DressRecon: Freeform 4D Human Reconstruction from Monocular Video

Supplementary Material

6. Video Results

Please see the attached webpage for video results.

7. Implementation Details
7.1. Consistent 4D Neural Fields

Signed distance fields. We initialize canonical signed
distance fields as a sphere with radius 0.1m. Following
standard practice, we apply positional encodings to all 3D
points (L,, = 10) and timestamps (L; = 6) before pass-
ing into MLPs. The appearance code w; has 32 channels.
After MLPgpr computes the signed distance d at a 3D
point, we convert the signed distance to a volumetric den-
sity o € [0, 1] for volume rendering. Similar to VolSDF
[71], this is done using the cumulative Laplace distribution
o = I'g(d), where 3 is a global learnable scalar parameter
that controls the solidness of the object, approaching zero
for solid objects. This representation allows us to extract a
mesh as the zero level-set of the SDF.
Cycle consistency regularization. Given a forward warp-
ing field Wt (t) : X — X, and a backward warping field
W (t) : Xy — X, we introduce a cycle consistency term,
similar to NSFF [35]. A sampled 3D point in camera co-
ordinates should return to its original location after passing
through a backward and forward warping:

Loye =D [IWrW= (X 6),t) = X3 (16)
X

7.2. Hierarchical Gaussian Motion Fields

Bag-of-bones skinning deformation. Our motion model
uses the motion of B bones (defined as 3D Gaussians, typ-
ically B = 25) to drive the motion of canonical geometry.
Given 3D Gaussians, we compute dense 3D motion fields
by blending the SE(3) transformations of canonical Gaus-
sians with skinning weights W:

B
X, =WHX,t) = (Z wHbtgh (Gb)_1> X (17)

b=1

B
X =W (Xy,t) = (Z W, 'G? (G§)1> X, (18)

b=1

where G are forward warps from canonical to time ¢
Gaussians, G, are backward warps from time ¢ to canoni-
cal Gaussians, and W are forward skinning weights.
Similar to SCANimate [49] and LASR [66], we define
a forward skinning weight function S* : X — R which

computes the normalized influence of each Gaussian bone
on a canonical 3D point. At a coarse level, skinning weights
are defined as the Mahalanobis distance from X to the
canonical Gaussians:

Wi=(X-p)'QX-p), (19)

where p € RZE*3 are canonical bone centers, Q= VTAV
are canonical bone precision matrices, V € RB*SOB) gare
canonical bone orientations, and AB*3%3 are time-invariant
axis-aligned diagonal scale matrices.

In addition to a coarse component, we find it helpful to
use delta skinning weights to model fine geometry. Delta
skinning weights are computed by a coordinate MLP:

W{ = MLPA ., (X,t) € RP (20)

The final skinning function is a normalized sum of coarse
and fine components:

Wt =8%(X,t) = softmax(—W} — WJ), (1)

where the negative sign ensures that faraway Gaussian
bones (which have a larger Mahalanobis distance) are as-
signed a lower skinning weight after softmax.

Backward skinning weights are computed analogously
with the time ¢ Gaussians, which have center u,, orienta-
tion V¢, and time-invariant scale A. We also need the trans-
formation G; from each time ¢ Gaussian to the canonical
Gaussian, as well as the backward skinning MLP 4.

7.3. Optimization

Sampling. Due to the expensive per-ray computation in
volume rendering, optimization with batch gradient descent
is challenging. As a result, previous methods randomly
sample entire images [69] to compute the reconstruction
terms, leading to small batch sizes (typically 16 images
per batch) and noisy gradients. We implement an effi-
cient data-loading pipeline with memory-mapping that al-
lows per-pixel measurements (e.g., RGB, flow, features) to
load directly from disk without accessing the full image.
This allows loading pixels from significantly more images
in a single batch (e.g. 256 images on a GPU).

Hyperparameters. We use the AdamW optimizer with
learning rate 0.0005. We use 48k iterations of optimization
for all experiments. On a single RTX 4090 GPU, it takes
about 8 hours to optimize the neural implicit body model
and 15 seconds to render each frame. 3D Gaussian refine-
ment is performed for another 48k iterations of optimiza-
tion, taking about 8 hours to optimize and 0.1 seconds to

Table 7. Summary of losses and loss weights. Our final loss is a weighted sum of reconstruction terms (color, optical flow, normal,
feature, and segmentation) and regularization terms (eikonal, cycle-consistency, gaussian consistency, camera prior, and joint prior).

Loss Weight Description

L Ae =0.1 L2 loss, rendered RGB vs. the input image
Ls Ar = 0.5 L2 loss, rendered 2D flow vs. computed flow from VCNPlus [65]
Ln An = 0.03 L2 loss, rendered normals vs. computed normals from Sapiens [31]

Ly A¢ = 0.01 L2 loss, rendered features vs. computed features from DINOv2 [45]
Ls As = 0.3 L2 loss, rendered masks vs. computed masks from SAM [32]

Lex Aeik = 0.001 Encourage numerical gradients of canonical SDF to have unit norm
Leye Aeye = 0.05 Encourage backward and forward warping fields to be inverses
Loauss Agauss = 0.2 Sinkhorn divergence between canonical 3D Gaussians and SDF
Looth Acoh = 0.1 Minimize the magnitude of clothing deformation

render each frame. We attribute the long training times to
the use of numerical normal loss, which requires computing
finite differences, as well as the use of large MLPs and ray-
marching for geometry modeling and neural skinning. We
leave speeding up as future work.

Our loss weights are described in Tab. 7. Loss weights A
are searched once and kept across all experiments. At each
iteration, we sample 96 images and take 16 pixel samples
per image. For training efficiency, input images are cropped
to a tight bounding box around the object and resized to
256x256. To prevent floater artifacts from appearing outside
the tight crop, 90% of pixel samples are taken from the tight
bounding box and 10% of pixel samples are taken from the
full un-cropped image.

