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Abstract

Large language models (LLMs) have shown im-001
pressive few-shot generalization on many tasks002
via in-context learning (ICL). Despite their003
success in showing such emergent abilities, the004
scale and complexity of larger models also005
lead to unprecedentedly high computational006
demands and deployment challenges. In007
reaction, researchers explore transferring the008
powerful capabilities of larger models to more009
efficient and compact models by typically010
aligning the output of smaller (student) models011
with that of larger (teacher) models. Existing012
methods either train student models on the013
generated outputs of teacher models or imitate014
their token-level probability distributions.015
However, these distillation methods pay little016
to no attention to the input, which also plays017
a crucial role in ICL. Based on the finding018
that the performance of ICL is highly sensitive019
to the selection of demonstration examples,020
we propose Bidirectional Alignment (BiAlign)021
to fully leverage the models’ preferences for022
ICL examples to improve the ICL abilities of023
student models. Specifically, we introduce024
the alignment of input preferences between025
student and teacher models by incorporating026
a novel ranking loss, in addition to aligning the027
token-level output distribution. With extensive028
experiments and analysis, we demonstrate that029
BiAlign can consistently outperform existing030
baselines on various tasks involving language031
understanding, reasoning, and coding.032

1 Introduction033

With the recent advancements in model scale and034

pretraining data, large language models (LLMs)035

have demonstrated impressive few-shot learning036

capabilities via in-context learning (ICL). With037

ICL, the LLM generates an output for a given038

query by conditioning on a few demonstration039

examples and optionally a task description, and040

it does so without any parameter updates (Brown041

et al., 2020). Despite the success of ICL in few-shot042

generalization, the high computational demands 043

and deployment challenges posed by the size of the 044

LLMs hinder their widespread application. Serving 045

an LLM with 175B parameters requires at least 046

350GB GPU memory (Hsieh et al., 2023), which 047

is far beyond what is affordable in most real-world 048

settings. Also, the serving cost increases with 049

model size – it costs 1-2 FLOPs per parameter 050

to infer on one token (Kaplan et al., 2020). 051

To alleviate this issue, researchers have proposed 052

a number of methods to transfer the emergent 053

capabilities of larger (teacher) models to more 054

efficient and compact smaller (student) models, 055

an approach commonly known as knowledge 056

distillation (Hinton et al., 2015). In this approach, 057

the student models are trained to align their output 058

space with that of the teachers. This is typically 059

achieved by either training on the generated outputs 060

of the teacher models (Hsieh et al., 2023; Wang 061

et al., 2022; Xu et al., 2023a) or by imitating their 062

token-level probability distributions (Agarwal et al., 063

2023; Huang et al., 2023b; Gu et al., 2024).1 064

While existing distillation methods demonstrate 065

improved ICL results, they pay little attention to 066

the input, specifically the demonstrations, which 067

have been shown to have a significant impact 068

on the performance of ICL (Zhao et al., 2021; 069

Xie et al., 2022; Qin et al., 2023). Indeed, 070

selecting different sets of demonstration examples 071

can yield performance ranging from almost random 072

to better than state-of-the-art fine-tuned models 073

(Gao et al., 2021; Lu et al., 2022), indicating that 074

the model has different preferences for different 075

inputs. Inspired by this finding, we propose 076

Bidirectional Alignment (BiAlign), a simple yet 077

effective framework for improving the ICL abilities 078

1Different from the conventional strong-to-weak general-
ization, Burns et al. (2023) recently introduce weak-to-strong
generalization, which explores leveraging weaker (smaller)
models to elicit “superalignment” from the stronger (larger)
models. This paper however considers the conventional strong-
to-weak approach.
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Figure 1: Comparison between different types of approaches to aligning student models. Existing methods typically
fine-tune student models on generated outputs of teacher models or to match their token-level output probability
distributions (left part). In contrast, our method (BiAlign) considers the models’ preferences for different inputs (the
more helpful an input is for generating the target, the more the model prefers that input) to achieve input preference
alignment (right part).

of student models (Figure 1). Specifically, BiAlign079

introduces the alignment of input preferences080

between student and teacher models through the081

incorporation of a novel ranking loss, in addition to082

aligning the token-level output distributions. Our083

main hypothesis is that for an effective knowledge084

distillation, the student model should align with085

not only the teacher model’s output distribution086

but also its input preference (i.e., the more helpful087

an input is for generating the target, the more the088

model prefers that input).2 BiAlign allows student089

models to obtain more fine-grained supervision090

from teacher models by fully leveraging their091

preferences for different demonstrations in ICL.092

Empirical results on tasks spanning language093

understanding, symbolic reasoning, mathematical094

reasoning, logical reasoning, and coding show095

that BiAlign can consistently outperform previous096

baselines. In summary, our main contributions are:097

• To the best of our knowledge, we for the first time098

consider aligning student models with teacher099

models from an input preference perspective.100

We propose Bidirectional Alignment (BiAlign)101

to fully leverage the models’ preferences for102

different demonstration examples to improve the103

ICL capabilities of student models.104

• With extensive experiments and analysis, we105

demonstrate the effectiveness of BiAlign on a106

2Our hypothesis is closely related to preference learning in
RLHF, where the reward model learns ‘which outputs should
be preferred’. After learning, a well-trained reward model can
rank model responses with expertise comparable to humans.

variety of tasks. For example, it brings about 20% 107

relative improvement on GSM8K (Cobbe et al., 108

2021) and 18% on LogiQA (Liu et al., 2020). 109

Our code base is available at <redacted>. 110

2 Related Work 111

This work concerns how to improve the ICL ability 112

of student models by aligning the student and 113

teacher models’ preferences for different few-shot 114

demonstrations. In light of this, we review three 115

lines of work that form the basis of this work: few- 116

shot learning, in-context learning, and alignment. 117

2.1 Few-shot Learning 118

Few-shot learning (FSL) aims to learn tasks with 119

only a few labeled examples, which faces the 120

challenge of over-fitting due to the scarcity of 121

labeled training data. Existing methods to address 122

this challenge can be mainly divided into three 123

categories: (i) reducing the hypothesis space 124

with prior knowledge (Triantafillou et al., 2017; 125

Hu et al., 2018), (ii) optimizing the strategy for 126

searching the best hypothesis in whole space (Ravi 127

and Larochelle, 2017; Finn et al., 2017), and 128

(iii) augmenting the few-shot data (Gao et al., 129

2020; Qin and Joty, 2022; Ding et al., 2023). 130

More recently, LLMs have achieved promising 131

performance on various few-shot tasks via in- 132

context learning (ICL). 133

2.2 In-context Learning (ICL) 134

By conditioning on a prompt that includes several 135

demonstration examples and optionally a task 136

2



description, a frozen LLM, by virtue of ICL,137

showcases impressive few-shot generalization138

(Brown et al., 2020). ICL has drawn a great deal139

of attention from the research community in recent140

days. Chen et al. (2022); Min et al. (2022a);141

Wei et al. (2023a) have explored ways to enhance142

the ICL capabilities of language models by either143

self-supervised or supervised training. In parallel,144

extensive analytical studies have been conducted to145

understand factors influencing the performance of146

ICL (Zhao et al., 2021; Wei et al., 2022a; Yoo et al.,147

2022; Min et al., 2022b; Wei et al., 2023b; Zhang148

et al., 2024), as well as to elucidate the underlying149

mechanisms that contribute to the success of ICL150

(Olsson et al., 2022; Xie et al., 2022; Pan, 2023;151

Li et al., 2023a; Dai et al., 2023). Furthermore,152

there is a series of ongoing research dedicated to153

various aspects of ICL: (i) demonstration designing154

strategies, including demonstration organization155

(Liu et al., 2022; Rubin et al., 2022; Wang et al.,156

2023b; Qin et al., 2023; Wang et al., 2024) and157

demonstration formatting (Wei et al., 2022c; Wang158

et al., 2022; Zhang et al., 2023; Zhou et al.,159

2023), (ii) multi-modal ICL (Huang et al., 2023a;160

Wang et al., 2023c,a; Zhu et al., 2023), and161

(iii) applications of ICL (Ding et al., 2022; Meade162

et al., 2023; Zheng et al., 2023; Long et al., 2024).163

2.3 Alignment164

Existing work on alignment can be mainly divided165

into two parts based on the objectives: aligning166

with humans and aligning with teacher models.167

To align with humans, reinforcement learning168

from human feedback (RLHF) (Christiano et al.,169

2017; Ouyang et al., 2022) explores how human170

feedback can be used to train language models to171

better align with human preferences and values172

using reinforcement learning algorithms such as173

PPO (Schulman et al., 2017). Several recent174

studies have introduced lightweight alternatives of175

PPO, including RRHF (Yuan et al., 2023), DPO176

(Rafailov et al., 2023), ReMax (Li et al., 2023b),177

IPO (Azar et al., 2024) and KTO (Ethayarajh178

et al., 2024). Alignment with teacher models,179

also known as distillation (Hinton et al., 2015),180

aims to transfer the powerful capabilities of large181

teacher models to more efficient and compact182

student counterparts. It has emerged as a powerful183

solution to reduce the high computational demands184

and serving challenges posed by large models.185

Current distillation methods typically train student186

models on generated outputs of teacher models187
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Figure 2: In the upstream ICL alignment stage, we align
a student model with a teacher on the source tasks. Then
in the downstream evaluation stage, we evaluate the ICL
performance of the aligned student model on a held-out
set of target tasks, which are different from the source
tasks.

(Hsieh et al., 2023; Wang et al., 2022; Xu et al., 188

2023a) or to imitate teacher models’ token-level 189

probability distributions (Sanh et al., 2019; Jiao 190

et al., 2020; Agarwal et al., 2023; Huang et al., 191

2023b; Gu et al., 2024), i.e., these approaches 192

focus on aligning the output of student models 193

with that of teachers. However, they pay little 194

attention to the input demonstrations which also 195

significantly influence the performance of ICL (Qin 196

et al., 2023). In contrast to these methods, our 197

proposed method (BiAlign) leverages the models’ 198

preferences for different in-context examples to 199

achieve input preference alignment. 200

3 Methodology 201

3.1 Problem Setting 202

Given a training set Dtrain consisting of a set of 203

source tasks T src, the goal of ICL alignment is to 204

align the ICL ability of a student model S with that 205

of a teacher model T. Upon successful alignment, 206

the model S is expected to show improved ICL 207

ability on a held-out set of target tasks T tgt. We 208

divide the whole process into two stages, as 209

illustrated in Figure 2. 210

• Upstream ICL alignment on T src: In this 211

alignment stage, the model has access to T src. 212

We formalize samples in Dtrain in the k-shot 213

ICL format {X̂i = (x1, y1), ..., (xk, yk), (x̂i, ŷi)}, 214

where (xj , yj), 1 ≤ j ≤ k denotes the k 215

demonstration examples and (x̂i, ŷi) is the test 216

sample. We concatenate these examples to form an 217

ICL training sample X̂i. We then align the student 218

model S with the teacher model T on this formatted 219

ICL data. 220

• Downstream ICL evaluation on T tgt: Follow- 221

ing the upstream ICL alignment stage, we evaluate 222

the ICL ability of the aligned model S∗ on T tgt, 223

where T tgt has no overlap with T src. For every 224
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target task Tk, we evaluate the model performance225

using both the default ICL demonstrations, as per226

convention, and their variants.227

3.2 Bidirectional Alignment (BiAlign)228

Based on the finding that the performance of229

ICL is highly sensitive to the selection of230

demonstration examples (Zhao et al., 2021), we231

propose Bidirectional Alignment (BiAlign) to fully232

leverage the models’ preferences for different233

demonstration examples with the goal of improving234

the ICL ability of the student model. Our approach235

is illustrated in Figure 3.236

Aligning Token-level Distributions Given the237

ICL training examples in the concatenated form238

{X̂i = (x1, y1), ..., (xk, yk), (x̂i, ŷi)} as discussed239

above, to achieve token-level output distribution240

alignment on X̂i, we minimize a KL divergence241

loss between the student model and teacher model242

for the whole sequence instead of only ŷi following243

Gu et al. (2023).3 More formally,244

LKL =
∑m

i=1

∑t
j=1DKL(Pj(V|X̂i, θT )||Pj(V|X̂i, θS))

(1)245

where m is the number of ICL training samples246

in Dtrain, t is the number of tokens in X̂i, V is the247

models’ common vocabulary of tokens; θT and θS248

are the parameters of the teacher model and the249

student model, respectively.250

Aligning Preferences for Demonstrations In-251

tuitively, for the student and teacher models to252

be well-aligned, the demonstrations preferred by253

the teacher model should also be preferred by the254

student, i.e., to truly emulate the teacher model,255

the student needs to learn “what to output” as256

well as “which input demonstrations should be257

preferred” in order to generate high-quality outputs.258

This is similar in spirit to the scenario where a259

reward model is trained to align with preferences260

over model responses given by human experts261

(Ouyang et al., 2022). To this end, we introduce262

input preference alignment to align the student263

and teacher models’ preferences for different264

demonstrations.265

For simplicity, let Ri = {(x1, y1), ..., (xk, yk)}266

denote the k-shot demonstrations in each ICL train-267

ing sample X̂i = (x1, y1), ..., (xk, yk), (x̂i, ŷi).268

To rank the model’s preferences for different269

3Training on the whole sequence can ensure a large number
of tokens in a batch, which is crucial to maintaining the basic
in-weights capability (Chan et al., 2022).

demonstration examples, we first need to obtain 270

a set Drank = {Rij , (x̂i, ŷi)}Nj=1, where Rij is 271

a subset of Ri and N is the number of subsets 272

considered for ranking. Modeling on the full subset 273

space of Ri can be computationally prohibitive as 274

it grows exponentially with |Ri|. Therefore, we 275

set N ≪ |P(Ri)|, where P(Ri) is the power set 276

of Ri. Zhao et al. (2024) highlights the impact of 277

similar examples in the demonstrations. Building 278

on this insight, we categorize all demonstrations 279

in Ri into two groups, namely Gsim and Gdissim, 280

based on their similarity to the test example (x̂i, ŷi). 281

Subsequently, we sample N subsets from P(Ri) 282

with different numbers of similar examples. 283

We use both the student and teacher models 284

to measure their preferences for each subset Rij , 285

which we estimate using the prediction probability 286

of ŷi given Rij and x̂i as input:4 287

QT(Rij) = P (ŷi|Rij , x̂i, θT );Q
S(Rij) = P (ŷi|Rij , x̂i, θS)

(2) 288

where QT and QS are the preference scores 289

of the teacher and student models, respectively. 290

Intuitively, the more helpful the subset Rij is for 291

generating the target ŷi, the more the model prefers 292

this subset. 293

To align the preferences of the student and 294

teacher models for different subsets, we introduce 295

a novel ranking loss: 296

Lrank =

m∑
i=1

∑
R+,R−∈Rall

i

max{0,

logQS(R−)− logQS(R+)

maxR′∈Rall
i
logQS(R′)−minR′∈Rall

i
logQS(R′)︸ ︷︷ ︸

Left

+
1

N − 1
(rank(QT(R−))− rank(QT(R+)))︸ ︷︷ ︸

Right

}

(3) 297

where Rall
i = {Rij}Nj=1 contains all subsets 298

sampled for the test example (x̂i, ŷi), (R+, R−) 299

refers to the pair of positive and negative subsets 300

determined by the preference score of the teacher 301

model (the subset with the higher preference score 302

is considered as the positive one), and rank() 303

stands for the function that measures the relative 304

ranking of subset scores which ranges from 1 (most 305

preferred) to N (least preferred). The left part of 306

Lrank measures the difference in preference scores 307

4Under the assumption that the prior P (Rij |x̂i, θ) is
uniform, it is easy to show using the Bayes rule: Q(Rij) ∝
P (Rij |ŷi, x̂i, θ) =

P (ŷi|Rij ,x̂i,θ)P (Rij |x̂i,θ)∑
j P (ŷi|Rij ,x̂i,θ)P (Rij |x̂i,θ)
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Figure 3: Illustration of our Bidirectional Alignment (BiAlign) framework. It attains token-level output distribution
alignment by minimizing the KL divergence loss between the student and teacher models on the constructed ICL
samples. Furthermore, after sampling several subsets from the set of all demonstrations, it optimizes a ranking loss
for input preference alignment to align the student and teacher models’ preferences for different demonstration
examples.

of the student model for the pair (R+,R−) and the308

right part reflects the relative ranking difference309

between R+ and R− (see more analysis of Lrank in310

Section 5.2). Therefore, Lrank allows the student311

model to obtain more fine-grained supervision312

from the teacher model by matching the relative313

ranking of their preference scores for different314

demonstration examples in ICL.315

The overall loss that BiAlign optimizes for316

alignment is: L = LKL + λLrank, where λ is the317

weight of the ranking loss. Besides, we illustrate318

the whole learning process in Appendix A.1.319

4 Experimental Setup320

In this section, we first describe the tasks and321

datasets, and then introduce methods compared322

in our work.323

4.1 Tasks and Datasets324

In this work, we use CrossFit (Ye et al., 2021),325

a large and diverse collection of few-shot tasks326

covering various types including classification,327

question answering and generation, as the source328

tasks T src (see Appendix A.2 for details of source329

tasks). For each task in CrossFit, we combine the330

original training and validation data as the new 331

training data which is then randomly partitioned 332

into a set of ICL samples with 4 ≤ k ≤ 10 333

demonstration examples. For each ICL example, 334

we sample N = 4 subsets from the set of all 335

demonstrations for calculating the ranking loss. 336

After the preprocessing, we obtain 12K ICL 337

examples in total. 338

We evaluate the ICL performance of the 339

aligned model on 5 target tasks spanning language 340

understanding, symbolic reasoning, mathematical 341

reasoning, logical reasoning, and coding: MMLU 342

(Hendrycks et al., 2021), BBH (Suzgun et al., 343

2022), GSM8K (Cobbe et al., 2021), LogiQA (Liu 344

et al., 2020) and HumanEval (Chen et al., 2021). 345

Note that there is no overlap between CrossFit 346

and target tasks, and we obtain all outputs from 347

the models using greedy decoding following Xu 348

et al. (2023b). For each target task, we perform 349

evaluations three times using different prompts 350

and report the average results. Details of different 351

target tasks and implementation are provided in 352

Appendix A.3 and A.4, respectively. 353

4.2 Methods Compared 354

We mainly experiment with Llama 2-7B (Touvron 355
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Method MMLU BBH GSM8K LogiQA HumanEval Average

No Alignment Baselines
Vanilla 45.4±0.6 39.5±0.5 15.2±0.3 30.3±0.4 14.6±0.4 29.0±0.3
FT 46.4±0.5 39.8±0.5 15.6±0.4 31.7±0.3 14.2±0.4 29.5±0.4
C-Pretrain 46.0±0.4 38.5±0.6 15.9±0.4 31.4±0.4 13.4±0.5 29.0±0.4

Llama 2-13B Teacher
Teacher 55.3±0.5 47.8±0.4 27.8±0.3 37.8±0.4 18.3±0.3 37.4±0.3
Output-Align 46.3±0.4 39.3±0.4 15.4±0.2 32.2±0.3 14.0±0.2 29.4±0.2
BiAlign 47.5±0.4 41.0±0.3 16.8±0.3 33.9±0.4 15.6±0.4 31.0±0.3

Llama 2-70B Teacher
Teacher 67.2±0.6 64.2±0.4 53.3±0.4 48.0±0.5 26.8±0.4 51.9±0.4
Output-Align 47.1±0.5 39.8±0.4 16.4±0.3 33.2±0.3 14.6±0.4 30.2±0.3
BiAlign 49.5±0.3 43.2±0.5 18.3±0.4 35.7±0.4 16.6±0.3 32.7±0.3

Table 1: Performance (%) of different methods on 5 target tasks. We use Llama 2-7B as a student and Llama 2-13B
or 70B as a teacher model. The rows with “Teacher" (grey) indicate the corresponding teacher model’s performance
on the target tasks. Bold indicates the best result for Llama 2-7B (student). BiAlign is consistently better than all
previous baselines.

et al., 2023) as the student model and Llama 2-13B356

or 70B as the teacher model. For Llama 2-70B,357

we use the quantized version TheBloke/Llama-358

2-70B-GPTQ (TheBloke, 2023) due to resource359

constraints. We compare BiAlign with the360

following methods:361

• Vanilla simply evaluates the ICL performance362

of the student model on target tasks without any363

alignment, serving as the baseline for all other364

approaches.365

• Fine-tuning (FT) tunes the student model on the366

12K ICL examples constructed from CrossFit367

using a multi-task learning scheme, which is368

indeed the meta-training in Min et al. (2022a).369

• Continual Pretraining (C-Pretrain) simply370

performs continual pretraining, i.e., next token371

prediction for the whole sequence, of the student372

model on the 12K samples.373

• Output Alignment (Output-Align) trains the374

student model to align token-level output375

distributions with the teacher model (Huang et al.,376

2023b; Gu et al., 2024).377

We additionally show the connection between378

BiAlign and In-Context Pretraining (Shi et al.,379

2024) in Section 5.2.380

5 Results and Analysis381

5.1 Main Results382

Table 1 shows the performance scores of different383

methods on all investigated target tasks. From the384

ASDiv SVAMP GSM8K AQUA-RAT

Vanilla 46.6 41.2 15.2 24.4
BiAlign 49.4 43.5 16.8 27.2

Relative Gain 6.0 5.6 10.5 11.5

Table 2: Relative gain (%) of BiAlign on math reasoning
tasks of varying difficulty levels.

results, we can observe that 385

• Our proposed BiAlign consistently outperforms 386

baseline approaches on all datasets with different 387

sizes of teacher models, demonstrating its 388

superiority. Simply pretraining the model on 389

source tasks does not improve the average 390

performance since there is no overlap between 391

source and target tasks. While fine-tuning 392

brings marginal improvement, token-level output 393

distribution alignment with a stronger (70B) 394

teacher model can achieve better performance. 395

Thanks to incorporating input preference alignment 396

(see Section 5.2 for analysis of computational 397

overhead), BiAlign yields about 2.0% performance 398

boost on average when using a 13B teacher model, 399

and this gain is 3.7% for a 70B teacher. Besides, 400

when examining the effects of scaling up the 401

teacher model, the performance of BiAlign sees 402

an improvement on all tasks. 403

• In particular, BiAlign using a 13B teacher 404

model achieves relative performance improvements 405

of 11.9% on LogiQA and 10.5% on GSM8K 406

compared with Vanilla, while using the 70B 407

teacher, it achieves 17.8% on LogiQA and 20.4% 408

on GSM8K. These results indicate that BiAlign can 409

6



Method 7B 13B

Output-Align 30.2 38.8
BiAlign 32.7 40.9

Table 3: Average results (%) of Output-Align and
BiAlign with different sizes of student models (Llama
2-70B as the teacher).

Method Vanilla FT C-Pretrain Output-Align BiAlign

Llama 3-8B 60.4 61.0 60.5 61.7 63.9
Phi-3-mini (3.8B) 66.7 67.1 66.5 67.4 69.1

Table 4: Average results (%) across 5 tasks of all
methods with two different backbones. We use Llama
3-70B as the teacher for Llama 3-8B and Phi-3-medium
(14B) as the teacher for Phi-3-mini (3.8B).

better improve the performance of tasks requiring410

more fine-grained reasoning; see appendix A.14 for411

an example in LogiQA. This is because BiAlign412

allows the student model to obtain more fine-413

grained supervision from the teacher model by fully414

leveraging their preferences for different inputs.415

To better support our claim, we further conduct416

experiments on four mathematical reasoning tasks417

ranging from low to high difficulty: ASDiv (Miao418

et al., 2020), SVAMP (Patel et al., 2021), GSM8K419

(Cobbe et al., 2021), and AQUA-RAT (Ling et al.,420

2017a). The comparison between BiAlign and421

Vanilla, as illustrated in Table 2, demonstrates422

that BiAlign is indeed more beneficial for more423

complex reasoning tasks.424

• Both fine-tuning and output alignment425

sometimes hurt the zero-shot learning capability426

of the model as shown by the performance on427

HumanEval. In contrast, BiAlign brings an428

average relative improvement of about 10.3% on429

HumanEval. We speculate that this is due to the430

subset sampling in input preference alignment,431

which helps the model generalize better to the432

unseen zero-shot setting.433

5.2 Analysis434

Larger Student Model We further experiment435

with a larger student model to verify the436

effectiveness of BiAlign. Specifically, we use437

Llama 2-13B as the student model and Llama438

2-70B as the teacher model. We employ439

QLoRA (Dettmers et al., 2023) to fine-tune the440

student model with consideration of computational441

resource limitations. The results averaged over the442

5 tasks are reported in Table 3, which demonstrate443

the consistent superiority of BiAlign across model444

Default Variant

BiAlign 31.0 30.5

Table 5: Average results (%) of BiAlign with different
ranking loss formulations.
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Figure 4: Preference score consistency (%) of different
methods.

scales. 445

Different Backbone Models Our experiments 446

and analysis so far use Llama 2 as the backbone 447

model. To verify whether the performance gain 448

of BiAlign is consistent across different backbone 449

models, we extend the experiments to Llama 3 450

(Dubey et al., 2024) and Phi 3 (Abdin et al., 2024). 451

For Llama 3, we use the 8B model as the student 452

and the 70B model as the teacher. For Phi 3, we use 453

Phi-3-mini (3.8B) as the student and Phi-3-medium 454

(14B) as the teacher. From the average results 455

shown in Table 4, we can see that BiAlign still 456

outperforms all baseline approaches when using 457

other language models as the backbone, showing 458

its robustness to model types. 459

Comment on Training-time Computational 460

Overhead Smaller models are a preferred choice 461

for resource-constrained deployments, where the 462

inference cost matters the most. BiAlign does 463

not introduce any additional cost during inference. 464

The additional computational overhead only occurs 465

once during model training. To quantify the 466

increase in computational overhead caused by the 467

ranking loss, we use DeepSpeed Flops Profiler 468

(Rasley et al., 2020) to calculate the training FLOPs 469

of Output-Align and BiAlign, which are 3.3×1017 470

and 7.6×1017 respectively (about 2.3 times). 471

Therefore, we further design two experiments to 472

compare BiAlign and Output-Align under the same 473

training FLOPs: (i) we combine the original ICL 474

training examples with the sampled subset data 475

and conduct Output-Align on the combined data 476

7



(roughly the same FLOPs as BiAlign), which477

performs (29.5) similarly to the original Output-478

Align method (29.4), verifying the superiority of479

BiAlign; (ii) we reduce the training epochs of480

BiAlign from 4 to 2 (roughly the same FLOPs481

as Output-Align) and assess the final checkpoint.482

There is no significant performance degradation483

(from 31.0 to 30.8), which also demonstrates that484

BiAlign can outperform baselines under the same485

training FLOPs.486

Different Ranking Loss Formulations In the487

right part of Equation 3, we employ the rank()488

function to represent the relative ranking of the489

model’s preference scores instead of relying on490

the scores themselves. This approach is grounded491

in the idea that the primary objective of input492

preference alignment is to match the rankings493

of the subset scores, rather than their specific494

values. By focusing on rankings, we can reduce the495

impact of potential variations in score magnitudes,496

allowing the model to prioritize the relative ranking497

of preferences. We further conduct experiments498

with an alternative ranking loss formulation that499

does not incorporate rank(), while maintaining all500

other implementation details. The average results501

reported in Table 5 underscore the importance of502

using rank() for alignment.503

Connection with In-Context Pretraining Shi504

et al. (2024) propose In-Context Pretraining (ICP)505

which pretrains language models on a sequence of506

related documents. BiAlign mainly differs from it507

in the following two aspects: (i) ICP focuses on508

the pretraining stage while BiAlign is specifically509

designed for more lightweight supervised fine-510

tuning. (ii) The objective of ICP is to design more511

effective pretraining data. In contrast, BiAlign512

leverages distillation to improve the capabilities513

of the student model. Therefore, BiAlign can be514

seamlessly integrated with ICP to further improve515

the ICL ability.516

Effect of Demonstration Numbers As men-517

tioned in Section 4.1, each constructed ICL training518

sample contains 4 ≤ k ≤ 10 demonstration519

examples, which could enhance the model’s520

ability to generalize to different numbers of521

demonstrations. To investigate the effect of522

demonstration numbers in source tasks, we further523

conduct training on examples containing a fixed524

number k ∈ {5, 8, 10} of demonstrations. The525

average results of the 5 target tasks are reported526

Method Demonstration number

Default (4 ≤ k ≤ 10) 5 8 10

BiAlign 31.0 30.8 30.4 30.5

Table 6: Average results (%) of BiAlign with different
k (demonstration number) for constructed ICL training
samples.

in Table 6. We can see that training with a fixed 527

number of demonstrations results in performance 528

degradation to a certain degree, justifying our 529

training set construction strategy. 530

Preference Score Consistency As illustrated 531

in Section 3.2, Lrank enables the student model 532

to match the relative ranking of the preference 533

scores for different ICL demonstrations with that 534

of the teacher model. To verify this, we report the 535

preference score consistency comparison between 536

BiAlign and Output-Align in Figure 4. Specifically, 537

we randomly select 500 examples from MMLU. 538

For each example, we randomly sample 5 subsets 539

from the set of all demonstrations and obtain 540

their preference scores using different models. 541

The preference score consistency of different 542

methods is then calculated as the proportion of the 543

highest/lowest scoring subsets that are consistent 544

between the corresponding student model and 545

the teacher model. From the results, we can 546

see that BiAlign can indeed achieve much higher 547

preference score consistency than Output-Align, 548

indicating the effectiveness of Lrank. 549

In addition, for interested readers, we show the 550

results with different subset sampling methods, 551

different numbers of subsets and different source 552

task selections, the analysis of KL divergence 553

calculation, training steps and additional training 554

data, the influence of ranking loss weight, the 555

effect of contrastive pair selection, and a case 556

study of model output in Appendix A.5 ∼ A.13, 557

respectively. 558

6 Conclusion 559

In this work, we have introduced Bidirectional 560

Alignment (BiAlign) that can improve the ICL 561

capabilities of student models by aligning the 562

input preferences between student and teacher 563

models in addition to aligning the token-level 564

output distributions. Extensive experimental 565

results and analysis show that BiAlign consistently 566

outperforms previous baseline approaches. 567
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Limitations568

As the first work on input preference alignment,569

one limitation of our paper is the additional570

computational overhead introduced by the ranking571

loss. A further improvement could be to explore572

more efficient input alignment methods to improve573

the ICL capabilities of student models.574
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Algorithm 1 Learning process of BiAlign

Input: ICL training set DICL = {X̂i =
(x1, y1), ..., (xk, yk), (x̂i, ŷi)}, teacher model θT ,
student model θS , number of subsets N , weight of
ranking loss λ

1: for mini-batch B in DICL do
2: CALCULATE the KL divergence loss LKL

on B using Equation 1
3: for X̂i ∈ B do
4: SAMPLE N subsets {Rij}Nj=1 for the test

sample (x̂i, ŷi)
5: MEASURE preferences QT and QS for

{Rij}Nj=1 using Equation 2
6: end for
7: CALCULATE the ranking loss Lrank on B

using Equation 3
8: UPDATE θS by back-propagating with L =

LKL + λLrank

9: end for

CrossFit MMLU BBH GSM8K LogiQA HumanEval

# Samples 12K 15K 6.5K 8.5K 651 164
# Shot 4∼10 5 3 8 5 0

Table 7: Details of different datasets. # refers to ‘the
number of’. CrossFit (Ye et al., 2021) is used to
construct training data and other tasks are used for
evaluation.

A Appendix1822

A.1 Algorithm1823

The learning process of BiAlign is illustrated in1824

Algorithm 1.1825

A.2 Details of Source Tasks1826

We report the full list of source tasks used in our1827

work in Table 16. All tasks are taken from CrossFit1828

(Ye et al., 2021).1829

A.3 Details of Target Tasks1830

In this work, we construct the in-context learning1831

evaluation suite based on the following datasets:1832

• MMLU: The MMLU (Massive Multitask Lan-1833

guage Understanding) benchmark (Hendrycks1834

et al., 2021) consists of 57 diverse tasks covering1835

various fields like computer science, history and1836

law, aiming to evaluate the knowledge obtained1837

during pretraining. Following its original setup,1838

we use 5-shot ICL demonstrations for evaluation.1839

• BBH: The BBH (BIG-Bench Hard) (Suzgun1840

et al., 2022) includes several types of reasoning1841

Default Variant

BiAlign 31.0 30.3

Table 8: Comparison between different subset sampling
methods.

Method Subset number

3 4 5 6

BiAlign 30.7 31.0 30.8 31.1

Table 9: Average performance (%) of BiAlign with
different numbers of subsets N .

tasks that are believed to be difficult for current 1842

language models. Following the guidelines in 1843

Suzgun et al. (2022), we conduct the evaluation 1844

using 3-shot ICL demonstration examples with 1845

chain-of-thought prompting (Wei et al., 2022b). 1846

• GSM8K: The GSM8K (Cobbe et al., 2021) 1847

dataset encompasses 8.5K grade school math 1848

word problems, aiming to evaluate the multi-step 1849

mathematical reasoning capabilities. We evaluate 1850

the ICL performance on it using 8-shot in-context 1851

examples with chain-of-thought prompting. 1852

• LogiQA: LogiQA (Liu et al., 2020) is a 1853

logical reasoning benchmark sourced from 1854

logical examination papers intended for reading 1855

comprehension. Following Jiao et al. (2023), we 1856

conduct 5-shot evaluation. 1857

• HumanEval: HumanEval (Chen et al., 2021) 1858

consists of 164 programming challenges for 1859

evaluating coding capabilities. We follow the 1860

official zero-shot setting in Chen et al. (2021) to 1861

verify whether bidirectional alignment hurts the 1862

zero-shot learning ability of models. 1863

We summarize the details of all used datasets in 1864

Table 7. 1865

A.4 Implementation Details 1866

Our methods are implemented with the PyTorch 1867

and Transformers library (Wolf et al., 2020). Model 1868

training is conducted utilizing DeepSpeed (Rasley 1869

et al., 2020; Rajbhandari et al., 2020) on 4 NVIDIA 1870

A100 GPUs. During the training phase, we set 1871

the learning rate to 1e−6 and the batch size to 1872

64. The weight λ for the ranking loss is set to 1.0. 1873

For evaluation, we train the student model on the 1874

constructed ICL data for 4 epochs and assess the 1875

final checkpoint. 1876
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Figure 5: Average performance (%) of BiAlign with
different numbers of source tasks.

Method Type

Whole Sequence Label Only

BiAlign 31.0 30.8

Table 10: Average performance (%) of BiAlign using
different types of KL divergence calculation methods.

A.5 Different Subset Sampling Methods1877

To investigate the influence of subset sampling1878

methods, we replace the original method with1879

‘Randomly sample N subsets’ which does not1880

consider similarity. The comparison between the1881

two methods is shown in Table 8. We can observe1882

a noticeable performance drop, highlighting the1883

crucial role of incorporating example similarity in1884

the sampling process.1885

A.6 Different Numbers of Subsets1886

While we use N = 4 subsets for calculating the1887

ranking loss, we also evaluate the effectiveness of1888

BiAlign with different N . Specifically, we conduct1889

controlled experiments with {3, 5, 6} subsets and1890

report the average results of the 5 target tasks in1891

Table 9. We can observe that increasing the number1892

of subsets does not always improve performance.1893

BiAlign achieves the best performance (31.1)1894

with 6 subsets and the performance with 41895

subsets (31.0) is comparable. Besides, all1896

variants consistently outperform baseline methods1897

in Table 1, demonstrating the effectiveness of our1898

designed input preference alignment.1899

A.7 Different Source Task Selections1900

We hypothesize that the diversity of source1901

tasks has a considerable influence on target task1902

performance. To verify this, we study the effect1903

of the number of source tasks by conducting1904

controlled experiments on {50, 100} randomly1905

selected source tasks. From the results in Figure 5,1906

Method 25% 50% 100%

Output-Align 29.1 29.3 29.4
BiAlign 30.3 30.8 31.0

Table 11: Comparison between BiAlign and Output-
Align at different proportions of training steps.

we can observe that the performance of BiAlign 1907

keeps improving as the number of source tasks 1908

increases, indicating the importance of source task 1909

diversity. 1910

A.8 Whole Sequence vs. Label Only 1911

To maintain the basic in-weights capability of the 1912

student model, we minimize the KL divergence 1913

loss for the whole sequence instead of only the 1914

label following Gu et al. (2023). In Table 10, we 1915

show the performance comparison between using 1916

the whole sequence and using only the label. We 1917

can see that using the whole sequence also results 1918

in slightly better average performance. 1919

A.9 Different Proportions of Training Steps 1920

Table 11 reports the performance comparison 1921

between BiAlign and Output-Align at different 1922

proportions (roughly 25%, 50%, and 100%) of 1923

training steps. We can observe that BiAlign 1924

consistently outperforms Output-Align at different 1925

steps. 1926

A.10 Additional Training Data 1927

The analysis in Section 5.2 shows that conducting 1928

Output-Align on the combination of the original 1929

ICL training examples and the sampled subset 1930

data achieves similar performance to the original 1931

Output-Align method. We further experiment 1932

with the fine-tuning approach. However, the 1933

performance becomes even worse (from 29.5 1934

to 29.3), once again demonstrating that simply 1935

increasing training data does not necessarily lead 1936

to better performance. 1937

A.11 Ranking Loss Weights 1938

To further investigate the influence of the ranking 1939

loss Lrank (Equation 3), we conduct experiments 1940

with different weights λ and report the results in 1941

Table 12. All variants except the variant with λ = 1942

5.0 (too large) outperform baseline approaches by 1943

a large margin, which demonstrates the superiority 1944

of Lrank. 1945
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Method λ

0.2 0.5 1.0 2.0 5.0

BiAlign 30.8 31.2 31.0 30.9 29.9

Table 12: Average performance (%) of BiAlign with
different λ for the ranking loss Lrank.

Method Pair number

3 4 5 All (6)

BiAlign 30.2 30.8 30.7 31.0

Table 13: Average results (%) of BiAlign with different
numbers of contrastive pairs.

A.12 Contrastive Pair Selection1946

While we use all C(N, 2) (N = 4 is the number of1947

subsets) pairs of positive and negative subsets for1948

input preference alignment, we also investigate the1949

effect of contrastive pair selection. Specifically,1950

we conduct controlled experiments on {3, 4, 5}1951

randomly selected contrastive pairs and report the1952

average results in Table 13. The best performance1953

is achieved using all pairs, justifying our selection1954

strategy.1955

A.13 Case Study1956

We select GSM8K as a representative task and1957

show several examples of output in Table 14.1958

Compared with Vallina, BiAlign is able to generate1959

more precise and fine-grained reasoning paths, e.g.,1960

BiAlign can successfully understand the meaning1961

of ‘pair’ and generate the rationale ‘10 pairs of1962

socks is 10 * 2 = 20 socks’ while Vallina fails to do1963

so.1964

A.14 Example in LogiQA1965

We show the reasoning path required to solve a1966

sample in LogiQA in Table 15, which is quite fine-1967

grained.1968
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Answer the following questions.
Few-shot demonstrations
Question: Lindsay is doing the laundry, and thinks she has missed some socks. There are 50 socks that need washing. If
she washes 10 pairs of socks and 15 loose socks, how many socks has Lindsay missed?
Answer:

Vanilla: Lindsay started with 50 socks. She washed 10 pairs of socks and 15 loose socks. So she had 50 - 10 - 15 = 25
socks left. So the answer is 25. ✗

BiAlign: Lindsay started with 50 socks. She washed 10 pairs of socks and 15 loose socks. 10 pairs of socks is 10 * 2 = 20
socks. 15 loose socks is 15 * 1 = 15 socks. So she missed 50 - 20 - 15 = 15 socks. So the answer is 15. ✓

Table 14: Output examples of Vanilla and BiAlign on GSM8K. The upper part is the input to LLMs, including
few-shot demonstrations, and the lower part is the generated response. We color correct outputs in green and wrong
outputs in red.

Context: There is no doubt that minors should be prohibited from smoking. However, we cannot explicitly ban the use of
automatic cigarette vending machines in order to prevent minors from smoking. This ban is just like setting up roadblocks
on the road to prohibit driving without a license. These roadblocks naturally prohibit driving without a license, but also
block more than 99% of licensed drivers.
Question: In order to evaluate the above argument, which of the following questions is the most important?
Options:
A: Does the proportion of underage smokers in the total number of smokers exceed 1%?
B: How much inconvenience does the ban on the use of automatic vending machines bring to adult cigarette buyers?
C: Whether the proportion of unlicensed drivers in the total number of drivers really does not exceed 1%?
D: Is the harm of minor smoking really as serious as the public thinks?

Reasoning path:
To evaluate the argument effectively, the focus should be on understanding the impact and justification of the proposed ban
on cigarette vending machines, especially in the context of preventing minors from smoking. The argument draws a
parallel between the proposed ban and the hypothetical scenario of setting up roadblocks to prevent driving without a
license, suggesting that while the measure may target a minority (in this case, underage smokers or unlicensed drivers), it
disproportionately inconveniences the majority (licensed drivers or adult smokers).

The most important question to evaluate the argument is: B: How much inconvenience does the ban on the use of
automatic vending machines bring to adult cigarette buyers?

This option directly addresses the central issue of the argument—the balance between the inconvenience caused to
the majority by the ban and the intended benefit of preventing a minority (minors) from engaging in harmful behavior
(smoking). It’s critical to assess whether the inconvenience to adult smokers (who are the majority of cigarette consumers)
is justified by the potential benefits of reducing underage smoking. The comparison with roadblocks for unlicensed drivers
emphasizes the argument’s concern with the proportionality and fairness of broad preventive measures.

Option A concerns the proportion of underage smokers but doesn’t directly address the balance of convenience versus
benefit. Option C relates to the analogy used but does not directly help in evaluating the effectiveness and appropriateness
of the vending machine ban. Option D questions the severity of the problem (minor smoking) but does not specifically
help in assessing the argument’s concern about the consequences of the ban on the majority.

Therefore, understanding the extent of inconvenience to adult smokers is crucial in determining whether the proposed
solution is proportionate and justified, making Option B the most relevant and important question for evaluating the
argument.

Table 15: Reasoning path for an example in LogiQA.
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Task Name Reference

eli5-eli5 (Fan et al., 2019)
ethos-race (Mollas et al., 2020)
tweet_qa (Xiong et al., 2019)
tweet_eval-stance_hillary (Barbieri et al., 2020)
piqa (Bisk et al., 2020)
acronym_identification (Pouran Ben Veyseh et al., 2020)
wiki_split (Botha et al., 2018)
scitail (Khot et al., 2018)
emotion (Saravia et al., 2018)
medical_questions_pairs (McCreery et al., 2020)
blimp-anaphor_gender_agreement (Warstadt et al., 2020)
sciq (Welbl et al., 2017)
paws (Zhang et al., 2019)
yelp_review_full (Zhang et al., 2015); (link)
freebase_qa (Jiang et al., 2019)
anli (Nie et al., 2020)
quartz-with_knowledge (Tafjord et al., 2019b)
hatexplain (Mathew et al., 2020)
yahoo_answers_topics (link)
search_qa (Dunn et al., 2017)
tweet_eval-stance_feminist (Barbieri et al., 2020)
codah (Chen et al., 2019)
lama-squad (Petroni et al., 2019, 2020)
superglue-record (Zhang et al., 2018)
spider (Yu et al., 2018)
mc_taco (Zhou et al., 2019)
glue-mrpc (Dolan and Brockett, 2005)
kilt_fever (Thorne et al., 2018)
eli5-asks qa (Fan et al., 2019)
imdb (Maas et al., 2011)
tweet_eval-stance_abortion (Barbieri et al., 2020)
aqua_rat (Ling et al., 2017b)
duorc (Saha et al., 2018)
lama-trex (Petroni et al., 2019, 2020)
tweet_eval-stance_atheism (Barbieri et al., 2020)
ropes (Lin et al., 2019)
squad-no_context (Rajpurkar et al., 2016)
superglue-rte (Dagan et al., 2005)
qasc (Khot et al., 2020)
hate_speech_offensive (Davidson et al., 2017)
trec-finegrained (Li and Roth, 2002; Hovy et al., 2001)
glue-wnli (Levesque et al., 2012)
yelp_polarity (Zhang et al., 2015); (link)
kilt_hotpotqa (Yang et al., 2018)
glue-sst2 (Socher et al., 2013)
xsum (Narayan et al., 2018)
tweet_eval-offensive (Barbieri et al., 2020)
aeslc (Zhang and Tetreault, 2019)
emo (Chatterjee et al., 2019)
hellaswag (Zellers et al., 2019)
social_i_qa (Sap et al., 2019)
kilt_wow (Dinan et al., 2019)
scicite (Cohan et al., 2019)
superglue-wsc (Levesque et al., 2012)
hate_speech18 (de Gibert et al., 2018)
adversarialqa (Bartolo et al., 2020)
break-QDMR (Wolfson et al., 2020)
dream (Sun et al., 2019)
circa (Louis et al., 2020)
wiki_qa (Yang et al., 2015)
ethos-directed_vs_generalized (Mollas et al., 2020)
wiqa (Tandon et al., 2019)
poem_sentiment (Sheng and Uthus, 2020)
kilt_ay2 (Hoffart et al., 2011)
cosmos_qa (Huang et al., 2019)
reddit_tifu-title (Kim et al., 2019)
superglue-cb (de Marneffe et al., 2019)
kilt_nq (Kwiatkowski et al., 2019)
quarel (Tafjord et al., 2019a)
race-high (Lai et al., 2017)
wino_grande (Sakaguchi et al., 2020)
break-QDMR-high-level (Wolfson et al., 2020)
tweet_eval-irony (Barbieri et al., 2020)
liar (Wang, 2017)
openbookqa (Mihaylov et al., 2018)
superglue-multirc (Khashabi et al., 2018)
race-middle (Lai et al., 2017)
quoref (Dasigi et al., 2019)
cos_e (Rajani et al., 2019)
reddit_tifu-tldr (Kim et al., 2019)
ai2_arc (Clark et al., 2018)
quail (Rogers et al., 2020)
crawl_domain (Zhang et al., 2020)
glue-cola (Warstadt et al., 2019)
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Task Name Reference

art (Bhagavatula et al., 2020)
rotten_tomatoes (Pang and Lee, 2005)
tweet_eval-emoji (Barbieri et al., 2020)
numer_sense (Lin et al., 2020a)
blimp-existential_there_quantifiers_1 (Warstadt et al., 2020)
eli5-askh qa (Fan et al., 2019)
ethos-national_origin (Mollas et al., 2020)
boolq (Clark et al., 2019)
qa_srl (He et al., 2015)
sms_spam (Almeida et al., 2011)
samsum (Gliwa et al., 2019)
ade_corpus_v2-classification (Gurulingappa et al., 2012)
superglue-wic (Pilehvar and Camacho-Collados, 2019)
ade_corpus_v2-dosage (Gurulingappa et al., 2012)
tweet_eval-stance_climate (Barbieri et al., 2020)
e2e_nlg_cleaned (Dušek et al., 2020, 2019)
aslg_pc12 (Othman and Jemni, 2012)
ag_news Gulli (link)
math_qa (Amini et al., 2019)
commonsense_qa (Talmor et al., 2019)
web_questions (Berant et al., 2013)
biomrc (Pappas et al., 2020)
swag (Zellers et al., 2018)
blimp-determiner_noun_agreement_with_adj_irregular_1 (Warstadt et al., 2020)
glue-mnli (Williams et al., 2018)
squad-with_context (Rajpurkar et al., 2016)
blimp-ellipsis_n_bar_2 (Warstadt et al., 2020)
financial_phrasebank (Malo et al., 2014)
sick (Marelli et al., 2014)
ethos-religion (Mollas et al., 2020)
hotpot_qa (Yang et al., 2018)
tweet_eval-emotion (Barbieri et al., 2020)
dbpedia_14 (Lehmann et al., 2015)
ethos-gender (Mollas et al., 2020)
tweet_eval-hate (Barbieri et al., 2020)
ethos-sexual_orientation (Mollas et al., 2020)
health_fact (Kotonya and Toni, 2020)
common_gen (Lin et al., 2020b)
crows_pairs (Nangia et al., 2020)
ade_corpus_v2-effect (Gurulingappa et al., 2012)
blimp-sentential_negation_npi_scope (Warstadt et al., 2020)
lama-conceptnet (Petroni et al., 2019, 2020)
glue-qnli (Rajpurkar et al., 2016)
quartz-no_knowledge (Tafjord et al., 2019b)
google_wellformed_query (Faruqui and Das, 2018)
kilt_trex (Elsahar et al., 2018)
blimp-ellipsis_n_bar_1 (Warstadt et al., 2020)
trec (Li and Roth, 2002; Hovy et al., 2001)
superglue-copa (Gordon et al., 2012)
ethos-disability (Mollas et al., 2020)
lama-google_re (Petroni et al., 2019, 2020)
discovery (Sileo et al., 2019)
blimp-anaphor_number_agreement (Warstadt et al., 2020)
climate_fever (Diggelmann et al., 2020)
blimp-irregular_past_participle_adjectives (Warstadt et al., 2020)
tab_fact (Chen et al., 2020)
gigaword (Napoles et al., 2012)
glue-rte (Dagan et al., 2005)
tweet_eval-sentiment (Barbieri et al., 2020)
limit (Manotas et al., 2020)
wikisql (Zhong et al., 2017)
glue-qqp (link)
onestop_english (Vajjala and Lučić, 2018)
amazon_polarity (McAuley and Leskovec, 2013)
blimp-wh_questions_object_gap (Warstadt et al., 2020)
multi_news (Fabbri et al., 2019)
proto_qa (Boratko et al., 2020)
wiki_bio (Lebret et al., 2016)
kilt_zsre (Levy et al., 2017)
blimp-sentential_negation_npi_licensor_present (Warstadt et al., 2020)

Table 16: List of all source tasks.
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