As commented in Appendix the regime
h < 1 is more important and challenging because it is when watermarking is challenging. In this

regime, our rate of ln(l/ h) improves the previous rate of h™2 in a line of works (Aaronson, |2022a;
Kirchenbauer et al.| 2023a Zhao et al.} 2023} |Liu et al., 2023} |Kuditipudi et al.,|2023)), and highlights
a fundamental gap between the existing watermarks and the information-theoretic lower bound.

C.4 RATES IN NON-IID SETTING

Without the i.i.d. condition, determining the explicit rates for the minimum number of tokens
required to achieve fixed Type I and Type II errors is generally intractable. Indeed, with arbitrary
token distributions, the probability of generating outputs with low empirical entropy might be Q(1).
Outputs with low empirical entropy are typically challenging to watermark (see, e.g., Appendix [C.I]
or |Aaronson|(2022b)), leading to a high rate of false negatives. Consequently, the Type II error may
still be 2(1) even when the number of tokens is sufficiently large. The next example formalizes this
failure case.

Example C.13 (High entropy, infinite tokens, still cannot watermark). Let the token space be

{0,1,..., K} and the auto-regressive distribution be given by
P(X, :O):C>O5
P(Xy=j)=——, Vj#0
]P’(XiH:O\Xlz —X —0)—1 VZ>1
]P)(Xz—i-l—,ﬂXlz—xlz) -V vxlz#o 0,]750

Then it can be verified that Vn € Z :
P(X1.,=0---0)=C,

H(Xyp)>n-(1-0C)-log

1-C°
This indicates that the average entropy per token is at least (1—C) -log % which is high. However,
for any n € Z, the sequence X1., fails to be detected with probability at least C > 0.5, since the

sequence 0 - - - 0 is nearly deterministic. Therefore, the Type II error is always (1) no matter how
many tokens are used, despite the average entropy per token being high.

3In the rest of this section, we omit logarithmic factors in the cardinality of the vocabulary.
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In this section, we present a different, ‘conditional’ guarantee overcome this limitation. This result
bounds the conditional probability of false negatives among all outputs with high empirical entropy,
while excluding outputs with low empirical entropy from consideration.

Theorem C.14. Forany o, 8 € (0,1), if

n, H> logl + loglog 1
a g

then for any distribution distribution p over {) = Qg@”, there exists a model-agnostic watermarking

of level a such that the conditional probability that an output 2( from the watermarked model is

not rejected, given that the empirical entropy of X is at least H, is less than or equal to 3. More

precisely, there exists a coupling P of p and the n* defined in Theorem 3.6, such that

Px.p~r(X ¢ R| —logp(X) > H) <

sup Py (x.r~p(Y € R) <a.
TEA(Q)

The proof is deferred to Appendix Intuitively, Theorem suggests that long texts with high
empirical entropy will be watermarked with high probability. It is important to note that H is flexible,
allowing us to bound the conditional Type II error for any class of outputs with empirical entropy
levels above log i + loglog %

C.5 EFFICIENCY-ROBUSTNESS TRADE-OFFS

In the context of watermarking large language models, it’s crucial to acknowledge users’ capability
to modify or manipulate model outputs. These modifications include cropping, paraphrasing, and
translating the text, all of which may be employed to subvert watermark detection. Therefore, in this
section, we introduce a graphical framework, modified from Problem [B.T] to account for potential
user perturbations and investigate the optimal watermarking schemes robust to these perturbations.
The formulation here shares similarity with a concurrent work by Zhang et al.| (2023)).

Definition C.15 (Perturbation graph). A perturbation graph over the discrete sample space 2 is
a directed graph G = (V, E') where V equals Q and (u,u) € E forany u € V. Forany v € V,
let in(v) = {w € V : (w,v) € E} denote the set of vertices with incoming edges to v, and let
out(v) = {w € V : (v,w) € E} denote the set of vertices with outcoming edges from v.

The perturbation graph specifies all the possible perturbations that could be made by the user: any
u € V can be perturbed into v € V if and only if (u, v) € E, i.e., there exists a directed edge from u
to v.

Example C.16. Consider 2 = (26@". Let the user have the capacity to change no more than ¢
tokens, i.e., perturb any sequence of tokens = x5 - - - T, to another sequence y = y1y2 - - - Yn
with Hamming distance less than or equal to ¢. Then the perturbation graph is given by G = (V, E)
where V.= Q" and E = {(u,v) : u,v € V,d(u,v) < ¢} (d is the Hamming distance, i.e.,
d(z,y) = 320, L(ai # ¥i))-

Problem C.17 (Robust watermarking scheme). A robust watermarking scheme with respect to
a perturbation graph G is a watermarking scheme except that its Type II error is defined as
Ex,r~p [maxyecou(x) 1(Y ¢ R)], i.e., the probability of false negative given that the user ad-
versarially perturbs the output.

The next result characterize the optimum Type II error achievable by robust watermarking, where the
proof can be found in Appendix [G.6]

Theorem C.18. Define the shrinkage operator Sg : 2 — 2% (of a perturbation graph G) by

Sc(R) = {z € Q: out(z) C R} and its inverse S;," (R) = Ugycrout(x). Then the minimum Type
11 error of the robust, 0-distorted UMP test of level c in Problem[C.17]is given by the solution of the
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following Linear Program

min 1 - > pw)x(y) @)
yeN
st > pry) <oy w(z) <1,
ye€in(z) z€EQ
0<z(2) <1, VzeQ.
The UMP watermarking is given by P*(X = Y, R = Ry) =
p(y) - =*(y), Ro =S5 ({y})
p(y)- 1 —2*(y)), Ro=10 where ©* is the solution of Eq. (2).
0, otherwise

Remark C.19 (Dependence on the sparsity of graph). From Eq. ), we observe that the perturbation
graph influence the optimal Type Il error via the constraint set. Indeed, if the graph is dense, the
constraints Zyein(z) p(y)x(y) < « involve many entries of y € Q and thus decrease the value

> _yeq P(Y)x(y), thereby increasing the Type Il error. On the other extreme, when the edge set of the

perturbation graph is E = {(u,u) : u € v}, i.e., the user can not perturb the output to a different
value, then optimum of Eq. @) reduces to the rates in Theorem|[C.2](setting € = 0).

D ALGORITHM PSEUDOCODES

D.1 UMP WATERMARK

In this section, we present the pseudocode of the UMP watermark, i.e., the watermarking scheme
achieving the Type II error in Theorem [2.1] The watermark generation and detection pipelines are
outlined in Algorithm[T}2]respectively. These pseudocodes are used to generate the results in Table [6]

In Table[3] we introduce the parameters used in our algorithm.

Parameter Meaning
p prompt
sk secret key
Pi+1 next token distribution
S EOS token set
T temperature of M
M target (watermarked) language model
PRG pseudo-random generator
« Type I error

Table 3: Parameters in UMP watermark (Theorem [2.1))

D.2 SEAL

In this section, we describe the pseudocode of SEAL, shown AlgorithmE]-@ We will use a random
hash function that maps a token to a hash code. The main idea of our watermarking method is to
couple a proposal model M p and the hash code (random seed), so that the watermarked tokens hashes
to the random seed with high probabilities.

To sample j-th token in the generation phase, we use the proposal model Mp and the (randomly
selected) hashing function h; to sample a random seed s; from h;fig; (the pushforward of ¢; by

3y: the text to be detected.
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Algorithm 1 UMP Generation

1: procedure GENERATION(p, 7, M (+; ), 7, PRG(+, -), EOS)

2: > Generate a watermarked sequence of tokens ¢t = t1...¢;
3 7+ 0

4 while True do

5 pj — M(p | t1j-1,7) > Distribution of the j-th token according to M
6: t;j < PRG(pj, sk)

7 if t; ¢ EOS then

8 j—Jj+1

9 else

10: break;
11: end if

12 end while
13: Return ¢.;
14: end procedure

Algorithm 2 UMP Detection

1: procedure DETECTION(y, p, T, M (-, ), o, sk, PRG(, -), EOS)

2: > Detect whether a given sequence y is watermarked.
3 7+ 0,pv+1 > pu is the p-value
4. while True do

5 pi +— M(p| s1:5-1,7) > Distribution of the j-th token according to M
6: sj < PRG(pj, sk)

7 if s; ¢ EOS then

8: Jj<J+ 1 pv < pvxp;(s;)

9: else
10: break;
11: end if

12: end while
13: if s = y and pv < « then

14: watermarked = True > Flag if the p-value is less than o
15: else

16: watermarked = False

17: end if

18: Return watermarked

19: end procedure

h;), where g; is the proposal model’s conditional distribution of the next token on the previous K
tokens ?;_g.;j_1. The sampling steps are implemented by a pseudo-random generator PRG using
key key, where the key is computed using the last H tokens and the secret key sk. In practice,
one may also use external pseudo-randomness generator to set the secret keys (Kuditipudi et al.,
2023} [Piet et al., [2023). We add logits bias 0 to the pre-image of s; under mapping A via formula
pi(t) < p;(t) - et(hi)=23)-0/7 /7 it where Z is the normalizing constant. Then with probability
% A 1, the proposal code s; is accepted to be true code ¢;. Here, h;fip;(s;) and h;q;(s;)
denote the probability of s; under the pushforward of target model M and proposal model Mp’s
distributions, respectively. If s; is not accepted, then we sample the true code ¢; from the distribution
(hjlp; — hjtg;)+. Finally, we sample the next token from p; conditional on that the next token
hashes to the true code c;.

To detect whether a sequence of tokens y.,, is watermarked, we reproduce the random seeds Sx .,
using the same proposal model M p, pseudo-random generator PRG, and secret key sk. In the ideal
case where the sequence is not perturbed, the seeds s, should be exactly the same as those in the
generation phase since the same key and pseudo-random function are used. Then, we check whether
the token y; hashes to the code sk, indicated by ;. Finally, we may say a subsequence ¥;.;+, is
watermarked if the following condition holds:

i+L i+L
Z &; > 1 — o quantile of the random variable Z Z; 3)
Jj=t j=i
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where Z; is Bernoulli random variable with expectation h;fg;(h;(t;)), independently from each
other. To find the 1 — « quantile, the probability mass function of Z;Jj Z; can be computed
iteratively by dynamic programming:

P11 =wi, pro=1—-w

P41, = Witk - Pi—1 + (1 — Wigr) - Pry “)
where w; = hjflq;(h;(t;)) =P(Z; =1) and pg,—1 = 0, pr; = 0 (k < {) by default. Then it can be
verified that pr,y = P (7251 7, = 1).

Alternatively, we may also use Bernoulli concentration inequalities to approximate the threshold:

i+L i+ L
D& = (L)Y hyta;(hy(ty) ®)
=i j=i
where € satisfies
i+L
(e — (14 ¢)log(l+¢)) Zhjﬁqj )) < log a.

In Table[d] we introduce the parameters used in our algorithm.

Parameter Meaning
p prompt
sk secret key
K attention window length
H hash window length
KEYGEN embedded key generator
Pi+1 next token distribution
S EOS token set
T temperature of M
TP temperature of Mp
) bias
Mp smaller language model
M target (watermarked) language model
PRG pseudo-random generator
H family of hashing function
o Type I error

Table 4: Parameters in SEAL
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Algorithm 3 SEAL Generation

1
2
3
4
5:
6.
7
8:
9:
10:

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25: end procedure

: procedure GENERATION(p, 7, 7p, 8, M (-, ), Mp(-,-), sk, PRG(-,-), K, H, EOS, H)

> Generate a watermarked sequence of tokens ¢t = t1...¢;

j<0
while True do
qj + Mp(tj—K.j—1,7P) > Distribution of the j-th token according to M p
pi — M(p | t1j-1,7) > Distribution of the j-th token according to M
key < KEYGEN(t;—m:i—1; sk) > Compute key by embedded key generator
Sample h; from H under key > Select a random hash function
sj + PRG(h;lig;, key) > Sample a random seed from h;tiq; under key key
pi(t) < p;(t) - et O=33)0/7 17y > Add bias
Sample u ~ Unif(0, 1)
if u < %](S]) then > Speculative decoding
s (s5)
Cj < S5
else
Sample ¢; < (hjfp; — hifig;)+; > Maintain distortion-free
end if
Sample ¢; from p; (-|h(t;) = ¢;) > Conditional on the hash code
if t; ¢ EOS then
j—Jj+1
else
break;
end if
end while
Return ¢ ;

Algorithm 4 SEAL Detection

1

2.
3
4:
5:
6.
7
8

9:

10:
11:
12:

: procedure DETECTION(y, p, Tp, Mp(-,-), a, sk, PRG(-, ), H, EOS, K, H)

> Detect whether a given sequence y is watermarked.

7«0

while y; ¢ EOS do
q; < Mp(yj—K:j—1,7P) > Recompute the probability from Mp
key <— KEYGEN(t;—f:i—1; sk) > Compute key by embedded key generator
Sample h; from H under key > Select a random hash function
sj < PRG(h;lig;, key) > Reconstruct the random seed
&« 1(hi(y;) =s;) > Indicator of if y; hashes to s;
j+—ji+1

end while

if Eq. (3) holds for some K < ¢ < i+ L then
watermarked = True for y;.i+1 > Detect if y;.5+ 1 has lot of hash collisions

else
watermarked = False for y;.i41,

end if

Return watermarked

18: end procedure
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E EXPERIMENT DETAILS

In Table[T|and 2] the experiments on baselines follow the same parameters recommended by [Piet
et al.| (2023). Since Phi-3-mini-128k-instruct has 64 additional tokens compared to Llama2-7B-
chat (mostly used to format the system/user prompts), we truncate the logits from Phi-3-mini-
128k-instruct to match the logits from Llama2-7B-chat in size. In SEAL configuration, we use
H=1,K=15/Q| =5,7p =1,d =4forT =0.3; H =1, K = 10,|Q| =4,7p = 1,0 = 4
forT =0.7, H=1K = 20,|Q| = 4,7p = 1.25,5 = 2 for T = 1. These hyper-parameters
are consistent across Table[[|and 2} We didn’t conduct experiments for SEAL under temperature 0,
because SEAL can be reduced to Distribution Shift watermark (Kirchenbauer et al., [2023a)) by setting
7p = 0o and h as randomly assign to green or red at this temperature.

F SUPPLEMENTAL EXPERIMENT RESULTS

F.1 ABLATION STUDIES

We study the impact of proposal models on the performance of SEAL. With other parameters fixed,
we consider three different proposal models with model sizes scaling from 1B to 7B: TinyLlama-1.1B-
Chat-v1.0 (Zhang et al.|[2024), Phi-3-mini-128k-instruct (Abdin et al.|[2024), vicuna-7b-v1.5 (Zheng
et al., [2023). From Table [5| we observe that the proposal model has only a marginal impact on
SEAL’s performance. We hypothesize that this is because in SEAL the proposal model only attends
to the last K tokens. This fixed context window likely minimizes variations in next-token probability
predictions across different proposal models.

Temperature Proposal Quality (1) Size () Tamper-resistance (1)
TinyLlama-1.1B 0.89 63 1.0
0.3 Phi-3-mini (3.8B) 0.90 57.5 1.0
vicuna-7b-v1.5 0.89 61 1.0
TinyLlama-1.1B 0.89 49 1.0
0.7 Phi-3-mini (3.8B) 0.88 45.5 1.0
vicuna-7b-v1.5 0.89 48 1.0
TinyLlama-1.1B 0.87 76 1.0
1.0 Phi-3-mini (3.8B) 0.88 75 1.0
vicuna-7b-v1.5 0.87 72 1.0

Table 5: Comparison of SEAL with different proposal models across quality, size, and tamper-
resistance at different temperature settings.

F.2 EMPIRICAL VALIDATION OF THEORETICAL RESULTS

Scheme / Temperature 0 0.3 0.7 1
Distribution Shift (Kirchenbauer et al., 2023a) 53 55 50 114.5
Exponential (Aaronson) 2022b)) impossible 980 178.5 90
Inverse Transform (Kuditipudi et al., [2023) impossible oo 4575 195
Binary (Christ et al.| 2023)) impossible oo 00 372.5
Theorem impossible  60.5 24 15

Table 6: Theorem and previous works tested on MARKMYWORDS (Piet et al.,2023)). For each
watermark scheme and each temperature, we show the median number of tokens required to detect
the watermark at a given p-value of a = 0.02. For the first four rows, one can refer to |Piet et al.
(2023); oo means over half of all generations are not watermarked and “impossible” means when the
temperature is 0, the text generation procedure is deterministic and the entropy is zero, and thus any
distortion-free watermark scheme does not work.

We show experimental results of the statistically-optimal watermark indicated by Theorem [2.T] along
with several previous works, in term of the median number of tokens needed to detect the watermark.
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We use Algorithm [T}{2]to simulate Theorem [2.1] Table[6|shows that Theorem [2.1| needs significantly
fewer tokens to detect the watermark in high temperature, which echos with Theorem [2.1]s statistical
optimality. An exception is that for the distribution shift scheme (Kirchenbauer et al., [2023b) with
low temperature (0.3 and 0.1), where the number of tokens required by the distribution shift scheme is
smaller. This is because distribution shift is not distortion-free while Theorem 2.1 only characterizes
the limits of unbiased (distortion-free) watermarking. Note that Theorem [2.1]is experimented under
the model non-agnostic setting (but its rate in the model-nonagnostic setting is not fundamentally
different from that in the model-agnostic setting, due to Theorem [C.8]and Corollary [C.TT)) without
considering robustness, while the four baseline schemes also work for model agnostic setting with
robustness guarantees. Noting that the optimal algorithm implied by Theorem [2.1]is equivalent to
the Log Likelihood Ratio test (Hu et al., [2023}; |Christ et al., [2023; |L1 et al., [2024), we have yet to
see any other model-nonagnostic watermark in the literature. Therefore, our experiments is used
only to exhibit the statistical limits in Type I&II errors and highlight the fundamental gap, instead of
advocating for the superiority of any particular watermarking scheme.

G PRrOOFS

G.1 PROOF OF THEOREM[C.2]

Proof. Let p’ denote the marginal probability of X and let 7 denote the marginal probability of R. In
the bound of Type I error, choosing 7 = ¢, yields

a>Pxorrop,)(X €R)
—Pren(y € )

=Y (Zp P(R|z) ) -1(y € R). (6)

Re292 \zeQ
Now notice that

P(XeR)=E [(XeR)]

=3 > FWP(RIyL(y € R)

y€N Re29

= < > PRIy -1y € R)) .

y€Q \Re29

Ay)
For the term A(y), we first know that A(y) < p’(y). Applying Eq. (), we further have

Aly Z(Zp Rx>~l(y€R)

Re29 \zeQ
< a.

Combining the above two inequalies, it follows that

P(XeR) <Y (ahp(y)

yeQ

=1- Y. (Y@)-a)

z€Qip’ () >

<1— min () —
a TV(p'[|p)<e Z (7'() )
z€Q:p’ (z)>a

+
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where first equality is achieved by

/= arg min "(z) — o

P Tv(p'|p)s6mgg%)>a (P(z) o)
and the third inequality is achieved when }_ . ;)< (@ — p(2)) = €, a sufficient condition for
which being |Q[ > (2 + €)/a (indeed, otherwise we have 1 > >° .\, p(z) > - [{z : p(z) <

a}|—e>a- (|2 —1/a) — e = 1, a contradiction). This estabhshes the optimal Type II error.

Finally, to verify that P* satisfies the conditions, the condition TV(P*(-,2%)||p) < ¢ is apparently
satisfied. For any y € €2 we have

Preyg(y € R) = ) p(x)-P(R = {z}) - 1(y = 2)
e
S (1 : p*(y)>
<a.

This implies the sup ¢ a (o) Py ~r,(x,R)~P* (Y € R) < a because any 7 can be written as linear
combination of d,. Moreover,

(X € R) Zp P(R = {z})

e

=Y (aAp*(®)

yeN

1= Y r@-a.
z€Q:p* (z)>a
This verifies that p* achieves the advertised Type II error. [

G.2 PROOF OF THEOREM[C.9]

Proof. Throughout the proof we assume that h < 1/4, otherwise the bounds become trivial.

We first prove the lower bound. For this purpose, we construct the hard instance: let go = H,~ 1 (h)
(take the one > 1/2) where H}, is the binary entropy function defined by Hy(z) = —zlnz — (1 —
2)In(1 — x), and set pg = (1 — qo)0z, + qodz, Where 21, x5 are two different elements in . Then
Lemmaimplies that go > 3/4. By Theorem

f=1-PXeR)= Y (x)-0)

z€Q:p(z)>a

> 5 - P(p(X) = 2a)

(Z In po(X;) > ln(2a)>

1
I(nlngy > In(2«)) - §q8

t\.')\»—l [\D\H

> 1(2n(1 ~ o) < ~In(20)) - 3 exp (~20(1 — a0))

In i 1 2nh
>1 771n2 5P|~y
2h/Int= | 2 In -

where the last inequality follows from Lemma[G.3] It follows that

h NS S (R S 7
n(h, o, B) > o nos n% @)
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Furthermore, suppose n < ﬁ. Define Y = Y | 1(po(X;) = 1 — qo), then notice that
T—aqo
Y ~ Binom(n, 1 — go) and if Y < 24—, then
1—qo
- In %
D npp(X;) > =—25—-In(1 —go) +n - Ing
; 21n T
=1 1—qo
> In(2a)
where the last inequality is due to n-In gg > —2(1—qg)n > —2(1—q0)4(17;1)%# = 211?1(20{) >
1—qq 1—qq
@. Applying this and Markov’s inequality,
- In L
P> Inpo(X;) >In(20) | 2P|V < —2=
In —
i=1 1—qo
Z 1 n(l _1q0)
21ln 5
In 1*1‘10
1
> 97
-2
A contradiction to P(p(X) > 2a) < 283. As aresult,
(R p—
n(hya,B) > ——2¢———
4(1 —qo)In 1jq0
< In i ®)
= 4h

Combining Eq. (7) and Eq. (8), we established the lower bound.

For the upper bound, we define ¢ = max,cq, po(z), then Lemma|G.2]implies that ¢ > 1/2. Define
Y =31 L(po(X;) # q) (recall that Y ~ Binom(n, 1 — ¢)). It suffices to show when

21n 2k 1 1 18 + 36 In(9%)) In £
n:900< nh-(lna/\ln) v {18+ 36In(9%)) In 5

h 3 h
the Type II error of the UMP watermark 1 — P*(X € R) < §5.
By Theorem[C.2) and Bennett’s inequality,

1-P(XeR)= Y () -a)

z€Qip(z)>a
<P(p(X) 2 a)

=P (Z In po(X;) > ln(a)>
i=1

In L
<P(v< o
lni

q

< exp | —ng(1 —q)0

1
1_(]— lnal

nln i

q(1—q)

©))

where 6(z) = (1 + z) In(1 + z) — ; the penultimate inequality follows from Y, In po(X;) <
YIn(l —q).
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Notice that by Lemma|G.2}
1 h In %

(]— —Q)ln 1 p 2 9ln gklr}ll(‘)k) IHT

Inln }% +In %
9 (In + + In(9% In(9k)))
h

> .
~ 94 In(9% In(9k))

Inl . ..
% 1nn ¢— . Under this condition, we have the
1—q

9 1iqinln1a%q 0<1)
q(1—q) 2q

. 18436 In(9k In(9k))) In +
Since n > (18436 In( hn( )))n“,wehavenz

simplification

>
1
> —.
— 50
Plugging back to Eq. (9), we have
In
1= q9- nln -
1-P*(X €R) < exp | —ng(1 —q)6 q(l——q)HZ
n(l—q)
< _ A H
= P ( 100 )
nh
<exp| ———~ (10)
( 900 In 281nk) )

where we applied Lemma|[G.3|in the last step.

Furthermore, we have

1-P(Xe€R) <P (Z In po(X;) > ln(a)>
=1
1 (n < lna>
Ingq
I 2k n(9k) 1
§]l<n§900<h-ln>> (11)
h «

where the last step is due to Lemma[G.3] Combining Eq. (T0) and Eq. (TT)), we know that 1 —P*(X €
9k In(9k)
ok In(ok)

R) < 3 when n > 900 (hlh : (ln L'Aln é)) This establishes the upper bound. O

IN

[e3%

G.2.1 SUPPORTING LEMMATA

Lemma G.1 (Topsge|(2001), Theorem 1.2). Define the binary entropy function Hy : (0,1) — R as
Hy(x)=—zlnz — (1 —z)In(l — z). Then 4x(1 — z) < Hp(z) < (4a(1 — x))1/1n4.

Lemma G.2. Suppose p is a probability measure over S such that H(p) = h, define ¢ =
max,cq p(x). If H(p) < 1/4, then ¢ > 1/2. Furthermore, if Hy(q) < 1/4, then q¢ > 3/4.

Proof. Suppose ¢ < 1/2. By convexity of H,
1 1.1
H(p)>—|-|glng>—In=->1/4.
0= -] amaz—5mg =

This is a contradiction.

30



Under review as a conference paper at ICLR 2025

Suppose ¢ < 3/4, then Lemma G.1]implies that
Hy(q) > 4q(1 —q) > 1/4.
This is a contradiction. O]

Lemma G.3. Suppose p is a probability measure over Q such that H(p) = h and |Q)| = k. Define
q = maxgcq p(x). If ¢ > 1/2, then we have

h
<1 -
91n 9kh;11(9k) <l-g=< n 22

Proof. We have
H(p) 2 —(1=¢)In(1-¢) = (1 —¢q)-In2.
It follows that
h> —(1-¢q)In(l—q)
In2

>(1—-qg)ln—.
Therefore 1 — ¢ < h

> Inz -
In 7

By the convexity of H and —gInq < 2(1 — q),

H(p) < —qlng—(1—-q)ln

S(I—Q)lnlgk :

1—q
k

This means that

—q

2
h? < (1 —q)? <ln 19k )

<2(1 - ¢)* (In*(9k) +1In*(1 — q))
<2(1—q)**(9k) + (1 - q) - (2(1 — q) In*(1 - q))
< (1—q) - (n*(9%k) + 18) (12)
where the last inequality is due to 2(1 — ¢) < 1 and 2(1 — ¢) In?*(1 — q) < 18. It follows that
k
h<(l-¢)ln ?
1—g¢
|
< 9(1 — q) In %HT(QIC)
where the last step is because In 1%(1 <2ln ln2(912)+18 <9Iln ln(,‘?k), using Eq. (T2). This establishes
1-g2=> W~ O
h

G.3 PROOF OF THEOREM[C.6]

Proof. Lower bound. By definition of Type I error, for any level-o model-agnostic watermarking
(1, {P,}pea(a,r)) the following holds

> n(A)l(z € A) <o, Yz € Q.

Ae2¢
For simplicity of notations, we assume Q = {1,2,...,m}. We consider hard instances in the
form of Unif(iy,da,...,41/q) Where 1 < 43 < --- < 4/, < m. Notice that for any py =
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Unif(iy, iz, ... ,%1/4), We have 3(P% ) = 0 and
6(7)/30) Z IP)AN’I] ({il, . ’il/a} ﬂ A = @)

1/
> ZW H (ij ¢ A).
Jj=1
By probabilistic method,
1/«
max f(Pp,) > L1<mfg§1/a2n ]1;[1 (i; ¢ A)
1 1/«
Z(m) > Zn TG, ¢ 4).
o) iy<<iy g j=1

It follows that the maximum Type II error loss is lower bounded by the optimum v* of the following
linear program

1/«

1
v*:min(m) Z Zn H (i; ¢ A)
T el i< <1 /0 j=1
s.t. Z n(A)l(z € A) < a, Vz €9,
Ae2¢
> n(A) =1, (A) >0, VA € 2°.
AEQQ

By duality, we have v* =

1/«
?ﬁﬁ%ﬁ%(ﬁ)( Z Zn H]lzjgéA +Z£ (Z (A)1 (xEA)—a>

i1<<i1/a A Ae29

1/«

:gnéaﬁ}égl;g Tj):L ) Z HI[Z]¢A +Z£ JJEA +C — Q- Zf

1< - <11/aj 1
. - -1 amé* + ¢*
> g 7y 2 3 (( L)) <t

where £* = (ml/i”fl 1) and ¢* = 0.

Define f(1) := (l/a) +1-&* + ¢*. Since the binomial coefficient (' e ') is convex and [ - £* + C* is
linear, f a convex function. Notice that

flam) - flam—1) =€ (m - 0””)

1/a—1
<0
and
J(am+1) = f(am) =& - (mf/jm ! 1)

= ()7
f achieves minimum at [* = am. It follows that

m —1 . N m—am m—am —1
() rreee = (M) wom (07
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holds for all € [m] and thus

rs > e ) (al®) _ Cad)

() ) )

Upper bound. Define p as the projection from Q x 2% to 2%, ie. p(V) = {4 € 2% : Jz €
Q, st.(z,A) eV} Let W :={(z,4) € A x 2% : 2 € A}.

Notice that the marginal distribution of reject region

A, if[Al = am
77* (A) = (am> .
0, otherwise

satisfies

S Pyerpomp (Y € B) S S (o) o (pOV 0 () % 2%)

< gzn(m)- (1 — %Ji?)

Hence it guarantees Type I error < a.

It suffices to show (¥): for any p € A(fQ, F), there exists a coupling P, of n* and p such that
1
Py, (o ¢ A) < L+ 20120 0(0) — ).

To show the above, we check the Strassen’s condition

p(U) —n* (p (W (U x2%)) < (o + > ), VU C Q. (13)

( m )

am @ p(ﬂi)za

Indeed, given Eq. (I3, Theorem 11 in[Strassen| (1963)) establishes (*).

In the rest of the proof, we show Eq. (I3). Fix U with cardinality k. First notice that

pU)— 3 (o) —a) < (ak A1),

zp() >a
Since p (W N (U x 29%)) ={A€2?:3i €U, s.t.i € A}, we have

* % 9% _ ("(;mk) _1_ (m kam)
B R

In the remaining paper, ( Tk ) is understood as zero if m — am < k.

m—am - .

If k < L, then because g(k) := ak — 1+ ( ( ) ) is convex and takes maximum (%L) ) = ((anv:z))
¥ o am
atk* = 1, we have
pU)—n* (p(WnN (U x2?)) <ak—1+ (" @ ) + Z
k :vp(a:)>a
(( POy
zip(z) >
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Ifk > i, then since (m(};l)m) = ((ﬂ%,’:"k)) is monotonously decreasing in k,
k am
R ULICREL EE T ol
k

x: p(Jf)Za

Combining, we establishes Eq. (T3).

Under the condition & — 04 and 1/(am) — 04, the rate displayed in Theorem 1 simplifies to:

(m—am)im—am—1)---(m—am—1/a+1)
nm—1)---(m—1/a+1)

This concludes the proof. O

=(1-a)/* e L.

G.4 PROOF OF THEOREMI[C.§]

Proof. We follow the notations in the proof of Theorem [C.6]

Lower bound. By definition of Type I error, for any level-ao model-agnostic watermarking
(1, {Py}pea(a,r)) the following holds
> n(A)l(z € A) <o, Yz € Q.
Ae29
We consider hard instances in the form of Unif (1, iz, . . . 71'1/,-;) where 1 <y < -+ <1y, <M.
Notice that for any po = Unif(i1, 92, ...,i1/x), we have 3(P} ) = 0 and
B(Ppo) > Pary ({ir, ..., i1/} NA=10)

1/k
> S0 [1 16, ¢ 4)
A j=1

By probabilistic method,

1/k
max $(P,,) > = max Zn H (i; ¢ A)
PO 1< <Zl/~ =1

1/k

IR LR

VK] i1<<iyye A

It follows that the maximum Type II error loss is lower bounded by the optimum v* of the following
linear program

1/k

. 1
v* = min — Z 277 H (i; ¢ A)
! (1/'<) 1< <y A j=1
sty p(A)1(z € A) < a, Yz e Q,
Ae2%
ST nA) =1, n(A) >0, VA € 2.
Ae2%
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By duality, we have v* =

1/k
glégggm%( > D A HﬂzJ¢A+Z£ <Z )(weA)—a>

i1<<iys, A A2

+C~<Zn(A)—1>>
Ae2f
1/k
—?z%m;%(ml) SUCIR WD DN | ECEXIES SUEITEERRNS BED B
RE - 1/ A

i1 <<y J=1

. e —1 am&* + (*
sy B () e ve)- 5

1/& =1 |A|=l 1/k

where £* = (ml/ffl 1) and ¢* = 0.

Define f(l) := (UR) +1-&* 4 ¢*. Since the binomial coefficient (1/ ) is convex and [ - £* 4 (* is
linear, f a convex function. Notice that

fom) - flam—1) =€ (m - ‘“m)

1/k—1
<0
and
Jlam+1) = fam) =& (m Uno1 1)

= 0’
f achieves minimum at [* = am. It follows that
m —1 fLE > m—am n m—am —1
. am .
1/k - 1/k 1/k =1
holds for all [ € [m] and thus
(mfam m—1/k m—L
1/k ) ( am ) ( amn)
RHS 2 m = m = m
(1/1{) (am) (am
Upper bound. Notice that the marginal distribution of reject region

i (A) = {(}n), if |A| = am

0, otherwise

satisfies

:X?Q) Py r x.r)~p(Y € R) < > m(z) - 1" (p(W N ({2} x 27)))

< a;w( x) - (1— ((tml))>

Hence it guarantees Type I error < a.

In what remains, we define p and W in the same way in the proof of Theorem [C.6|and check the
Strassen’s condition

p(U) —n* (p (W N (U x2%)) < (( ) + ) | ), VU C Q. (14)
am mp(r)za

Fix U with cardinality k. Due to the condition of sup,cqp({w}) < &, we have p(U) —
> wep()za(p(@) — @) < (kA1) Sincep (W N (U x29)) ={A€2?:3iel, st.ic A}, we
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have

ﬂ*(P(Wﬂ(UXQQ)))Zl_ (nfx,}k) 1 (m kam).

(am) (%)

Ifk <1, then
p(U) —n* (p(WnN(Ux2%)) <rkk—1+ (m( a)m + Z
k

z:ip(z)>a

w:p(z) 2o
where the second step follows from the fact that g(k) := kk — 1 + % is convex and takes
k
) 7TL1C)(7TL) (’""7%) 1
maximum —2~— = 2L gt k= 2,
€3 I "

If k> L, then

m—am m—k
where the inequality is because ( (’“) ) = % is monotonously decreasing in k. Combining, we
k
establishes Eq. (T4).

Combining the above cases, we checked Strassen’s condition and hence the statement follows. [

am

G.5 PROOF OF THEOREM|[C. 14l

Proof. Let kg = a/logﬁ, ko= el < ko, and m = |Q| = |Q|™ 2 1/ko. Define p as the
projection from Q x 2% to 2%: VV, p(V) = A €29 : 3z € Q, s.t. (v, A) € V}. Define Q :
{x€eQ:p(x) <k}, W:={(z,4) € A x 2 xEA}andW—{( A) e Qx29: :cGA}.
Notice that

sup Py orxmpor(Y € R) < 3 w() - n* (p(W N ({2} x 2)))
TEA(R)

<§27r(x)'<1—((?§i>)>:a

thus Type I error < «. To establish the conditional Type II error guarantee, we check the following
Strassen’s condition, similarly to Theorem 3.6,

pU) =0 (p (W N (U x2%))) < p(Q°) + B+ p(Q), YU C Q. (15)

Fix U and define k := |U N ©|. Notice that p(U) < (kk + p(Q°)) A 1. It follows that
)

(am)

max M — p(929),0 3 + p(Q°).

(am)

_ m—k
where the second step follows from the fact that ((kk + p(Q°)) A1) — 1 + (on) | is convex in

(a m)

[0, p(Q)/k] and decreasing in [p(2)/k, o], and thus the maximum can only be taken at either k& = 0
ork = p(Q)/~.

p(U) —n* (p(WN (U x29))) < ((kk + p(Q2)) A 1)

IN
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By the conditions of n and &, some arithmetic shows that
(")
max { ~—21 2 — 5(0Q°),0

(am)

(nL—Lﬁ))
0 _
max { ~— 2 — p(Q),0

(am)

< max {(1 — )P @D/r0 1 4 p(€Y), O}

IN

< max {BP@) 1+ p(Q),o}
<B-p(Q)

where the first inequality comes from x < kg, the second inequality is because

(m;%) (m—am)(m—am—1)~-~(m—am—%§z)+1)
my ()
(am) m(m—1)--(m— 5= 4+1)

< (1= a)P/mo
due to m 2 1/kg, the third inequality follows from ko = «/log(1//), and the last inequality is
due to the observation that max {BP(Q) 1+ p(), } — B+ p(€) is a convex function of p({2) and
takes maximum at either p(Q) = 0 or 1.
Eq. (I3) hence follows. Applying Strassen’s Theorem (Strassen, 1965), we have ]P)(XyR)N'p(W) >
= (p(2°) + B p(Q)) = p(Q) - (1= B).
By Bayes’ law, P(x,pop(X ¢ R| —logp(X) > H) = P(x py~p(X ¢ Rlp(X) < k)

HP%&SP(W) < f. This completes the proof. O

G.6 PROOF OF THEOREM|C. 18l

Proof. Throughout the proof we omit the subscript in the shrinkage operator S, as G is fixed. First
notice that

EX,RNP [YGI;EQX) ]l(Y S R):| = P(X S S(R))
= > > p(»)P(RIY)L(y € S(R)).

yEQ Re2®
Further, notice that y € m( ) and y € S(R) implies that z € R, thus

ST ) PRI eSMR) < > Y py)P(Rly)L(z € R)

y€in(z) Re29 y€in(z) Re292
<Y > p(wP(RIY)L(z € R)
yEQ Re2®
=Px~s.,rop0,)(X € R)
<a.

It follows that the optimum Type II error is lower bounded by the optimum of the following Linear
Program

mlnl—z Z P(Rly)1(y € S(R)) (16)
yEN Re29
- D PRIy e S(R) <a, Y P(Rlz) =1,0< P(R|z) <1, Vz € Q R 2%
y€in(z) Re29 Re2%

We claim that the minimum in Eq. (I6) is equal to the minimum of Eq. (Z). Indeed, it suffices to
show that Eq. (T6) is optimized when P(-|yo) is supported on {0, S ({yo})} (then setting z(y) =

P(S71({y})|y) reduces Eq. to Eq. (2)). To see this, consider any minimizer P such that there
exists yo € Qand Ry ¢ {0,8*({yo}) }, with P(Ro|yo) > 0. We will show that there exists P such
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that it achieves the no greater objective value, and satisfies [supp(P(-|y0)) N {0, S ({yo})}*| =

[supp(P(-[y0)) N {0, S~ ({y0})}* | — 1 and |supp(P(-|))| = [supp(P(-|y))| for all other y € 2.
Iteratively applying this argument, we reduce supp(P(:|y)) N {0, S7*({y})}* to 0 for any y € O
and thereby prove the claim.

Consider the following two cases.
Case 1: yo ¢ S(Rp). Then letting
) P(Roly) + P(Rly), y=yo,R=0
P(Rly) =40, y=1yo, R =Ry
P(Rly), 0.W.,

we observe that

SN pwPRINLy e S(R) =D Y p(y)P(Rly)L(y € S(R))

yeQ Re2® yEQ Re2®
and P satisfies all the constraints in Eq. (T6). It is obvious from the construction of
P that [supp(P(-ly0)) N {08 ({zo})}"| = Isupp(P(ly0)) N {0, S  ({yo})}"| — 1 and
[supp(P(-|y))| = |supp(P(-[y))| for all other y € 2.
Case 2: yo € S(Rp). Then letting

) P(Roly) + P(Rly), y=yo. R =5"({yo})
P(Rly) = {0, Yy =1y, R= Ry )
P(Rly), 0.W.

we observe that

SN pwPERILy e SR) =D Y py)P(Rly)L(y € S(R))

yEQ Re2® yeQ Re2©
and P satisfies all the constraints in Eq. (T6) due to 1(y € S(Ry)) > 1(y € S({yo})) for any y € Q.
From the construction of P, we know that |supp(P(-|y0)) N {0, S ({yo})} | = [supp(P(-y0)) N
{0,5- {yo})}c| — 1 and [supp(P(-|y))| = |supp(P(:|y))| for all other y € €.

Combining the above cases, we established our claim.

Finally, letting P*(-|y) = 2*(y) - ds-1({yy) forall y € w, where z* is the solution of Eq. (2)), achieves
the optimum value in Eq. (2). O

G.7 PROOF OF THEOREM [3. 1] AND THEOREM [3.2]

Throughout this section, we will use p;(-) and g;(+) to abbreviate p;(-|p, t1.;—1) and ¢; (:|t;—x.j—1)
respectively. For statistical analysis, we will also assume the pseudo-randomness functions used in
Algorithm 3}f4] are true random oracles. Our statistical results can be transformed into cryptography
results by hardness hypothesis on the pseudo-random functions.

Theorem G.4 (Distortion-free). The watermark in Algorithm3]is distortion-free. More precisely, for
any sequence ty.;_1 and any token w,

PsgaL(t; = wip, t1.-1) = pj(wlp,t15-1).
where Pgg a1, denotes the next-token probability under the SEAL generation phase, p is the prompt,
and p; represents the original model’s next-token distribution.

Proof. Fix hj. Let pis.; and pu; denote h;#q; and h;#p; respectively. Since Algorithm [3 performs
a maximal coupling between fis.; and p;, it follows directly that (see e.g. [Leviathan et al.| (2023) for
detailed derivation)

Psgar(s; = wlp, tij—1, h;) = pj(wlp, tij—1).
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Therefore
PspaL(t; = ulp, t1j-1,hj) = ZPSEAL(SJ' = wlp, t1;j-1, hy) - Pspar(t; = ulh;(t;) = s, hy)

—Zm (wlpstrj1) - pi(t = ulhy(t;) = w)

—Zh #oj(wlp; tij-1) - pj(t; = ulh;(t;) = w)

= p]( |p7 tl:j—1)~
Taking total probability for independent random h;, we have

PseaL(t; = wlp, t1:j-1) = ZPSEAL(hj|pa t1;j—1) - Psgan(t; = wp, t1:-1, hy)
h;

= ZPSEAL(hﬂPatqu) “pi(wlp, t1:j-1)
h
= p](w|p7t1]—1)

Theorem G.5 (False positive control). For any fixed (sub-)sequence y,
PspaL(watermarked = True for sequence y) < .
where Psgpat, denotes the randomness in SEAL detection phase.

Proof. For any fixed (sub-)sequence y, £;’s are i.i.d. Bernoulli random variables with
P(&; = 1) = P(h;(s;) = hy(t;)) = hyltg; (h;(t;))-
If the threshold is computed using Eq. (@), then since
P(Z,=1)=w;, P(Z;=0)=1—w;,
where w; = hj;flq;(h;(t;)) =P(Z; = 1), we have

itk itk—1 i+k—1
NoZi=1|=PZipp=1)P| > Zi=l-1|+P(Zipp=0)-P| > Z;=I
=1 Jj=t ) =1
i+k—1 i+k—1
=wipe P Y Zi=l1-1|+0—wi) P| > Z=1
j=i j=i

It follows by induction that the py;’s computed by Eq. @) satisfy py; = P (Z;J;’f_l Z; = l).

Therefore Psgar, (watermarked = True) < « holds by definition.
Next, we consider the case of using Eq. (3)). Define
i+L

Hn= Z h#tq; (h] (tj))

By Lemma|[G.6|and choice of ¢, we have

i+L
ZE; >(1+eu] < ele—(1+e) log(1+e))p

<a.
It follows that

i+ L
PspaL(watermarked = True) ij >(1+e)p
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Lemma G.6. Let X be the sum of independent Bernoulli random variables (not necessarily with the
same mean). Let . = E[X]. Then for all € > 0,

I[D(X > (1 + 6)#) < 6(67(14*6) 10g(1+6))p..

Proof. Letting X = Y"1 | X; where X; ~ Bernoulli(p;). By Chernoff bound,
E [6)‘X]
PX =2 (1+eu) < PEE=IDY
I B[]
- e(l+e)pr
By MGF of Bernoulli distribution,
n AX;
[l E [e } — i log(pie? +1-pi)—(1+e)pA
e(1+€)u>\
< e iy (pie® =pi)=(1+e)uA
— e(e*—l—(l-‘re))\)u
where the inequality applies the hint.

Since e* — 1 — (14 €)X < € — (1 +¢€) log(1 + €) where the maximum is achieved at \* = log(1 +¢),
we have

P(X > (14 e)p) < ele—(1+e)log(1+e))p
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