
Supplementary Material

A Estimating the gradients

As shown in Section 3, the unique information U(Y :X1\X2) is upper bounded as

Iq[θ] ≤ B1[θ] +B2[θ, φ] , (A.1)

where

B1[θ] = Ecθ(uy,u1,u2) log
[
c(uy, u1)c1,2|θ(uy)(u1|y, u2|y)

]
, (A.2)

B2[θ, φ] = −Ecθ(u1,u2)DA,θ,φ(u1, u2) , (A.3)

and

DA,θ,φ(u1, u2) = E
rφ(u

(1)
y ...u

(A)
y |u1,u2)

log

[
1

A

A∑
a=1

cθ(u
(a)
y , u1, u2)

rφ(u
(a)
y |u1, u2)

]
, (A.4)

and the above expectation is w.r.t.

rφ(u(1)
y . . . u(A)

y |u1, u2) ≡
A∏
a=1

rφ(u(a)
y |u1, u2) . (A.5)

The parametrization we use for the inference distribution rφ(uy|u1, u2) is detailed below in Ap-
pendix D. We are interested in minimizing the r.h.s. of (A.1) w.r.t. (θ, φ). To obtain low-variance
gradients, it is convenient to eliminate the θ, φ dependence in the measures of (A.2)-(A.4) using the
‘reparametrization trick’ [45].

The idea is to obtain samples from cθ(uy, u1, u2) by a θ-dependent transformation of three Unif[0, 1]
samples v = (vy, v1, v2), and samples from rφ(uy|u1, u2) by a (u1, u2, φ)-dependent transformation
of ε ∼ Unif[0, 1]. We present the details of these transformations in Appendices C and D, respectively.

Taking M samples of cθ(uy, u1, u2) and denoting them as ū(m)
y , ū

(m)
1 , ū

(m)
2 , we can estimate (A.2)

as

B1[θ] ' 1

M

M∑
m=1

log

[
c(ū(m)

y , ū
(m)
1) c

1,2|θ
(
ū
(m)
y

)(ū
(m)
1|y , ū

(m)
2|y))

]
(A.6)

where we denoted ūi|y = F (ui = ūi|uy = ūy) for i = 1, 2. An estimate of the gradient ∇θB1 is
obtained by acting on this expression with∇θ, which also acts on the θ-dependent samples.

Denoting A samples from rφ(uy|u1, u2) as û
(a)
y , we can also estimate (A.3) as

B2[θ, φ] ' − 1

M

M∑
m=1

log

(
1

K

A∑
a=1

wa,m

)
, (A.7)

where we defined

wa,m =
cθ(û

(a)
y , ū

(m)
1 , ū

(m)
2)

rφ(û
(a)
y |ū(m)

1 , ū
(m)
2)

. (A.8)

Acting on this expressions with∇θ yields an estimate of ∇θB2. On the other hand, as noted in [61],
the estimate of ∇φB2 resulting from acting with ∇φ on (A.7) has a signal-to-noise ratio which
decreases with A. A solution to this problem was found in [46], which showed that a stable gradient
estimate can be obtained instead as

∇φB2 '
−1

M

M∑
m=1

A∑
a=1

(
wa,m∑A
s=1 ws,m

)2
∂ logwa,m

∂û
(a)
y

∇φû(a)
y , (A.9)

and this is the estimate we use in our experiments.

14

B The bivariate Gaussian copula

A bivariate Gaussian copula is parametrized by θ ∈ [−1, 1] and given by

c(u1, u2) =
1√

1− θ2
exp

{
−θ

2(x2
1 + x2

2)− 2θx1x2

2(1− θ2)

}
(B.1)

where xi = Φ−1(ui) and Φ is the standard univariate Gaussian CDF. For explicit expressions of
other popular bivariate copulas, see [39].

C Sampling from the copula

In this section we show how to obtain samples from the three-dimensional copula

cθ(uy, u1, u2) = c(uy, u1) c(uy, u2) c1,2|y,θ(u1|y, u2|y) (C.1)

by applying a θ-dependent transformation to samples from Unif[0, 1]. We use the Rosenblatt trans-
form [62], which consists in using the inverse CDF method to sample from each factor in

c(uy, u1, u2) = c(u1)c(uy|u1)c(u2|uy, u1). (C.2)

We denote F (·|·) is the CDF of c(·|·). Adopting the notation of [39], we define

hij(ui, uj) = F (ui|uj) =
∂C(ui, uj)

∂uj
i, j = 1, 2. (C.3)

For several popular parametric families of bivariate copulas, such as those we consider in this
paper, explicit expressions are known for hij(ui, uj) along with its inverse h−1

ij (·, uj) w.r.t. the first
argument (see e.g. [39]). Note that using this notation, the arguments in the last factor of (C.1) are
ui|y = hiy(ui, uy) (i=1,2).

We first sample (v1, vy, v2) from Unif[0, 1] and successively obtain u1, uy, u2 by inverting the
functions in the r.h.s. of

v1 = F (u1) ,

= u1 ,

vy = F (uy|u1) ,

= hy1(uy, u1) ,

v2 = F (u2|u1, uy) ,

= h21|θ(uy)(F (u2|uy), F (u1|uy)) ,

= h21|θ(uy)(h2y(u2, uy), h1y(u1, uy)) .

Explicitly, we get

u1 = v1 ,

uy = h−1
y1 (vy, u1) ,

u2 = h−1
2y (h−1

21|θ(uy)(v2, hy1(uy, u1)), uy) .

Note that only u2 actually depends on θ.

15

D Parametrization of the learned models

D.1 Parametrizing the learned conditional copula

The conditional Gaussian copula c1,2|θ(uy)(u1|y, u2|y) is parametrized by the function θ(uy):[0, 1]→
[−1,+1]. For its functional form we used

θ(uy) = tanh

(
16∑
i=1

w2,i tanh(w1,iuy + b1) + b2

)
(D.1)

where w1,i, w2,i, b1, b2 ∈ R.

D.2 Parametrizing and sampling from the inference distribution

In our experiments we parametrize the inference distribution rφ(uy|u1, u2) via its CDF, as

Rφ(uy|u1, u2) =

∫ uy

0

du rφ(u|u1, u2) , (D.2)

=
1

1 + e−z(uy)aφ(u1,u2)−bφ(u1,u2)
,

where z(uy) = log
(

uy
1−uy

)
. Derivating w.r.t. uy gives

rφ(uy|u1, u2) = Rφ(1−Rφ)aφ
(
u−1
y + (1− uy)−1

)
. (D.3)

The functions aφ(u1, u2) and bφ(u1, u2) take values in R and are parametrized with a neural network
with two hidden layers, and we impose aφ(u1, u2) > 0 in order to make Rφ monotonous with uy . In
order to sample from rφ, we draw ε ∼ Unif[0, 1], and use the inverse CDF method to obtain

uy(ε, u1, u2) = R−1
φ (ε|u1, u2) , (D.4)

=
1

1 + e−(z(ε)−bφ(u1,u2))/aφ(u1,u2)
.

E Comparison with a discrete estimator

In this section we estimate the PID of the two models of three neurons from eq. (4.2) using the discrete
estimator BROJA-2PID [29]. In particular, we present a quantization scheme of the continuous models
that leads to a qualitative agreement between the discrete and continuous estimators, thus further
validating the results of the latter.

Let us denote the discretized versions of X1, X2, Y as x̂1, x̂2, ŷ. The discrete PID estimators require
as input a distribution p(x̂1, x̂2, ŷ) [29]. To create the latter from our continuous models in eq. (4.2),
we start by dividing the continuous range of each Xi(i = 1, 2) into Nx segments, and associate each
segment with a discrete value x̂i equal to the value of Xi in the middle of each segment. To each
square in the resulting 2D Nx ×Nx grid we associate a discrete probability p(x̂1, x̂2) equal to the
integral of the joint Gaussian density of (X1, X2) in the square. Finally, in each of the two models,
we split the Y range into Ny segments {si}

Ny
i=1. The boundaries of the segments are chosen such

that the same fraction 1/Ny of values of Y = Y (X1, X2) falls into each segment using eq. (4.2),
a procedure called ‘maximum entropy binning’. Let ŷ ∈ {1 . . . Ny}. Using this quantization, the
three-dimensional discrete distribution is defined as

p(x̂1, x̂2, ŷ) =

{
p(x̂1, x̂2) if Y (x̂1, x̂2) ∈ sŷ ,
0 if Y (x̂1, x̂2) /∈ sŷ ,

(E.1)

16

where in each model Y (x̂1, x̂2) is obtained from eq. (4.2). Fig. 5 shows the results of the discrete PID
obtained using this quantization for the two models considered, assuming Xi ∈ [−8, 8] and Nx = 16
equally-sized segments. For the Y quantization we used Ny = 3. Note the qualitative agreement
with the continuous results in Fig. 2.

0.0 0.2 0.4 0.6 0.8 1.0
w2

0.0

0.2

0.4

0.6

0.8

1.0
S(Y :(X1,X2))
R(Y :(X1,X2))
U(Y :X1\X2)
U(Y :X2\X1)

0.0 0.2 0.4 0.6 0.8 1.0
w2

0.0

0.2

0.4

0.6

0.8

1.0 S(Y :(X1,X2))
R(Y :(X1,X2))
U(Y :X1\X2)
U(Y :X2\X1)

Figure 5: Qualitative agreement of discrete and continuous PID estimations. The two models
are defined in (4.2) (left: Model 1, right: Model 2), and we used the same model parameters indicated
in Fig. 2. We show the normalized discrete PID terms as a function of the synaptic strength w2. See
the text for details on the discrete quantization used. Note that for both models the discrete results
agree qualitatively with the continuous results in Fig. 2.

F Consistency

Using Model 2 from Eq.(4.2) as an example, we compared estimates of U(Y :X2\X1) with indirect
estimates obtained from applying the consistency conditions to estimates of U(Y : X1\X2). The
results in Figure 6 show good agreement, thus further validating the method.

0.0 0.2 0.4 0.6
U(Y : X2\X1) from U(Y : X1\X2) bound

 + consistency

0.0

0.2

0.4

0.6

U
(Y

:X
2\X

1)
 b

ou
nd

Figure 6: Comparison of direct vs. indirect estimates of U(Y :X2\X1), illustrating the consistency
of the method.

G More on the experiments

In this section we provide more details on the last two experiments presented in Section 4.

Computational aspects of connectivity in recurrent neural circuits.
We start by deriving the relation TE = S + U1 verified in this experiment (Fig. 3d). Transfer
entropy [52] TE(X → Y) is defined as I(Y +:X− | Y −) where Y + is the future of state of Y , X−
and Y − are the past states of X and Y , respectively. Consider the chain rule for mutual information,

I(Y + : (X−, Y −)) = I(Y + : Y −) + I(Y + :X−|Y −) . (G.1)

Replacing I(Y + : (X−, Y −)) and I(Y + : Y −) by the r.h.s. of (1.1) and (1.3), we get

I(Y + :X−|Y −) = U(Y + :X−\Y −) + S(Y + : (X−, Y −)) , (G.2)

17

K=4 K=6 K=8 K=10
N UI SI MI W UI SI MI W UI SI MI W UI SI MI W
1 0.28 0.27 1.22 -0.05 0.72 0.38 1.1 -0.11 0 0.22 1.59 0.09 0.05 0.19 2.7 0.27
2 0.39 0.59 0.9 -0.57 0.01 0.39 1.24 -0.15 1.58 0.42 2.93 -0.57 1.74 0.13 3.47 -0.55
3 0.04 0.39 0.84 0.18 0.01 0.39 0.93 -0.14 0.04 0.05 1.18 0.07 0.38 0.46 2.21 0.04
4 0.01 0.22 1.2 -0.38 0.02 0.32 0.93 0.02 0.34 0.33 2.16 0.03 0 0.37 1.24 0.02
5 0.4 0.29 1.38 -0.34 0.56 0.69 1.8 -0.43 0.01 0.41 3.39 -0.62 0.02 0.2 2.32 -0.21

Table 1: Node-specific details for generalized XOR task: Average node-specific unique, synergis-
tic, and mutual information (UI, SI, MI) and the decoding weight for different nodes in the hidden
layer (N ∈ {1, . . . , 5}) and for different task difficulty levels (K ∈ {4, 6, 8, 10}).

which is the equation we verified by estimating separately the left and right sides. The two terms in the
r.h.s. are called state-independent transfer entropy and state-dependent transfer entropy respectively
in [55], reflecting their intuitive meaning.

In Fig. 7, we analyze the state space of the network in Fig. 3 of the main text. The activities of the
upstream sub-network X and downstream sub-network Y are shown, projected onto their first two
principal components (PCs). The causal structure and algorithmic details of the effective connectivity
between the two sub-networks cannot be identified solely by the observation of their geometrical
properties.

Uncovering a plurality of computational strategies in RNNs trained to solve complex tasks.
Each RNN has fully connected architecture with tanh non-linearity. Data was generated by sampling
from the GMM with K components (K ∈ {4, 6, 8, 10}) in batches of 128 data points with the total
number of 3000 batches. The RNNs were trained using standard backprop in time using Adam
optimizer in Pytorch package with a learning rate of 0.01. For each trained RNN we considered
all triplets (Y,Xi, Xj) where i, j ∈ {1, . . . , 5}, i.e. the target variable is the output of the network
Y and the source variables iterate over all pairs of the hidden nodes in the RNN. Once the RNN
is trained we collect a test sample of 1000 data points from the same GMM used for training, and
evaluate the nodes when inputting the RNN using test data and running it forward for t = 10 time
steps. This gives us 1000 samples from each variable X1:5, Y which we then use for PID analysis on
the triplets mentioned above. For each level of task difficulty K ∈ {4, 6, 8, 10} we trained 5 RNNs
and performed PID (A = 100) on the resulting trained networks.

In Fig. 8 more details on the trained RNN’s in Fig. 4 of the main text are illustrated, providing more
insight into the computational strategies employed by each trained instance as the task complexity
grows. The first row shows the time evolution of the recurrent layer of hidden units projected onto
their first 3 PC’s. For these RNN instances, the ones with K = 6, 10 have grand mother-like cells
(as confirmed by the receptive field plots in Fig. 8c), with large unique information compared to the
other cells. These grand mother-like cells cannot be inferred by just inspecting the geometry of the
hidden units in the state space, but can be identified with the PID. PID reveals more details about the
computation and the differences between strategies for different instances of trained RNN’s. Details
of the PID for individual hidden nodes including average unique and synergistic information for each
node, its mutual information with the output node, and the decoding weight connecting the hidden
node to the output unit is included in Table 1.

18

Figure 7: State space of the chaotic network of rate neurons: Projection of the state space of the
recurrent units for upstream network X (a) and downstream network Y (b) onto their respective first
two principal components.

19

Figure 8: Algorithmic investigation of trained RNN’s on generalized XOR task: (a) Evolution
of the hidden unit activations in time (recurrent time steps). Darker colors correspond to earlier time
points; red and cyan correspond to even and odd trials. Blue arrow corresponds to decoding direction,
i.e. the predicted label is given by the sign of the projection of the last time point of each trajectory
onto this direction. (b) Mutual information between individual hidden units and the output of the
network as a function of recurrent time steps for the different tasks. (c) Receptive fields of individual
neurons, in certain cases (K=6, unit 1 and K=10, unit 2) grand mother-like cells can be observed,
yielding greater unique information than synergistic information hinting at the algorithmic strategy
employed by that instance of the trained RNN.

20

