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1. Introduction
Machine learning (ML) has achieved remarkable

performance in tasks such as image recognition
[1] and natural language processing [2], fueling its
widespread commercial deployment [3]. However,
in critical domains like healthcare [4, 5], engineering
[6, 7], and autonomous systems, the inherent ’black-
box’ nature of ML models poses challenges for esti-
mating prediction uncertainty—a key factor for ro-
bust decision-making [8, 9, 10].
Uncertainty in ML is broadly categorized into

aleatoric uncertainty, which stems from data noise,
and epistemic uncertainty, arising from insufficient
training data in or out of the domain [11]. Various
strategies have been developed to quantify these un-
certainties. Bayesianmodels [12] andMeanVariance
Estimation methods [13, 14] provide principled ap-
proaches but often suffer from high computational
cost [11, 15] or struggle with data sparsity [16, 17, 18].
Ensemble-based methods [19, 20] offer a practical
alternative by averaging predictions from multiple
models; however, they may misestimate epistemic
uncertainty if individual models lack exposure to di-
verse data [21, 20]. Moreover, many calibration tech-
niques cannot be applied post-training [22, 23, 24].
In this work, we propose the Weighted Confidence

Ensemble (WCE)model to estimate both aleatoric and
epistemic uncertainties in a post-training setting.
Our approach is based on the observation that a net-
work’s accuracy on a test example is related to its
similarity to the training data [25, 26, 27]. By apply-
ing principal component analysis (PCA) to a selected
layer’s activations, wequantify this similarity andde-
rive a confidence score that reflects the network’s
certainty. Leveraging an ensemble of models, each
providing a confidence score for its predictions, we
compute uncertainty using a weighted standard de-
viation. This framework enables effective quantifi-
cation of aleatoric uncertainty while identifying and
rejecting predictions associated with high epistemic
uncertainty or out of domain data.

2. Methods
2.1 Dataset
Wedemonstrate the efficacy of theWeighted Confi-

dence Ensemble (WCE) method on both classification
and regression tasks. For classification, we derive
several datasets fromMNIST [28] of handwritten dig-

# Digits Noise Uncertainty

B1, B2 even pswitch = 0 None
A1 even pswitch = 0.05 Aleatoric
A2 even pswitch = 0.1 Aleatoric
A3 even pswitch = 0.2 Aleatoric
E1 odd pswitch = 0 Epistemic
E2 even pswitch = 1 Epistemic

Table 1: MNIST-derived test datasets. The training
set B1 comprises even digits without noise.

its. For regression, we generate a synthetic dataset
based on an underdamped pendulum, where the
model recovers frequency and damping constants.

2.1.1 Classification Datasets
The training dataset, B1, comprises only even-

digit images from MNIST. For testing, we construct
multiple datasets as summarized in Table 1. Dataset
B2 contains even digits with no noise and serves
as a benchmark. To simulate aleatoric uncertainty,
we generate datasets A1, A2, and A3 by randomly
switching (black ↔ white) pixel values in B2 with
probabilities pswitch = 0.05, 0.1, and 0.2, respectively.
Epistemic uncertainty is introducedwith datasetE1,
which contains odd digits, and dataset E2, derived
from B2 by complete color inversion (pswitch = 1).

2.1.2 Regression Datasets
For the regression task, we consider an under-

damped pendulum governed by:

θ̈ = −ω2 sin θ − 2γθ̇, (1)

where ω is the natural frequency and γ is the damp-
ing constant. We generate datasetD0 bynumerically
integrating Eq. (1) for t ∈ (0, 20) with dt = 0.05. The
parameters are uniformly sampled: γ ∈ (0.01, 0.11)
and ω ∈ (1, 1.5). Each element records θ(t), θ̇(t), and
θ̈(t) as features, with ω and γ as labels.
The training datasetD1 is obtained by perturbing

the features and labels of D0 with Gaussian noise.
For instance, θ(t) is perturbed with a noise level of
0.1σθ(0), where σθ(0) is the standard deviation of the
initial condition θ(0) overD0.
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2.2 Epistemic Uncertainty Confidence Score and Ensem-
ble
To quantify the epistemic uncertainty of a test in-

put, we compare its representation on a chosen net-
work layerwith that of the training data using Princi-
pal Component Analysis (PCA) [29]. The underlying
hypothesis is that a test input similar to training data
will require a similar number of PCA components to
capture 95% of its variance, whereas inputs deviat-
ing from the training distribution will require more,
or fewer components. Let n(x) denote the number
of PCA components required for input x. We define
the Epistemic Uncertainty Confidence Score as:

Cep(xt) = 1−
(

P50(n(xj))− n(xt)

P10(n(xj))− P90(n(xj))

)2

, xj ∈ T,

(2)
where Pa(n(xj)) denotes the ath percentile of the
number of components computedon the training set
T . Values of Cep(xt) < 1 indicate that the test input
xt deviates from the training data, implying higher
epistemic uncertainty.
We integrate this uncertainty measure into an

ensemble framework. For each test input x, each
modelm in an ensemble ofM neural networks pro-
duces a prediction ymp and an epistemic uncertainty
score Cm

ep(x) as defined above. For regression tasks,
the ensemble prediction is computed as:

yt =

∑M
m=1 Cm

ep(x) y
m
p∑M

m=1 Cm
ep(x)

,

thus assigning greater weight to predictions with
lower epistemic uncertainty. For classification tasks,
we take the modal prediction and compute an over-
all ensemble confidence score as:

Cen
ep = ⟨Cm

ep(x)⟩.

A low Cen
ep indicates that the test input is out-of-

distribution, exhibiting high epistemic uncertainty.

3. Results
Figure 1(a) shows the distribution of the ensemble

epistemic confidence score, Cen
ep , for the test datasets

listed in Table 1. The probability distribution P (Cen
ep)

peaks at 1 for datasets similar to the training data
(B1), and the peak diminishes as the test data devi-
ate fromB1. In particular, datasetsE1 andE2, which
significantly deviate from the training set, exhibit
predominantly low Cen

ep values (near 0), demonstrat-
ing that the confidence score effectively captures de-
viations from the training data.
Figure 1(b) illustrates that the Expected Calibra-

tion Error (ECE) drops to zero for Cen
ep ≃ 1 for all

datasets except E1 and E2. Since most examples in
E1 and E2 yield Cen

ep ≪ 1, the Weighted Confidence
Ensemble (WCE) can reliably reject them as outliers.
Similarly, Fig. 2 shows that for the regression

problem, in-domain examples peak at Cen
ep ∼ 1, while

out-of-domain examples peak at approximately 0.7.
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Fig. 1: Expected Calibration Error and distribution
of the ensemble epistemic confidence score Cen

ep .
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Fig. 2: Distribution of Cen
ep for in-domain and out-of-

domain examples in the regression task.

By discarding predictions with Cen
ep < 0.85, WCE ef-

fectively eliminates unreliable predictions.

4. Conclusion
Overall, the Weighted Confidence Ensemble

(WCE) provides a robust and scalable framework for
uncertainty quantification that is applicable post-
training. By integrating PCA-derived confidence
metrics into the ensemble prediction process, WCE
effectively distinguishes between aleatoric noise
and epistemic uncertainty. This dual capability
enables accurate calibration of uncertainty bounds
and the selective rejection of unreliable predictions,
thereby enhancing the safety and interpretability of
machine learning models in critical domains.
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