
A Addition Statement for Our New Dataset

A.1 Dataset Documentation and Intended Use

We offer a detailed overview of our dataset statistics in Sec. 3.3. To facilitate better understanding and ease of
access, we have made our dataset project available on ModelScope at: https://www.modelscope.cn/datasets/
yutong/UKnow/summary, which includes dataset summary, data preview, quickstart and data files.

The detailed data organization and corresponding download links are listed below:
• Original data: We gather our data from publicly available international news sources, accumulating a

substantial volume of images and text. Subsequently, we compress the collected data into several zip archives
and store them in original_data: UKnow/raw_data/*.

• Processed data:
• Pre-node Np: Building upon Phase-1, we leverage pre-trained deep learning models to extract valuable

information from various domains. The resultant output from Phase-1 is structured as a dictionary and is
then stored and saved to pre_node: UKnow/processed_data/pre_node*.

• Node index Nn and Edge index Ne: As the outcomes acquired in Phase-1 (e.g., Np) are not directly
applicable for graph construction, we employ an information symbolization strategy to organize them into
indices, namely Nn and Ne, which are subsequently saved to index:
UKnow/processed_data/*_index*.pickle.

• Knowledge graph Gm: Finally, we consolidate two types of internal knowledge (Iin, Tin) and three types
of associative knowledge (Icross, Tcross, ITcross) into into one knowledge graph (Gm), which is stored as
a dictionary in graph: UKnow/processed_data/graph*.pickle.

Our dataset is intended for academic use and the corresponding license is based on: https://www.contributor-
covenant.org/zh-cn/version/1/4/code-of-conduct.html, which was created by Coraline Ada Ehmke in 2014 and is
released under the CC BY-NC-ND 4.0.

A.2 Author statement

We confirm the data licenses and that we bear all responsibility in case of violation of rights.

A.3 Hosting, licensing, and maintenance plan

Hosting and Licensing. Our dataset is hosted on ModelScope. Moreover, we furnish the relevant licenses in
accordance with ModelScope at: https://www.contributor-covenant.org/zh-cn/version/1/4/code-of-conduct.html,
which was created by Coraline Ada Ehmke in 2014 and is released under the CC BY 4.0 License.

Introduction to ModelScope. ModelScope is a platform designed for managing and optimizing machine
learning models. It provides various tools and features to streamline the model development process, including
version control, performance monitoring, and collaboration capabilities. As for managing datasets, ModelScope
offers robust functionality for organizing, storing, and accessing data. Users can upload datasets to the platform,
where they are securely stored and can be easily accessed by authorized team members. ModelScope also
supports versioning of datasets, allowing users to track changes over time and ensure reproducibility in their
experiments. Additionally, the platform provides tools for data preprocessing, visualization, and analysis,
helping users to efficiently prepare their data for model training and evaluation. Overall, ModelScope offers
comprehensive support for managing datasets throughout the machine learning lifecycle. Therefore, we choose
ModelScope as our hosting platform.

Usage of ModelScope. To enable users to directly utilize all models on the ModelScope platform without
configuring the environment, ModelScope integrates an online Notebook programming environment on its
website and offers official mirrors for developers. These official mirrors allow users to bypass all installation and
configuration steps, providing immediate access to the models. Currently the latest version of the CPU mirror
and GPU mirror can be obtained from the office ModelScope repository.

Users also can setup local python environment using following commands:

1 conda create -n modelscope python =3.8
2 conda activate modelscope
3 pip install modelscope

Then, users can access and enjoy our dataset by:

1 from modelscope.msdatasets import MsDataset
2 ds = MsDataset.load(‘yutong/UKnow ’,␣subset_name=‘default ’, split=‘train ’)
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Besides, we strongly recommend that users read the official documents for optimal use.

Maintenance Plan. In future work, we will persistently augment the dataset across various scales following
the UKnow protocol. This endeavor aims to furnish a comprehensive, diverse, and resilient multimodal
knowledge graph, thereby facilitating subsequent research endeavors.

B Preliminaries

Multimodal Knowledge Graph. An intuitive interpretation of multimodal knowledge graph is that the ordinary
knowledge graph only consists of <head, relation, tail> triples like <(“Jony”), Citizen, (“New York”)> , but
the multimodal knowledge graph consists of the following:
<(“Jony”), Citizen, (“NewYork”)>,
<(“Jony”), Appearance, (“[Face]”)>,
<(“NewYork”), Landmark, (“[Statueofliberty]”)>,
<(“[AirForceOne]”), Similarity, (“[AirForceTwo]”)>,
where (·) means a text node and [·] means a image node. The machine cannot understand what “An old man with
white hair” is without establishing the connection between each word and its physical world meaning. However,
with the help of multimodal knowledge graph, as a simple example, it is possible to generate a more informative
entity-level sentence (e.g., “Biden is making a speech”) instead of a vague concept-level description (e.g., “An
old man with white hair is making a speech”). To evaluate the effectiveness of multimodal knowledge graph
(MMKG), several downstream tasks are often performed on the MMKGs, including common-sense reasoning,
vision-language pre-training.

Common-sense Reasoning. Common-sense reasoning means answering queries by logic permutations. The
specific task in this work is the link prediction. In the inference phase, feeding <("America"), Capital> to
a reasoning model, the output should be <("Washington")>. Various works [3, 70, 68, 60, 94, 53] achieve
reasoning by embedding entities and relations in knowledge graph into low-dimensional vector space. For
instance, GQE [15] encodes queries through a computation graph with relational projection and conjunction (∧)
as operators. Path-based methods [27, 82, 63, 51] start from anchor entities and determine the answer set by
traversing the intermediate entities via relational path. There are also GCN [25] based methods [61, 16] pass
message to iterate graph representation for reasoning. Common-sense reasoning is an extremely popular task in
the field of knowledge graph. Since our dataset is based on the knowledge graph, the performance validation on
common-sense reasoning is indispensable.

Vision-Language Pre-training Vision-language pre-training (VLP) can be divided into three categories based
on how they encode images [10]: OD-based region features [5, 31, 34, 41, 66, 69], CNN-based grid feature [62,
19, 20] and ViT-based patch features [84, 30, 24]. Pre-training objectives are usually: masked language/image
modeling (MLM/MIM) [2, 9, 39], image-text matching (ITM) [34, 19, 10], and image-text contrastive learning
(ITC) [30, 50, 35]. In this work, we concentrate on the study of the how to introduce our UKnow into ITC
method based on ViT-based patch features.

Image-Text Contrastive Learning. The recent CLIP [50] and ALIGN [21] perform pre-training using a
crossmodal contrastive loss on millions of image-text pairs, which achieves remarkable performance on various
downstream tasks [42, 62, 64]. MDETR [23] trains on multi-modal datasets which have explicit alignment
between phrases and objects. GLIP [32] generates grounding boxes in a self-training fashion, and makes the
learned representations semantic-rich. We implement these mainstream methods on our dataset, and also design
a basic knowledge-based ITC method with UKnow.

C Experimental Details

In this section, we give more details about the computation complexity, training, fine-tuning hyperparameters
and evaluation for reference.

C.1 Common-sense Reasoning

Datasets. Since our dataset is a knowledge graph, we benchmark the performance of KG-reasoning models on
our dataset by completing KG-triples. The partitioning of the dataset is illustrated in the upper segment of Tab. 4.

Evaluation. The specific task of common-sense reasoning in this work is the link prediction. Given a test query q
(e.g.„ <(“Jony”), Citizen, (?)>), we are interested in discovering non-trivial answers (e.g.„ “New York”). That is,
answer entities where at least one edge needs to be imputed in order to create an answer path to that entity. Each
entity in our multimodal knowledge graph is not limited to a text entity but a multimodal node. Following [56],
for each non-trivial answer t of test query q, we rank it against non-answer entities E\[[q]]test [3]. Then the rank
of each answer is labeled as r. We use Mean Reciprocal Rank(MRR): 1

r
and Hits-at-N (H@N) : 1[r ≤ N ] as

quantitative metrics.
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Table 9: A new benchmark of the common-sense reasoning task. We report four metrics of each
model on the validation and test sets. All experiments were repeated five times and the variance is
shown in the table.

Model Val-H@1 Val-H@3 Val-H@10 Val-MRR Test-H@1 Test-H@3 Test-H@10 Test-MRR
TransE [3] 11.75 ± 0.113 29.04 ± 0.112 31.76 ± 0.143 14.77 ± 0.153 11.26 ± 0.114 21.68 ± 0.115 31.57 ± 0.127 14.66 ± 0.123
Q2B [54] 14.99 ± 0.118 25.78 ± 0.135 36.76 ± 0.169 18.80 ± 0.166 14.48 ± 0.119 25.17 ± 0.135 36.32 ± 0.163 18.46 ± 0.134

Q2B∗ 16.84 ± 0.115 29.00 ± 0.166 38.85 ± 0.169 19.66 ± 0.158 16.35 ± 0.122 28.67 ± 0.174 38.45 ± 0.184 19.27 ± 0.146
BETAE [55] 18.04 ± 0.129 33.02 ± 0.161 41.97 ± 0.179 21.16 ± 0.167 17.65 ± 0.129 32.75 ± 0.160 41.67 ± 0.177 20.75 ± 0.140

BETAE∗ 19.02 ± 0.125 33.97 ± 0.173 43.17 ± 0.199 21.64 ± 0.173 18.22 ± 0.135 33.52 ± 0.187 42.68 ± 0.198 21.23 ± 0.154
QA-GNN [87] 21.69 ± 0.124 38.11 ± 0.167 45.97 ± 0.180 22.83 ± 0.179 21.05 ± 0.128 37.26 ± 0.164 44.32 ± 0.175 22.06 ± 0.165

Table 10: A new benchmark of the novel event classification task. All models are fine-tuned in the
training set. Model IMG TXT Event-11 Event-9185

ACC@1 ACC@5 ACC@1 ACC@5
CLIP [50] ✓ 65.77 76.82 54.62 63.19
DeCLIP [35] ✓ 66.43 78.32 54.86 63.82
ALBEF [30] ✓ 66.29 77.84 55.03 63.47
TCL [85] ✓ 66.80 78.91 55.87 64.33
CLIP ✓ 64.32 75.92 57.48 65.78
DeCLIP ✓ 65.89 77.51 59.76 67.81
ALBEF ✓ 65.31 76.97 58.43 66.32
TCL ✓ 66.03 78.14 59.94 68.23
CLIP ✓ ✓ 66.08 72.88 57.42 65.65
DeCLIP ✓ ✓ 67.16 72.96 58.64 66.49
ALBEF ✓ ✓ 68.03 74.26 60.04 68.13
TCL ✓ ✓ 68.69 75.02 60.89 69.17

Baselines. We consider four baselines: TransE [3], Q2B [54] and BETAE [56]. Since the UKnow based plug-in
module can be attached to any reasoning models, we implement the Q2B∗ with our module based on Q2B and
BETAE∗ based on BETAE. As shown in Tab. 9, BETAE∗ achieves on average 21.64% and 21.23% MRR on
the validation and testing set of our dataset, respectively. For a fair comparison (e.g., TransE), our dataset does
not construct complex logic such as FOL [14] to evaluate the performance of multi-hop logical reasoning.

C.2 Multimodal Event Classification

We propose a novel task called multimodal event classification, leveraging event annotations (Tab. 3) from both
Wiki’s event categories and our own manual tagging. The event annotation helps intelligent machines understand
human activities and history, offering the possibility to identify which type of event or which real historical event
a picture or a text is relevant to. As shown in Tab. 10, TCL [85] achieves on 66.80% and 55.87% on ACC@1
when using the image-input on the Event-11 and Event-9185, respectively. We simply modify all the baseline
methods and add a late-fusion module after the image/text encoder to support multimodal classification. Results
show that TCL with multimodal inputs obtains gains of 1.89% and 5.02% compared with the singlemodal,
which demonstrates that multimodal pre-training is more helpful for downstream multimodal tasks.

C.3 Single- & Cross-Modal Retrieval

We design four kinds of single- & cross-modal retrieval tasks: image-to-image, text-to-text, image-to-text, and
text-to-image. The construction of GT is based on the event annotations in Gm (Fig. 4). We treat images or texts
belonging to the same news event as a similar semantic cluster, and the goal of retrieval is to recall the nearest
neighbors within this cluster. The features used for retrieval are derived from the output of the previous layer of
the classifier.

As shown in Tab. 11, TCL [85] achieves on 33.24%, 43.37% and 45.22% R@1, R@5, R@10 on the zero-shot
setting of image retrieval. The results are 58.89%, 68.47% and 73.91% when fine-tuning the pre-trained
parameters, which means the pre-training→fine-tuning strategy is extremely beneficial for downstream retrieval.
We provide more details about hyperparameters in Sec. C.5.

C.4 Visual Task Adaptation

Visual Task Adaptation Benchmark (VTAB) [89] is a diverse, realistic, and challenging vision representation
benchmark, containing 19 tasks and covering a broad spectrum of domains and semantics. These tasks
are grouped into three sets: NATURAL, SPECIALIZED, and STRUCTURED which utilize natural world,
professional technology and artificial environment images respectively. We benchmark models on VTAB with
ACC@1. We fine-tune models for 10 epoch in each task and compute the inner product between outputs of
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Table 11: A new benchmark of the retrieval task. Zero-shot means freezing the pre-trained
parameters then transfer to the test set for inference. Fine-tune means tuning the pre-trained parameters
in the training set before inference.

Model Retrieval Zero-Shot Fine-Tune
R@1 R@5 R@10 R@1 R@5 R@10

CLIP [50] IMAGE 32.41 41.96 43.92 55.97 67.44 71.28
DeCLIP [35] IMAGE 32.75 42.36 44.38 56.96 66.59 70.95
ALBEF [30] IMAGE 32.88 42.76 44.79 58.56 67.83 72.24
TCL [85] IMAGE 33.24 43.37 45.22 58.89 68.47 73.91
CLIP TEXT 33.02 42.56 46.03 56.50 65.12 70.20
DeCLIP TEXT 34.00 43.97 47.11 55.87 65.20 70.35
ALBEF TEXT 33.87 43.86 46.82 56.77 65.91 71.15
TCL TEXT 34.67 44.25 47.67 56.60 65.50 70.54
CLIP IMG-to-TXT 32.73 42.64 44.72 56.32 66.93 70.61
DeCLIP IMG-to-TXT 32.96 42.84 45.17 57.21 66.80 71.26
ALBEF IMG-to-TXT 33.20 42.97 45.32 58.43 67.59 71.95
TCL IMG-to-TXT 33.37 43.25 46.04 58.70 67.88 72.33
CLIP TXT-to-IMG 31.78 41.04 42.51 55.74 64.38 69.56
DeCLIP TXT-to-IMG 32.13 41.55 42.99 55.84 65.12 70.32
ALBEF TXT-to-IMG 31.95 41.32 42.85 57.21 66.04 71.50
TCL TXT-to-IMG 32.56 42.04 43.74 57.17 65.92 71.47

Table 12: The comparison of w/ and w/o UKnow pre-training. Zero means the model is initialized
with all-zero parameters w/o pre-training. CLIP∗ means pre-training with origin CLIP contrast loss
on our dataset. Ours means UKnow pre-training.
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images and label texts with prompts [50] through pre-trained image encoders and text encoders as the similarity
score. As shown in Tab. 12, our approach obtains gains of avg. 1.14% compared with the origin CLIP when
fairly using the same UKnow’s data for the upstream pre-training. For the suboptimal performance on the
Retinopathy and NORBElev datasets, we carefully examine the composition of both dataset. The Diabetic
Retinopathy dataset consists of image-label pairs with high-resolution retinal images labeled to indicate the
presence of diabetic retinopathy (DR) on a scale from 0 to 4. Similarly, the NORBElev dataset contains jittered
texture images. It is evident that these data significantly differ from the natural images collected in UKnow. In
constract, commonly used general image datasets in practical applications, such as CIFAR-10, tend to show
greater improvements when utilizing UKnow. This observation suggests that researchers, when designing
advanced knowledge-based pre-training methods with UKnow, should carefully consider balancing data domains
according to specific downstream tasks. Additionally, accurate node construction is essential for building a
robust multimodal knowledge graph to fully leverage the advantages of UKnow. This underscores the importance
of designing effective pre-processing functions P , particularly in specialized subfields such as the Retinopathy
dataset. In these domains, more dedicated data pre-processing models, such as medical image segmentation and
detection models, can be employed to enhance feature extraction.

The backbone of CLIP is ViT-B/32. The cost of pre-train is 26h / 30epoch. The key hyperparameters are bs: 512,
lr: 0.001, warmup: 1e4, eps: 1e-8, beta1: 0.9, beta2: 0.999, dim: 512, AdamW. The detailed setting can be
found in Sec. C.5. It is essential to highlight that the image-text PAIR constitutes only one type of data in our
protocol. By leveraging the capabilities of UKnow , our pre-trained CLIP model can effectively comprehend the
inherent knowledge ingrained within the data, resulting in superior performance than the original CLIP model
(as observed in Tab. 12, Row2, utilizing image-text PAIR only).

C.5 Hyperparameters

Tab. 13 and Tab. 14 list the hyperparameters that differ on each models and are determined with the validation
performance on our dataset. In particular, Tab. 13 lists 7 common hyperparameters, such as learning rate, batch
size, warmup, epoch number, etc., employed during pre-training. The pre-trained model is evaluated using a
standard pipeline consisting of pre-training on Dataset1, fine-tuning on Dataset2-Train, and testing on either
Dataset2-Test/Val. Therefore, we list the hyperparameters used during fine-tuning in Tab. 14, which are slightly
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different from Tab. 13. We omit some of the model results, since ALBEF and TCL share the same set of
hyperparameters, and the original CLIP and CLIP-UKnow share the same set of parameters.

Table 13: Hyperparameters for models of pre-training.

Hyperparameter ALBEF DeCLIP CLIP-UKnow
Learning Rate 0.0001 0.001 0.001
Batch Size 128 128 512
Number of Epochs 30 30 30
Weight Decay 0.02 0.1 0.1
Optimizer AdamW AdamW AdamW
Feature Dim 256 512 512
Warmup 20epc 5000 10000

Table 14: Hyperparameters for models of fine-tuning.

Hyperparameter ALBEF DeCLIP CLIP-UKnow
Learning Rate 0.0001 5e-5 5e-5
Batch Size 128 256 256
Number of Epochs 128 20 20
Weight Decay 0.02 0.02 0.02
Optimizer AdamW AdamW AdamW
Feature Dim 256 512 512
Warmup 4epc 6epc 6epc

C.6 Computation Complexity

Here we detail the time cost of pre-training and fine-tuning. The GPU is NVIDIA(R) A100, the memory of GPU
is 81,251MiB, driver version is 470.154, CUDA version is 11.4. The CPU is Intel(R) Xeon(R) Platinum 8369B
@ 2.90GHz with 15 physical computation cores. The environment is Python 3.6.12 with Torch 1.10.1. Results
are as shown in Tab. 15 and Tab. 16.

Table 15: The time cost of pre-training.

Model Backbone Epoch Batch Time/h
DeCLIP ViT-B/32 30 128 91
ALBEF ViT-B/16 30 128 69
TCL ViT-B/16 30 128 67
CLIP∗ ViT-B/32 30 512 25
CLIP-UKnow ViT-B/32 30 512 26

Table 16: The time cost of downstream fine-tuning.

Model Backbone UKnow Tasks VTAB
Epoch Batch Time/h Epoch Batch Time/h

DeCLIP ViT-B/32 20 128 12 - - -
ALBEF ViT-B/16 20 128 10 - - -
TCL ViT-B/16 20 128 10 - - -
Zero∗ ViT-B/32 - - - 15 128 3
CLIP∗ ViT-B/32 20 256 8 15 128 3
CLIP-UKnow ViT-B/32 20 256 8 15 128 3

D Discussion

D.1 Complexity

We notice that the detailed pipeline and protocol may appear complex and require effort to implement and
understand fully. However, this complexity is necessary to ensure that the pipeline is robust, flexible, and capable
of handling diverse and multimodal datasets.

To mitigate the implementation challenges, we have designed the pipeline to be modular, like Phase-1/2/3,
allowing each phase to be independently replaced, added, or disabled based on specific needs. Moreover,
we present an extra dataset documentation and construct a website in Sec. A.1. It provides a detailed data
organization, corresponding download links, and an example code to guide users through the process, making
the protocol more accessible and easier to adopt. Our goal is to balance complexity with practicality, ensuring
that the benefits of a thorough and versatile approach outweigh the initial learning curve.
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D.2 Correlation between the Knowledge View and Phase 1

In Phase 1, Content Extraction is designed to preprocess raw data (such as images and texts) using pre-trained
deep learning models, which extract essential information that serves as the foundation for our knowledge view.
The extracted content Np provides a rich, structured collection of attributes and features that capture both global
and semantic-level details from the input. It transforms raw data into a set of key-value pairs that represent
various aspects of the input content. These key-value pairs encapsulate knowledge at different levels, which are
critical for constructing meaningful nodes in the subsequent phases. This structured output essentially forms the
knowledge view of our system, where each extracted piece of information is treated as a node attribute. These
attributes are later symbolized and linked in Phase 2, leading to the construction of the multimodal knowledge
graph in Phase 3. Thus, the content extracted in Phase 1 is directly correlated with the knowledge view, serving
as the core data that the entire graph construction process relies upon.

D.3 Limitation and Future Work

Despite the strides made, our research bears certain limitations. First of all, our current dataset primarily centers
on text and image modalities which serve as fundamental pillars for information storage and representation, but
lack other useful modalities. In future work, we aim to diversify modalities by augmenting our dataset with a
broader range of modalities (e.g., audio, video, 3D, etc.) to facilitate exploration across various downstream
tasks. Second, for each downstream task, we selected several basic yet most suitable methods for our work as our
baseline, resulting in slight deviations with current state-of-the-art (SOTA) performance. Our primary objective
lies in validating the efficacy of our proposed dataset and protocols, and demonstrating the most straightforward
and intuitive approach for utilizing our dataset. Hence, we made certain trade-offs, sacrificing some performance
by opting for a more rudimentary approach instead of pursuing the SOTA method to enhance understanding and
usage. We anticipate that our simplified demonstration will stimulate the community to delve deeper into the
potential enhancements that UKnow can offer in improving performance.

D.4 Societal Impact

As stated in Sec. 3.2, our dataset originates from publicly accessible international news sources via the Wikipedia
API. These sources only contain events that are publicly available and do not include any sensitive information.
Consequently, we confidently affirm that our research carries no potential negative societal impacts.
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