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1 IMPLEMENTATION DETAILS
Code is implemented by pytorch and all experiments are run on
an RTX 3090 GPU. The experiments consisted of two tasks: novel
view synthesis and dynamic and static decoupling. For both tasks,
the number of iterations is set to 25000, with a batch size of 4096.
The learning rate for the feature plane is 0.02, while for the neural
networks it is 0.001, except for the remapping net, which is set to
0.0007. All learning rates decay exponentially by 0.1 every 20000
steps. Network is trained using Adam optimizer with 𝛽1 is 0.9 and
𝛽2 is 0.99. 𝐿 in position encoding 𝛾 (𝑥,𝑦, 𝑧) is 4, 𝐿 in 𝛾 (𝑡) is 8,𝐿 in
𝛾 (𝑑) is 4, 𝐿 for the appearance feature encoding is 2.

1.1 Monocular Novel View Synthesis
Settings in D-NeRF dataset[6]: Our experimental setup is con-
sistent with Hexplane: step size of samples is 0.5, the resolution of
𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 is initialized to 64 and 𝜏 is 0.25*frames, they are upsampled
at 3000, 6000 and 9000 to end up with 200 × 200 × 200 × 0.5 × frames.
We set F = 48 for the appearance plane and F = 24 for the density
plane. We apply different TVloss weights to 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 and 𝜏 , the
weight of 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 is set to 1, while the tvloss weight of 𝜏 is set to
10. We use MLP as the decoder of color and density.
Settings in HyperNeRF dataset[5]: the resolution of 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 , 𝜏
will be upsampled at 2000, 4000, 6000 and 8000 to end up with
240*240*240*frames. We set F = 24 for the appearance plane and F
= 8 for the density plane. To reduce the training time, we increase
the step size to 0.8 and use summation to obtain the density values.
The weights of TVloss are set as in the D-NeRF experiment. Since
our method is not based on deformation fields, we do not use the
supervision of deformations provided in the dataset, whereas it is
used in NDVG, V4D, Tineuvox, HyperNeRF[1–3, 5].

1.2 Static and Dynamic Decoupling
The dataset consists of eight validation rig scenes: chicken, banana,
broom, balloon, water, cookie, duck and pick. Three of them are
derived from HyperNeRF dataset[5]. The relevant parameters are
the same as in the HyperNeRF experiment above. For the loss in
this task:

L = L𝑐 + 𝜆𝑡𝑣 (L𝑠𝑡
𝑡𝑣 + L𝑑𝑦

𝑡𝑣 ) + 𝜆𝑠L𝑠 + 𝜆𝑑L𝑑 (1)

L𝑠 (r) =
1
𝑁

𝑁∑︁
𝑖=1

𝐻
©­­«

𝜎
𝑑𝑦

𝑖

𝜎
𝑑𝑦

𝑖
+ 𝜎𝑠𝑡

𝑖

𝑘ª®®¬ (2)

where 𝐻 (𝑥) = −(𝑥 · log(𝑥) + (1 − 𝑥) · log(1 − 𝑥))

L𝑑 (r) = max
(

𝜎𝑑𝑦

𝜎𝑠𝑡 + 𝜎𝑑𝑦

)
(3)

𝜆𝑠 is set as 1e-4 first,and will increase exponentially to 1e-2 by step
10,000.

In addition, we utilized Windowed positional encoding, we set
𝑚 to 10000.

We also apply different low-density initializations to the static
and dynamic parts. Specifically, the calculated density values are
activated at the end by the softplus function:𝜎 = softplus(𝜎 + 𝑏), 𝑏
is the shift, which is calculated by 𝑙𝑜𝑔(1/(1 − 𝛼) − 1)[7]. We apply
different shift to the static and dynamic parts, for the dynamic
part, 𝛼 was set to 0.001 and 𝑏 to -6.9, and for the static part we
set 𝑏 to 0. This prevents parts of the static from being incorrectly
decoupled into the dynamic parts, increasing robustness to different
scenes. Thus, although in a self-supervised manner, our method
does not need to adjust the hyperparameter 𝑘 in the loss when
facing different scenes. In contrast, D2NeRF[9] requires tuning
of the hyperparameters in the loss for different scenes We set k
uniformly to 1.5 in all experiments.

2 NETWORK STRUCTURE
We show the network structure in Figures 1, 2 and 3. Pink and blue
boxes denote MLPs with and without ReLU activation.𝛾 denotes the
positional encoding. A and D are the density and color features
extracted from R4D-plane, respectively. 𝑑 is the view direction.

Figure 1: The structure of the density decoder (only used in
D-NeRF dataset)

Figure 2: The structure of the color decoder
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Figure 3: The structure of the remapping net and time en-
coder

3 EXPERIMENT RESULTS
The detailed metrics and renderings are presented in the corre-
sponding figures and tables. In addition, we note the shortcomings
of the current 3DGS-based dynamic scene reconstruction methods
and show these cases.

These methods do not work well for modeling fast-moving ob-
jects in dynamic scenes, especially when the camera viewpoint
also changes significantly. In fact these methods for monocular
video use static scene initialization, i.e., the scene is modeled as a
static scene first for initialization of Gaussian attributes, and then
the dynamics are encoded by a deformation field afterwards. For
objects that move more regularly and gently, static initialization
can capture a portion of them and model them completely in the
subsequent densification process. Since the corresponding object

can never be modeled, the densification process will be performed
frequently due to the gradient and radius, and the number of gaus-
sians keeps increasing, leading to slower training. For example, in
our experiments, Deformable 3DGS took more than two hours to
train in the 3d-printer scene. In the banana scene, it’s even more
than four hours.

4 ABLATION STUDY
We performed ablation experiments on the D-NeRF[6] dataset for
the number of channels in the remapping net.

Table 1: ablation study of the remapping net

PSNR↑ SSIM↑ LPIPS↓
w/o remapping 31.20 0.97 0.04
remapping w/ 64 channels 33.54 0.97 0.03
remapping w/ 128 channels 34.28 0.98 0.02
remapping w/ 256 channels 34.96 0.98 0.02
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Table 2: Quantitative Results on D-NeRF dataset[6]

metric hook stand up T-rex bouncing ball jumping jack hell warrior mutant lego
PSNR ↑ 34.25 37.45 36.49 42.90 36.23 29.80 37.42 25.18
SSIM ↑ 0.985 0.990 0.991 0.995 0.989 0.977 0.991 0.942
LPIPS ↓ 0.020 0.014 0.012 0.024 0.018 0.033 0.013 0.040

Table 3: Quantitative Results on D2NeRF dataset[9]

metric peel banana broom chicken balloon water cookie duck pick
PSNR ↑ 24.23 22.04 27.59 24.61 30.67 31.80 26.22 27.16
MS-SSIM ↑ 0.90 0.78 0.96 0.94 0.98 0.99 0.96 0.97

Table 4: Quantitative Results on HyperNeRF dataset[5]

metric 3d printer peel banana broom chicken
PSNR ↑ 23.50 25.96 22.79 28.87
MS-SSIM ↑ 0.86 0.932 0.73 0.96
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Figure 4: View Synthesis Results on HyperNeRF Dataset[5]. We show rendering results for Deformable 3DGS[10] and 4DGS[8],
which are representative methods for dynamic expansion of 3DGS[4]. We can see that these methods are not able to reconstruct
fast-moving objects in the scene, such as broom and material columns of 3d printer, but they render well for static backgrounds.
Our approach can keep geometric consistency across different viewpoints. From top to bottom: 3D-printer, broom, chicken,
peel banana



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Supplementary Materials: R4D-planes: Remapping Planes For Novel View Synthesis and Self-Supervised Decoupling of Monocular VideosACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 5: View Synthesis Results on D-NeRF Dataset[6]. From top to bottom: hook, stand up, T-rex, bouncing ball, jumping
jacks, hell warrior, mutant, lego
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Figure 6: Decoupling Results on D2NeRF Dataset. From top to bottom: chicken, peel banana, broom, balloon, cookie, pick, duck,
water pour.


	1 IMPLEMENTATION DETAILS
	1.1 Monocular Novel View Synthesis
	1.2 Static and Dynamic Decoupling

	2 NETWORK STRUCTURE
	3 EXPERIMENT RESULTS
	4 ablation study
	References

