
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFF-PROMPT: DIFFUSION-DRIVEN PROMPT
GENERATOR WITH MASK SUPERVISION

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt learning has demonstrated promising results in fine-tuning pre-trained
multimodal models. However, the performance improvement is limited when
applied to more complex and fine-grained tasks. The reason is that most exist-
ing methods directly optimize the parameters involved in the prompt generation
process through loss backpropagation, which constrains the richness and speci-
ficity of the prompt representations. In this paper, we propose Diffusion-driven
Prompt Generator (Diff-Prompt), aiming to use the diffusion model to generate
rich and fine-grained prompt information for complex downstream tasks. Specif-
ically, our approach consists of three stages. In the first stage, we train a Mask-
VAE to compress the masks into latent space. In the second stage, we lever-
age an improved Diffusion Transformer (DiT) to train a prompt generator in the
latent space, using the masks for supervision. In the third stage, we align the
denoising process of the prompt generator with the pre-trained model in the se-
mantic space, and use the generated prompts to fine-tune the model. We con-
duct experiments on a complex pixel-level downstream task, referring expres-
sion comprehension, and compare our method with various parameter-efficient
fine-tuning approaches. Diff-Prompt achieves a maximum improvement of 8.87
in R@1 and 14.05 in R@5 compared to the foundation model and also out-
performs other state-of-the-art methods across multiple metrics. The experi-
mental results validate the effectiveness of our approach and highlight the po-
tential of using generative models for prompt generation. Code is available at
https://anonymous.4open.science/r/Diff-Prompt-FF2D.

1 INTRODUCTION

Pre-trained multimodal models (Radford et al., 2021; Jia et al., 2021; Yuan et al., 2021; Pham et al.,
2023; Li et al., 2022b; Zhang et al., 2022a; Li* et al., 2022) have received widespread attention
due to their strong generalization capabilities. Taking the Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021) as an example, it is pre-trained on web-scale data, which enables
it to learn joint vision-language representations. Fine-tuning techniques enable these models to
be effectively applied to downstream tasks. Early approaches utilized full fine-tuning; however,
these methods demands considerable computational resources and compromise the generalization
capabilities of the pre-trained model.

Prompt learning (Lester et al., 2021; Jia et al., 2022; Zhou et al., 2022b; Khattak et al., 2023a; Zhang
et al., 2024a), as an efficient fine-tuning method, has garnered extensive research interest. It involves
designing prompts either manually or automatically for fine-tuning pre-trained models. The advan-
tages include significantly reducing training resources while preserving the original generalization
capabilities. As shown in Fig. 1(a), most current prompt learning methods follow the first two
paradigms. For the first paradigm (Jia et al., 2022; Zhou et al., 2022b; Wang et al., 2022a; MA et al.,
2023; Fang et al., 2023), learnable prompts are added to the encoder input of the pre-trained model.
These approaches have certain limitations: first, prompts for different modalities are learned inde-
pendently, preventing the establishment of inter-modal connections. Second, only global prompts
can be learned for all training data, which restricts the prompting capability. Subsequent works fol-
low the second paradigm for improvements (Khattak et al., 2023a; Shi et al., 2024; Qiu et al., 2024;
Roy & Etemad, 2024), using networks or regularization methods to establish connections between
prompts of different modalities. However, we believe that the above methods update prompts or the
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(a) (b)

Figure 1: (a) Comparison between mainstream prompt learning methods (the first two paradigms) and our
Diff-prompt paradigm. (b) Comparison of different efficient fine-tuning methods on the RefCOCO dataset,
with the x-axis representing R@1, the y-axis representing R@5, and bubble size indicating the total model
parameters. Diff-Prompt achieves higher performance at the cost of using partial parameters.

prompt generation process in a goal-driven manner, which significantly limits the richness of the
prompts. When applied to complex and fine-grained downstream tasks, their prompting capability
is limited. As shown in Fig. 1(b), for a multimodal localization task that requires consideration of
the complex relationships between modalities and multimodal understanding, VPT (Jia et al., 2022)
adds prompts only on the visual modality side, and its performance is even inferior to that of the
foundation model. Other prompt learning methods also show limited improvement in performance.

To address the above issues, we consider how to generate rich prompts that can provide sufficient in-
formation to the pre-trained model, even for fine-grained downstream tasks. Inspired by the powerful
feature extraction and generation capabilities of diffusion models, this paper proposes Diff-Prompt,
which uses the diffusion model to generate rich prompt information. The training process of the dif-
fusion model employs masks as supervision to inform the model which parts of the input image need
to be emphasized for a given caption. Specifically, Diff-Prompt consists of three stages. In the first
stage, we map the masks to latent space, extracting dense information while reducing computational
load in the later stages. In the second stage, we train a prompt generator with mask supervision
in latent space using an improved DiT model, conditioned on the image and caption to generate
emphasized parts of the image. In the third stage, we align the prompt generator’s output with the
pre-trained model semantically to better integrate the generated prompts into the pre-trained model.
Finally, we concatenate the generated prompts with a few learnable global prompts to supplement
universial knowledge. We conduct experiments on a fine-grained multimodal task, specifically the
referring expression comprehension, and evaluate on multiple metrics. The results demonstrate that
our method outperforms other existing efficient fine-tuning methods, validating its effectiveness.

Our main contributions are as follows: (1) We train a Mask-VAE and a diffusion-driven prompt
generator to generate rich prompt information in the mask latent space. (2) We align the gener-
ated prompts with the pre-trained model in the semantic space to effectively guide the pre-trained
model. (3) We conduct experiments on a complex fine-grained mutlimodal downstream task, and
the experimental results demonstrate the effectiveness of our method.

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

Vision-language models trained on large-scale data exhibit strong feature extraction and general-
ization capabilities. These models include CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021),
Florence (Yuan et al., 2021), BASIC (Pham et al., 2023), and OpenCLIP (Ilharco et al., 2021). When
addressing downstream tasks, they are considered ideal choices. Additionally, some works propose
pre-trained models for specific tasks, allowing for easy transfer to particular data distribution. [R
cYSP] LSeg (Li et al., 2022), and CLIPSeg (Lüddecke & Ecker, 2022) are used for segmenta-
tion, BLIP (Li et al., 2022a) is used for visual question answering, while GLIP (Li et al., 2022b),
PPMN (Ding et al., 2022) and Grounding DINO (Liu et al., 2023) are used for localization tasks.
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2.2 PROMPT TUNING

Prompt learning is initially applied in the field of natural language processing (NLP)(Petroni et al.,
2019; Brown et al., 2020; Wallace et al., 2019; Shin et al., 2020; Li & Liang, 2021; Lester et al.,
2021), where it achieves excellent performance. The core idea is to design manually crafted or auto-
matically learned prompts to fine-tune pre-trained models. This approach allows pre-trained models
to adapt to downstream tasks while avoiding the excessive resource consumption that comes with
fully fine-tuning the models. Subsequently, prompt learning has been widely applied to the fields of
computer vision (CV) (Jia et al., 2022; Bahng et al., 2022) and multi-modal learning (Zhou et al.,
2022b;a; Zang et al., 2022; Khattak et al., 2023a; Cao et al., 2023; Qiu et al., 2024; Li et al., 2024a;
Shi et al., 2024; Roy & Etemad, 2024). VPT (Jia et al., 2022) concatenates learnable prompts to the
input of the vision encoder layer, while CoOp (Zhou et al., 2022b) concatenates learnable prompts to
the input of the language encoder. These works incorporate prompts only within a single modality.
To enable communication between modalities, MaPLe Khattak et al. (2023a) and UPT (Zang et al.,
2022) introduce prompts for different modalities and establish connections between the prompts of
these modalities. Recent work attempts to generate input-specific prompts. QNet (Shi et al., 2024)
generates prompts using Quaternion Networks. Additionally, more work explore broader application
scenarios for prompt learning. For example, L2P (Wang et al., 2022c) and S-prompts (Wang et al.,
2022a) investigate the performance of prompt learning in continual learning. [R LEnk] TPT Shu
et al. (2022) and PromptAlign (Hassan et al., 2023) applies prompt learning in the context of test-
time adaptation.

2.3 DIFFUSION MODELS

Diffusion Models are a type of generative model that generates new data by simulating a gradual
reverse process of data distribution. DDPM (Ho et al., 2020) introduced a method for generating
data through the stepwise addition and removal of noise. IDDPM (Nichol & Dhariwal, 2021) im-
proved upon DDPM by employing more efficient training strategies and finer denoising steps. To
enhance the generation efficiency of diffusion models, DDIM (Song et al., 2020) is a non-Markov
diffusion model that allows skipping certain steps during inference, while LDM (Rombach et al.,
2022) performs diffusion by mapping data into latent space. The subsequent work, DiT (Peebles
& Xie, 2023a), combines diffusion models with transformer architecture, leveraging the strong rep-
resentational capabilities of transformers to improve generation quality. In terms of specific tasks,
ControlNet (Zhang et al., 2023) is a type of controllable generative model that introduces additional
conditional information to regulate the generation process.

3 PRELIMINARY

3.1 PROMBLEM FORMULATION AND FOUNDATION MODEL

Given an image v and a caption q, the objective of the task is to predict the location o of the de-
scribed object within the image. GLIP (Li et al., 2022b) is used as the foundation model, which
primarily consists of a vision encoder Encv(·), a language encoder Encl(·), and a downstream head
Head(·). [R A4tj] The image v is first divided into multiple patches, which are then embedded
into Ev

0 . The caption q is tokenized and embedded into El
0. These embeddings are subsequently

fed into the modality encoder to generate the corresponding modality features. These features are
then passed to the downstream head to predict bounding boxes õ for referring objects. For GLIP,
the downstream head is a region proposal network (RPN). RPN uses a sliding window to generate
multiple candidate regions and then adjusts the positions and sizes of these anchor boxes to generate
high-quality candidate regions. The GLIP training loss Lbase is the sum of the classification loss
Lcls and the localization loss Lloc.

3.2 DEEP PROMPTING

For an encoder Enc(·) composed of Nl stacked attention layers L = {Li}Nl−1
i=0 , the deep prompting

technique introduces prompts into the first D attention layers. For the ith attention layer, the prompt
Pi ∈ RNp×dp is concatenated with the embedding Ei as the input, where Np denotes the prompt
length and dp is the dimension size.

3
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Figure 2: The framework of Diffusion-driven Prompt Generator (Diff-Prompt). We fully utilize a
diffusion model as the prompt generator, which generates prompts conditioned on a given image
and caption. The generated prompts are then mapped into input-specific prompts through modality-
specific adapters. These input-specific prompts are concatenated with global prompts of equal length
to form the final prompts, which are used to fine-tune the pre-trained model.

3.3 DIFFUSION MODELS

For computational efficiency, we typically use a VAE encoder E to compress the target, then train
a diffusion model in the latent space, and finally use a VAE decoder D to reconstruct the generated
target. Our training objective is to obtain a diffusion model ϵθ that can predict noise based on a
given condition C. During inference, Gaussian noise is randomly sampled, and multi-step denoising
is applied to obtain the generated result. Additionally, the skip-step strategy from DDIM is used to
accelerate the generation process.

4 DIFF-PROMPT: DIFFUSION-DRIVEN PROMPT GENERATOR

We propose the Diff-Prompt, which aims to efficiently fine-tune pre-trained foundation models using
prompts generated by a diffusion model. Diff-Prompt consists of three stages. In the first stage, we
train a Mask-VAE to compress the mask into a low-dimensional space. In the second stage, we
use an enhanced DiT (Peebles & Xie, 2023b) as the prompt generator, generating prompts (denoted
as generated prompts) given an image and caption. In the third stage, we freeze the backbone
network, Mask-VAE, and the prompt generator trained in the first two stage, and design modality-
specific adapters to align the latent features generated by prompt generator with the foundation
model, mapping the generated prompts to the representations of the foundation model. We then
introduce a small number of learnable global prompts to complement universal knowledge, thus
generating more expressive features.

4.1 MASK-VAE TRAINING

In the first stage, we aim to use the DiT model with mask supervision to generate visual prompts
that locate the approximate position of the object referenced by the caption in the image, thereby
aiding the foundation model in reasoning. To reduce computational complexity, we follow the LDM
approach by first training a Mask-VAE to compress the masks into the latent space. Given mask
m ∈ R1×W×H , where W denotes the width and H denotes the height, we train an encoder E and a
decoder D. The encoder E encodes m into a mean and variance vector in the latent space, and then
the latent feature z is sampled from the Gaussian distribution:

µ, σ = E(m), z ∼ N (µ, σ2). (1)

The decoder D then reconstructs the latent feature back to the original mask M̃ :
m̃ = D(z). (2)

To train the Mask-VAE, we use the following loss function:
Lvae = ∥m− m̃∥22 + λDKL(N (µ, σ2)∥N (0, I)), (3)

4
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Figure 3: Forward and Sample Process of the Prompt Generator

where λ is the scale parameter.

4.2 VISUAL PROMPT GENERATION USING DIFFUSION MODEL

In the second stage, given an input image v and caption q, we trained a prompt generator ϵθ using the
mask m as guidance. For the diffusion process, the mask m is first compressed into a latent feature
z0 by the encoder E . We continuously add noise to z,repeating Tforward times until it completely
becomes Gaussian noise:

zt =
√
ᾱtz0 +

√
1− ᾱtϵt, ϵt ∼ N (0, I). (4)

The following loss is used to train the prompt generator ϵθ with condition C:

Lθ = ∥ϵθ(zt, C)− ϵt∥22, C = [Embv(v),Embq(q),Embt(t)], (5)

where Embv(v) is the image embedding layer , Embq(q) is the language embedding layer, Embt(t)
is the timestep embedding layer, and t is the timestep.

For the generation process, to prevent the prompt generation from taking too much time, we choose
to use DDIM for accelerated sampling. The reverse process goes through Tsample timesteps:

z̃t−1 = z̃t − ϵθ(zt, C). (6)

As the number of diffusion steps increases, the fusion of text and image information deepens. The
latent features at intermediate steps effectively capture the fusion of different modality features.
This is consistent with the encoding process of the encoder. By aligning the diffusion process with
the encoder’s encoding process, we can effectively inject modality fusion information into the en-
coder. We retain the D latent features z = [z̃i0 , z̃i1 , . . . , z̃iD−1

] throughout the diffusion process,
where {i0, i1, . . . , iD−1} ⊆ {0, 1, . . . , Tsample}. These generated prompts represent the degree of
modality information fusion, and are then mapped to input-specific prompts and incorporated into
the pre-trained encoder.

4.3 VISUAL PROMPT TUNING WITH FOUNDATIONAL MODELS

In the second stage, we retain the latent features from the denoising process of the Prompt Genera-
tor as prompts. [R A4tj] Considering that the prompt generator and GLIP are in different semantic
spaces, we first use the Mask-VAE decoder in the second stage to reconstruct the latent prompts,
generating prompts of the same size as the image. These generated prompts form a saliency map,
which informs the foundation model about which parts of the image require more attention. Fur-
thermore, to integrate the generated prompts into the pre-trained model, we design an adapter for
each modality, namely Adapterv and Adapterl. The modality-specific adapter aligns the generated
prompts with the space of the modality’s encoder. This design not only enables cross-modality
prompting over time but also facilitates communication between different modalities:

P v
j = Adapterv(D(z̃ij )), P l

j = Adapterl(D(z̃ij )), j = 0, 1, . . . , D − 1. (7)

The input-specific prompts are designed to tailor the prompts to the input data. At the same time, we
added the same number of learnable global prompts, namely global visual prompts, {GP v

j }
D−1
j=0 ,

5
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and global textual prompts, {GP l
j}

D−1
j=0 . The input-specific prompts, global prompts, and embed-

dings are concatenated and fed into the encoder, which ultimately produces the model’s output:

[ , ,Em
j+1] = Lm

j ([Pm
j ,GPm

j ,Em
j ]), j = 0, 1, . . . , D − 1, (8)

[Em
j+1] = Lm

j ([Em
j ]), j = D, . . . , Nl − 1, (9)

õ = Head(Ev
Nl
,Et

Nl
), (10)

where m represents v(ision) or l(anguage) modality.

Throughout the entire third stage, we only train the parameters in the adapter and global prompts.
To train our model, we select the same loss function as the one used in the foundation model.

5 EXPERIMENT

In this section, we first introduce the experiment setup, followed by a quantitative analysis. Next, we
conduct qualitative analysis, ablation studies, and in-depth analysis on the RefCOCO val dataset. In
Appendix D, we explore the zero-shot capabilities of Diff-Prompt. In Appendix F, we provide more
Visualization results compared with other methods. In Appendix C, We conduct an ablation experi-
ment on prompt selection, and in Appendix G, we carry out further in-depth analysis on Flickr30k.
Finally, we discuss the limitations in Appendix I.

5.1 EXPERIMENT SETUP

Dataset. We conducted experiments on two vision-language understanding datasets, RefCOCO
(Kazemzadeh et al., 2014) and Flickr30k (Plummer et al., 2016). RefCOCO includes a training set,
two test sets (testA and testB), and a validation set (val). TestA contains multiple people, while testB
contains multiple non-human objects. The Flickr30k dataset includes the train, test, and val set.

Evaluation Metrics. We use Recall at K (R@K) and Upper Bound (UB) as the evaluation metric.
R@K indicates the proportion of times the model correctly identifies the target within the top K
retrieval results, reflecting the model’s ability to find the correct match within a given ranking range.
UB evaluates the proportion of target presence among all prediction results. Specifically, we chose
R@1, R@5 and UB as the evaluation standards. R@1 measures the model’s ability for precise
retrieval, R@5 reflects the model’s overall recall ability, and UB indicates the model’s potential.

Baseline. we conduct a quantitative analysis, selecting GLIP-T(A) (Li et al., 2022b) as the foun-
dation model. We compare our model with two efficient parameter tuning methods: adapter and
prompt tuning. [R PtHg, LEnk] For the adapter method, we choose Tip-adapter (Zhang et al.,
2022b), Meta-adapter (Song et al., 2023), CLIP-Adapter(Gao et al., 2024), MMA(Yang et al., 2024)
for comparison. For MMA, we introduce the adapter in the last Transformer layer of the encoder. For
Tip-Adapter, Meta-adapter, and CLIP-Adapter, we introduce the adapter at the encoder’s output. For
prompt tuning, we select VPT(Jia et al., 2022), CoOp(Zhou et al., 2022b), S-Prompts(Wang et al.,
2022b), MaPLe(Khattak et al., 2023a), FedTPG(Qiu et al., 2024), and VFPT (Zeng et al., 2024).

Experiment Detail. For the Diff-Prompt, in the first stage, we train Mask-VAE on the RefCOCO
dataset for 200 epochs, setting the batch size to 128, the learning rate to 0.05, and λ to 0.0003. In
the second stage, we train the prompt generator. During the training phase, we set Tforward = 100
and use squaredcos cap v2 as the noise scheduler. In the sampling phase, we use DDIM and set
the number of sampling timesteps Tsample to 25, with the batch size set to 128 and the number of
epochs to 100. In the third stage, for the input of the ith attention layer, we select the latent features
at step 25−2i as the generated prompts. In Appendix C, we discuss the rationale behind this choice.
The specific architectures of Mask-VAE, the prompt generator and the adapters are detailed in the
Appendix A. Additional experimental details are provided in Appendix B.1.

5.2 QUANTITATIVE ANALYSIS

The experimental results are shown in Tab. 1. What we can see from the results is that Diff-Prompt
surpasses other adapter and prompt tuning methods across all metrics. Specifically, for the Ref-
COCO dataset, Diff-Prompt shows performance improvements across all three subsets. Compared
to the GLIP-T(A) model, Diff-Prompt achieves a maximum increase of 8.87% in R@1 and 14.05%
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Table 1: Performance Evaluation on RefCOCO and Flickr30k datasets. Bold: best results, underline: second
best results.

Method RefCOCO (testA) RefCOCO (testB) RefCOCO (val) Flickr30k (test) Flickr30k (val)

R@1 R@5 UB R@1 R@5 UB R@1 R@5 UB R@1 R@5 UB R@1 R@5 UB

GLIP-T(A) 30.21 80.66 93.44 32.93 77.66 88.30 31.82 80.00 91.42 45.57 63.72 70.55 44.87 63.40 70.17

Tip-adapter 34.68 86.24 97.25 32.83 78.39 94.02 34.56 83.06 95.47 50.16 74.89 84.53 48.22 73.54 85.19
CLIP-Adapter 34.08 85.81 98.18 32.76 76.72 93.39 33.91 81.93 96.24 49.30 73.12 84.78 47.15 71.72 83.24
Meta-adapter 35.02 87.96 98.64 33.29 78.67 95.14 36.54 85.09 96.34 51.32 75.36 85.16 49.18 74.87 88.14
MMA 36.68 89.03 99.13 34.67 79.06 95.88 35.28 86.46 97.18 52.60 77.04 85.77 51.43 76.28 89.46

VPT 29.64 80.40 89.09 27.65 71.29 81.04 28.80 75.00 84.56 44.27 70.19 83.68 43.83 70.19 83.69
VFPT 37.24 91.45 98.23 31.98 79.36 97.74 34.92 87.93 98.41 55.82 76.16 88.67 51.53 75.94 88.31
CoOp 36.89 93.18 99.61 32.29 82.89 97.21 35.31 88.62 98.01 51.29 74.85 88.32 50.95 74.79 87.96
S-Prompts 37.69 93.11 97.21 32.84 81.86 90.25 35.32 87.99 98.65 53.09 76.58 88.92 52.15 76.03 88.57
MaPLe 37.72 91.97 99.33 32.70 82.22 98.88 34.81 87.54 98.86 55.69 80.24 90.50 54.96 79.91 90.49
FedTPG 37.65 93.78 99.61 33.25 82.81 97.68 35.29 88.34 99.03 51.94 74.32 87.98 51.48 74.07 87.54
FedTPGd9 37.76 90.98 99.58 29.91 75.66 97.94 33.73 83.46 98.90 57.95 80.62 90.17 56.08 79.96 90.13

Diff-Prompt 39.08 94.71 99.63 36.09 85.67 99.00 37.94 90.55 99.37 59.53 81.85 90.46 57.39 81.20 90.54

in R@5 in testA dataset. Furthermore, we observed that the more interaction between prompts,
the more significant the performance improvement. VPT and VFPT add prompt information only
on the visual side, resulting in less performance improvement compared to methods that incorporate
prompts in both modalities, such as MaPLe and FedTPG. Additionally, it is found that CLIPAdapter,
CoOp, S-Prompts, MaPLe, and FedTPG all show improvements across metrics on the testA subset,
but there is a slight decrease in performance on testB for some metrics. Based on the distribution
of data in testA and testB, we can infer that the model overfits images in the person class during
training, leading to a slight decline in performance for other classes. Notably, the CLIP-Adapter
method outperforms VPT but falls short of CoOp. This is because CLIP-Adapter maps modality
features but fails to provide additional auxiliary information to the pre-trained model, thus limiting
the performance enhancement. The performance on Flickr30k is similar to that on RefCOCO. As
the interaction between different modality prompts deepens, the richer the content of the prompts,
the more significant the performance improvement.

[R PtHg, R LEnk] Overall, prompt tuning methods generally achieve greater improvements in ac-
curacy compared to adapter tuning. This is because adapter tuning typically requires adjusting the
learned network to the entire data distribution, which may compromise the generalization ability
of the original backbone network, making training more challenging. Consequently, the accuracy
improvement is relatively limited. The performance boost of Diff-Prompt can be attributed to its
ability to provide input-specific rich prompt information to the pre-trained model, leveraging the
strong generative capabilities of the generative model based on image and caption content. In con-
trast, this is difficult to achieve with random initialization.

5.3 QUALITATIVE ANALYSIS

Figure 4: Qualitative Analysis for RefCOCO: Ground Truth (left), GLIP-T(A) (middle), Diff-Prompt (right).
The results show the top three bounding boxes with the highest confidence, represented by green, blue, and
purple from highest to lowest confidence, respectively. In the caption, the red content indicates positive tokens.

Visualization result is shown in Fig. 4, we can observe that: (1) Compared to the foundation model,
Diff-Prompt is more sensitive to location; in figure (a), its attention is focused on the top right cor-
ner. (2) Diff-Prompt exhibits stronger language understanding; in figure (b), the caption refers to
the motorcycle’s license plate, but it understands that the license plate refers to the motorcycle itself.
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(3) Diff-Prompt has superior object recognition capabilities; as shown in figure (c), it can accu-
rately identify occluded objects. (4) Diff-Prompt demonstrates stronger multimodal understanding,
accurately identifying the referred object when multiple similar objects are present in the image.

5.4 ABLATION STUDY

We first conduct ablation studies to evaluate the generalization capability of our model. We fol-
low prior work and conduct experiments on two benchmarks: the cross-dataset benchmark and
the cross-domain benchmark. We chose CoOp (Zhou et al., 2022b), MaPLe (Khattak et al., 2023a),
PromptKD (Li et al., 2024b), PromptSRC (Khattak et al., 2023b), CoPrompt (Roy & Etemad, 2023),
CPL (Zhang et al., 2024c), and CoCoLe (Zhang et al., 2024b) for comparison. The cross-dataset
benchmark evaluates the model’s generalization ability on shifted data, as demonstrated in Sec.5.4.
The cross-domain benchmark assesses the model’s capability across different categories, as illus-
trated in Sec.5.4. Subsequently, we conduct ablation experiments on the effectiveness of prompts
and prompt depth. For these two sets of experiments, we conduct ablation experiments on the Ref-
COCO validation set using our Diff-Prompt. All settings are consistent with those in the comparative
experiments.

Table 2: Comparison with state-of-the-art methods on cross-domain evaluation.

Source ImageNet -V2 -S -A -R Avg.
CLIP 66.73 60.83 46.15 47.77 73.96 57.18
CoOp 71.51 64.20 47.99 49.71 75.21 59.28
MaPLe 70.72 64.07 49.15 50.90 76.98 60.27
PromptKD - - - - - -
PromptSRC 71.27 64.35 49.55 50.90 77.80 60.65
CoPrompt 70.80 64.25 49.43 50.50 77.51 60.42
CPL 73.53 65.18 49.92 50.73 77.38 60.80
CoCoLe 73.88 65.86 50.89 51.75 78.89 61.85
Diff-Prompt 72.06 64.29 51.06 50.97 77.18 60.88

[R PtHg, R cYSP, R LEnk]Cross-Domain Generalization. We select ImageNet (Deng et al.,
2009) and its four variations: ImageNet-A (Hendrycks et al., 2021b), ImageNet-V2 (Recht et al.,
2019), ImageNet-R (Hendrycks et al., 2021a) and ImageNet-S (Wang et al., 2019), as the evaluation
datasets. Specifically, we can consider that the CLIP model is well-fitted to the ImageNet dataset,
while the data from the other four datasets are treated as out-of-distribution. As shown in the Tab. 2,
Diff-Prompt achieves competitive accuracy with CPL and outperforms most prompt-learning meth-
ods, though it still lags behind CoCoLe. Notably, it achieves the best performance on ImageNet-S,
highlighting its robustness against overfitting due to its controlled, generated prompts, unlike di-
rectly learned prompts, which are more prone to overfitting.

Table 3: Comparison with state-of-the-art methods on cross-dataset evaluation.

Source Im
ag
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1
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CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
PromptKD - 93.61 91.59 73.93 75.33 88.84 26.24 68.57 55.08 63.74 76.39 71.33
PromptSRC 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
CoPrompt 70.80 94.50 90.73 65.67 72.30 86.43 24.00 67.57 47.07 51.90 69.73 67.00
CPL 73.53 95.52 91.64 66.17 73.35 87.68 27.36 68.24 48.96 51.25 70.52 68.07
CoCoLe 73.88 95.88 91.93 67.79 74.17 87.97 28.83 68.75 49.26 51.75 72.78 68.91
Diff-Prompt 72.06 94.63 91.08 66.85 75.57 87.26 29.07 69.03 48.87 52.83 73.32 68.85

[R PtHg, R cYSP, R LEnk] Cross-Dataset Generalization. We consider the following 11 datasets
to evaluate cross-domain performance: Aircraft (Maji et al., 2013), Caltech101 (Fei-Fei et al.,
2004), Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019),
Flower102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), Pets (Parkhi et al., 2012),
SUN397 (Xiao et al., 2010), and UCF101 (Soomro, 2012). These datasets cover a wide range of
categories, allowing us to assess the model’s ability across diverse classes. The experimental results
are shown in the table. The conclusions for cross-dataset generalization and cross-domain general-
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ization are similar. Although Diff-Prompt does not achieve state-of-the-art performance, it performs
notably well on certain datasets, such as Flowers102, Aircraft, and SUN397.

Method mIoU IoUFG AP

CLIPSeg(PC) 46.1 56.2 78.2
CLIPSeg(PC, D=128) 48.2 56.5 78.2

CLIPSeg(PC)+Diff-Prompt 47.8 56.4 78.2
CLIPSeg(PC, D=128)+Diff-Prompt 49.6 57.0 78.7

Table 4: Generalization Using CLIPSeg on the RES
Task

Method VQA NLVR2

test-dev test-std dev test-P
BLIP 78.24 78.17 82.48 83.08
BLIPCapFilt-L 78.25 78.32 82.15 82.24

BLIP+Diff-Prompt 78.59 78.88 82.94 83.76
BLIPCapFilt-L+Diff-Prompt 78.92 79.24 83.09 84.06

Table 5: Generalization Using BLIP on the GQA
Task

[R PtHg, R cYSP]Generalization Across Downstream Tasks and Backbones. To validate the
generality of Diff-Prompt, we conducted experiments using two different backbones on two new
downstream tasks. Specifically, we employed the CLIPSeg (Lüddecke & Ecker, 2022) model on the
PhaseCut dataset for the Referring Expression Segmentation task and the BLIP (Li et al., 2022a)
model on the VQA-v2 and NLVR2 datasets for the VQA task. Detailed experimental settings are
provided in Appendix B.2, and the results are shown in Tab. 4 and 5. The results demonstrate
that Diff-Prompt is equally effective with new backbones and downstream tasks. This effectiveness
stems from our method’s ability to guide the model to focus on relevant parts of the image based on
captions, making it highly applicable to various visual understanding tasks.

Table 6: Effectiveness of Prompts.

Method R@1 R@5 UB

Diff-Prompt 37.94 90.55 99.37
w/o P v 36.94(−1.00) 89.84(−0.71) 99.15(−0.22)

w/o GP v 37.01(−0.93) 89.61(−0.94) 99.16(−0.21)

w/o P l 35.61(−2.33) 87.31(−3.24) 98.82(−0.55)

w/o GP l 36.95(−0.99) 89.81(−0.74) 99.11(−0.26)

Effectiveness of Prompts. We explore the ef-
fectiveness of various prompts by removing dif-
ferent prompts individually. We removed the
visual prompt (w/o P v), global visual prompt
(w/o GP v), textual prompt (w/o P l), and
global textual prompt (w/o GP l). The exper-
imental results, which are shown in the Tab. 6,
demonstrate that all prompts contribute to im-
proving accuracy. When task-specific prompts
are removed, there is a noticeable drop in R@1
and R@5, indicating that task-specific prompts effectively guide the pre-trained model. Notably,
when the textual prompt is removed, the accuracy decreases the most. The reason is that the textual
prompt is mapped from visual information. This textual prompt incorporates visual information into
the language encoder, enabling the interaction of modality information.

Figure 5: Metrics at Different Prompt Depths

Prompt Depth. This section investigates the
impact of prompt depth. We selected prompt
depths of 1, 3, 6, 9, and 12. Specifically, when
the prompt depth is set to 1, prompts are added
only at the encoder input, while for a depth
of 12, prompts are added to the input of each
transformer layer in the encoder. As shown in
the Fig. 5, both R@1 and R@5 steadily in-
crease as the prompt depth increases. When the
prompt depth is shallow, the accuracy improve-
ment is relatively slow, and there may even be
a downward trend. However, as the depth in-
creases, the improvement becomes more signif-
icant. This indicates that deeper prompts are
more effective, likely because the deeper layers
of the encoder encode richer information, facil-
itating easier information interaction. which is
discussed in the complexity analysis.
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5.5 IN-DEPTH ANALYSIS

Table 7: Parameter and computational complexity
analysis

Method # Tunable # Tunable % Comp. Complex. (GFLOPs) Infer. Time(s)

CLIPAdapter 0.3M 0.216 26.7 1.92
VPT 6.9K 0.005 26.7 1.77
CoOp 55.3K 0.037 27.1 1.85
S-Prompts 62.2K 0.041 27.2 1.83
MaPLe 0.7M 0.473 27.2 1.78
FedTPG 4.3M 2.786 28.6 1.82
FedTPGd9 39.1M 20.504 29.1 1.94

Diff-Prompt 5.5M 4.834 28.2+7.7/Smp. 2.29

Computation Complexity. In this section, we
explore the parameter introduction and compu-
tational complexity of different methods. We
calculate the learnable parameters introduced
by different models (# Tunable), the percent-
age of learnable parameters in the total model
parameters (# Tunable %), computational com-
plexity (Comp. Complex.) and inference
time(Infer. Time). The results are shown in the
Tab. 7. Regarding the introduction of param-
eters, VPT and CoOp only introduce a small
number of parameters, which are appended to the input of the attention layer. CLIP Adapter and
MaPLe require the introduction of additional network modules, leading to slightly more parameters
compared to VPT and CoOp. For FedTPG and Diff-Prompt, these methods involve designing net-
works to generate prompts. To generate effective prompts, the network architecture is more complex
than that of CLIP Adapter and MaPLe. For Diff-Prompt, Mask-VAE takes up 368kB, the Prompt
Generator 309MB, while the foundation model GLIP-T(A) occupies 2.43GB. The additional pa-
rameters introduced by these prompt generators are still acceptable compared to the size of the
foundation model.
In terms of computational complexity, the complexity of other methods is roughly the same, while
Diff-Prompt is much higher. This is because Diff-Prompt requires multi-step generation of prompts
using a diffusion model. We optimized the model size and sampling speed as much as possible,
resulting in a time complexity of 28.2 GFLOPs for the final model, plus 7.7 GFLOPs per sampling
step. However, we found that in actual inference, the inference time of Diff-Prompt does not increase
significantly, taking only 2.29 seconds. This is thanks to the transformer architecture of the diffusion
model, which allows for high-speed parallel computation, and the diffusion model’s size is an order
of magnitude smaller than GLIP, thus not causing a significant increase in time.

Figure 6: Prompt Visualization

Visual Prompt Visualization. We visualize the prompts of the first 9 layers, which is shown in
Fig. 6. Through progressive denoising, the visual and textual information is fully integrated. These
prompts can provide information to the pre-trained model. Additionally, we observe that in the
early stages of denoising, the prompts can already perceive the approximate location of the referent
object. As the denoising process deepens, the prompts become increasingly informative. Although
these prompts are not absolutely precise, they can provide fine-grained information and help filter
out the approximate contours.

6 CONCLUSION

In this paper, we explore a new method for generating prompts, specifically by using a diffusion
model to generate prompts. We find that, with appropriate supervision, the diffusion model can
generate fine-grained prompts, achieving cross-modal information fusion and understanding. These
generated prompts provide rich information that can help fine-tune pre-trained models for complex
multimodal downstream tasks.
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A MODEL DESIGN

A.1 MASK-VAE DESIGN

We use the AutoencoderKL class from the Python diffusers library to train our Mask-VAE, setting
the in channel parameter to 1. The Mask-VAE reads masks of size 1 × 224 × 224 and compresses
them into 4× 28× 28. The final trained Mask-VAE occupies only 368kB in safetensors format.

A.2 PROMPT GENERATOR ARCHITECTURE

The architecture of the prompt generator is generally the same as DiT, with only two differences.
(1) the condition needs to incorporate both image and text information. We begin by using the same
encoders as that in GLIP-T(A) to encode image and text, resulting in visual embedding, and textual
embedding. The visual embedding and textual embedding are each added to timestep embedding,
then concatenated to form the condition, which is fed into the DiT block. (2) For parameter selection,
we aim to minimize the number of parameters while maintaining model performance. The number
of DiT blocks is set to 12, the hidden size is set to 512, the patch size is 2, and the number of
attention heads is set to 8. The final trained prompt generator occupies only 309MB, compared with
GLIP-T(A), which is 2.43GB.

A.3 ADAPTER DESIGN

Figure 7: Adapter Architecture

As shown in Fig. 7, the vision adapter and language adapter share the same network architecture.
The latent features are first decoded through the mask-VAE decoder and then is mapped into input-
specific prompts through the corresponding modality encoders. To avoid the significant resource
waste that could result from direct mapping, we first reduce the dimension of the latent prompts
using a few convolutional layers, and then perform the mapping in the low-dimensional space.

B EXPERIMENT DETAIL

B.1 EXPERIMENTAL DETAILS OF COMPARATIVE EXPERIMENTS

VPT and VFPT introduces prompts into the visual encoder, while CoOp introduces prompts into the
language encoder. S-Prompts, MaPLe, and FedTPG introduce prompts into both modalities simul-
taneously. It should be noted that S-Prompts are used in continual learning scenarios, while FedTPG
is used in multiple remote clients scenarios. In this work, we only use their network architectures.
The prompt length is set to 8 for all methods, while Diff-Prompt sets 4 input-specific prompts and 4
global prompts for each modality. Except for the FedTPG method, other prompt learning methods
add prompts to the first 9 attention layers. Since FedTPG is originally designed to only add prompts
at the encoder input, we introduce FedTPGd9, which adds prompts to the first 9 layers of the en-
coder. The visual embedding size is set to 96, and the language embedding size is set to 768. The
learning rate is set to 0.0001, and ADAMW is used as the optimizer.

B.2 EXPERIMENTAL DETAILS OF GENERALIZATION ABLATION EXPERIMENTS

[R cYSP] We explore the generalization ability of Diff-Prompt across different backbones and tasks.
Specifically, we select CLIPSeg for the Referring Expression Segmentation task and the BLIP model
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Table 8: Results of different prompt strategies on the RefCOCO dataset.

Strategy testA testB val

R@1 R@5 UB R@1 R@5 UB R@1 R@5 UB

sequential 35.09 86.18 92.98 29.28 75.70 87.16 32.27 80.61 90.36
reverse 39.08 94.71 99.63 36.09 85.67 99.00 37.94 90.55 99.37

for the Visual Question Answering task. For the CLIPSeg model, its encoder is CLIP, with the
original CLIP weights kept unchanged. Therefore, we adopt the same settings as the comparative
experiments, introducing prompts at both the visual and textual encoder ends. For each modality,
we use 4 input-specific prompts and 4 global prompts. During training, only the adapter is trained,
ensuring that the remaining network parameters remain unchanged.

For the BLIP model, which follows an encoder-decoder architecture, we introduce prompts only in
the self-attention module of the encoder. During the training phase, we train only one adapter while
keeping all other parameters unchanged.

C PROMPT SELECTION

(a) Sequential Prompting (b) Reverse Prompting

Figure 8: Different strategies for introducing prompts.

The prompt generator uses the image and caption as conditions, and the final result is obtained by
denoising the random Gaussian noise 25 times. As the denoising process progresses, the image
and text information gradually merge; that is, the denoising process can be seen as an interaction
process between the image and text information. Therefore, as t increases, the interaction between
image and text increases. We choose Tsample = 25 to ensure the quality of the final result while
minimizing the number of sampling steps and aligning with the pre-trained model. Here, we can
align the sampling process with the encoding process either sequentially or in reverse order. In the
sequential process Fig. 8(a), a small amount of interaction information is provided in the early stages
of encoding, while in the reverse process Fig. 8(b), richer interaction information is provided in the
shallow layers of the encoder. We conducted ablation experiments, and the results are shown in
the Tab. 8. From the figure, we can see that introducing prompts in reverse order results in better
performance. This improvement is likely due to incorporating more interactive information in the
shallow layers of the encoder, which may better assist the encoding process.

D ZERO-SHOT EVALUATION

This section explores the zero-shot capabilities of Diff-Prompt. We compare Diff-Prompt with
GLIP-T(A) and GLIP-L. Compared to GLIP-T(A), GLIP-L has a larger model size, more training
data, and stronger generalization abilities. We selected 11 representative datasets from ODinW (Li
et al., 2022b) for testing: AmericanSignLanguageLetters (Letters), BCCD, brackishUnderwater
(Underwater), CottontailRabbits (Rabbits), NorthAmericaMushrooms (Mushrooms), Packages, pis-
tols, Raccoon, ShellfishOpenImages (Shellfish), thermalDogsAndPeople (DogsPeople), and Vehi-
clesOpenImages (Vehicles). We use Average Precision (AP) @[IoU=0.5:0.95] as the metric.
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Table 9: Zero-shot Evaluation of Diff-Prompt and Foundation models (Part 1)

Letters BCCD Underwater Rabbits Mushrooms Package

GLIP-T(A) 0.07 5.83 0.53 65.27 29.72 32.43
GLIP-L 1.56 2.78 0.98 78.25 57.41 51.13
Diff-Prompt 2.25 8.42 1.21 71.27 54.18 41.74

Table 10: Zero-shot Evaluation of Diff-Prompt and Foundation models (Part 2)

pistols Raccoon Shellfish DogsPeople Vehicles Average

GLIP-T(A) 32.28 15.43 15.34 40.82 45.35 25.73
GLIP-L 71.5 47.96 46.93 64.82 55.75 43.55
Diff-Prompt 12.82 45.63 11.3 34.27 20.22 27.57

As shown in Tab. 9 and 10, the zero-shot capabilities of Diff-Prompt and foundation models are
compared. From the figures, we can see that Diff-Prompt retains the generalization ability of GLIP-
T(A), and even outperforms GLIP-T(A) on a portion of the datasets. This is because Diff-Prompt
provides additional auxiliary information for the original GLIP-T(A) without making any changes to
the model itself. However, compared to GLIP-L, which has a larger parameter size and more train-
ing data, Diff-Prompt and GLIP-L still have a significant gap. This indicates that prompt learning’s
improvement to performance is still limited. Notably, for the Letters and Underwater datasets, both
GLIP-T(A) and GLIP-L perform particularly poorly. In contrast, Diff-Prompt shows a subtle im-
provement, suggesting that when the pretrained model fails to extract feature information effectively,
prompt information can play a significant role in enhancing performance.

E ABLATION STUDY FOR PROMPT PRECISION

[R PtHg] For the RefCOCO dataset, where each caption corresponds to a bounding box and a seg-
mentation mask, we conducted the following experiment: we performed an in-depth analysis of the
results on the RefCOCO validation dataset by reconstructing the prompts generated by the prompt
generator. We then calculated the Intersection over Union (IoU) between the reconstructed masks
and the ground-truth masks in the labels. Based on the IoU values, we divided all results into 10
bins, such as IoU ≥ 0 and ≤ 0.1, IoU > 0.1 and ≤ 0.2, and so on, and calculated the accuracy for
each bin. The results are shown in the Fig. 9.

From the results, we can observe that when IoU is below 0.4, the accuracy significantly improves as
IoU increases. However, when IoU exceeds 0.4, the improvement rate slows down, and when IoU
exceeds 0.8, the accuracy stabilizes. This indicates that even a coarse prompt, without requiring a
highly precise mask, can provide effective guidance. This finding aligns with the essence of prompts,
which is to serve as guidance rather than the final result.

Figure 9: Average Recall for IoU Intervals
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F QUALITATIVE ANALYSIS

Figure 10: Qualitative Analysis on RefCOCO

This section provides additional visualization results. We visualize Ground Truth, GLIP-T(A), S-
Prompts, MaPLe, FedTPG, and Diff-prompt. From the Fig. 10, it can be seen that Diff-Prompt
outperforms the other methods on most of the situation.
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G IN-DEPTH ANALYSIS OF THE FLICKR30K

Method Animals Bodyparts Clothing Instruments

R@1 R@5 R@10 UB R@1 R@5 R@10 UB R@1 R@5 R@10 UB R@1 R@5 R@10 UB

CLIP-Adapter 78.20 91.78 93.69 94.07 6.28 16.82 21.07 35.49 26.60 50.32 60.04 71.31 43.87 65.81 78.06 82.58
VPT 66.54 88.53 91.20 93.12 11.46 25.69 32.72 46.21 24.84 46.38 58.37 74.48 35.48 57.42 60.00 69.68
CoOp 78.39 95.79 95.79 96.56 7.76 18.48 27.17 44.73 31.09 57.04 67.88 79.79 48.39 78.06 83.23 87.10
S-Prompts 77.63 94.65 95.98 96.37 8.50 20.89 29.21 45.10 30.54 53.96 66.90 79.74 43.23 72.26 85.81 89.68
MaPLe 75.53 94.26 96.94 98.47 10.72 28.47 38.45 55.27 37.56 67.84 77.90 85.48 38.06 74.19 84.52 92.90
FedTPG 78.97 94.65 95.98 96.56 7.58 19.04 31.24 49.35 35.07 59.23 68.74 79.53 43.23 76.13 84.52 88.39

Diff-Prompt 81.45 92.35 96.18 97.71 14.42 36.97 49.35 61.92 42.91 72.38 80.13 85.74 50.97 81.94 83.23 86.45

Table 11: Recall Across Different Categories on the Flickr30k val Dataset (Part 1)

Method Other People Scene Vehicles

R@1 R@5 R@10 UB R@1 R@5 R@10 UB R@1 R@5 R@10 UB R@1 R@5 R@10 UB

CLIP-Adapter 32.46 57.76 65.68 73.72 68.66 92.77 94.87 96.16 29.16 65.17 77.63 84.61 66.27 84.62 89.64 91.42
VPT 30.09 57.83 65.83 73.84 62.38 89.52 93.38 95.56 35.16 68.04 76.97 83.37 51.48 81.66 89.35 92.60
CoOp 38.00 64.86 71.99 80.94 73.80 94.87 96.46 97.73 25.11 56.95 69.67 89.24 67.75 89.64 94.38 97.04
S-Prompts 37.45 64.16 72.26 81.39 72.65 94.87 96.87 98.31 44.29 75.41 83.82 92.24 61.83 86.39 90.53 93.20
MaPLe 41.44 67.90 75.18 83.07 72.84 94.53 96.56 97.76 51.47 81.08 88.19 94.65 61.54 86.98 92.90 96.75
FedTPG 38.49 63.49 71.41 80.85 73.80 94.77 96.25 97.71 23.55 50.29 65.36 84.61 66.86 88.46 92.60 95.27

Diff-Prompt 42.57 68.27 75.67 82.80 73.90 94.86 96.51 97.87 54.01 80.95 88.52 93.74 68.05 88.46 93.79 96.15

Table 12: Recall Across Different Categories on the Flickr30k val Dataset (Part 2)

Method Animals Bodyparts Clothing Instruments

R@1 R@5 R@10 UB R@1 R@5 R@10 UB R@1 R@5 R@10 UB R@1 R@5 R@10 UB

CLIP-Adapter 73.94 91.31 92.08 94.02 4.78 14.72 20.27 34.80 32.22 55.68 64.61 76.93 50.62 80.86 85.80 88.27
VPT 63.32 86.10 90.35 93.44 5.54 19.12 28.68 42.26 26.84 52.52 62.53 76.11 33.95 57.41 67.28 70.37
CoOp 75.68 93.05 93.82 95.37 6.12 18.16 22.75 41.49 33.52 60.75 72.33 82.87 56.17 73.46 80.25 89.51
S-Prompts 75.48 88.99 91.51 93.24 7.27 19.89 28.68 46.27 32.91 57.24 69.60 82.09 54.32 75.31 78.40 85.80
MaPLe 76.83 89.77 92.66 94.21 8.99 30.59 41.87 55.45 39.20 71.12 80.62 86.08 48.15 74.07 77.16 87.65
FedTPG 76.83 93.24 94.40 95.56 7.07 21.80 27.53 46.27 37.21 61.88 72.59 83.09 56.79 75.93 81.48 89.51

Diff-Prompt 80.50 90.35 92.28 94.02 17.21 36.14 42.83 55.64 47.35 74.28 82.18 87.60 54.32 77.16 81.48 92.59

Table 13: Recall Across Different Categories on the Flickr30k test Dataset (Part 1)

Method Other People Scene Vehicles

R@1 R@5 R@10 UB R@1 R@5 R@10 UB R@1 R@5 R@10 UB R@1 R@5 R@10 UB

CLIP-Adapter 33.85 60.14 67.28 76.38 71.25 92.93 95.16 96.71 28.47 63.43 73.56 81.66 77.75 91.50 94.50 95.50
VPT 29.58 55.96 64.79 73.95 64.07 90.47 94.04 96.36 32.80 63.25 73.75 80.11 66.50 84.25 87.50 90.50
CoOp 39.45 64.34 72.97 81.51 73.80 95.42 97.26 98.36 22.24 52.99 67.76 85.61 81.00 92.50 94.25 96.75
S-Prompts 37.82 63.99 72.32 81.59 73.16 95.40 97.56 98.53 45.95 75.54 83.01 90.86 72.00 91.50 95.00 97.00
MaPLe 40.46 66.51 75.79 83.31 74.54 95.51 97.52 98.66 49.66 79.12 86.10 92.03 73.50 91.25 93.25 96.00
FedTPG 39.77 63.49 72.26 81.59 74.35 95.58 97.14 98.21 19.15 46.57 61.21 80.91 81.75 92.50 94.50 96.75

Diff-Prompt 44.61 68.02 74.39 82.34 75.21 96.06 97.68 98.44 55.65 81.04 87.03 91.66 79.75 94.25 95.75 97.25

Table 14: Recall Across Different Categories on the Flickr30k test Dataset (Part 2)

In this part, we conduct a further analysis of the results of different methods on the Flickr30K test
and validation datasets. Tab. 11, 12, 13 and 14 presents the R@1, R@5, R@10 and UB scores
for different categories, which include Animals, Bodyparts, Clothing, Instruments, Other, People,
Scene, and Vehicles. From the figure, we can conclude that Diff-Prompt performs well across all cat-
egories, indicating more stable training. It steadily improves performance across different categories
without significantly increasing performance in some at the expense of others.

H CATEGORY-WISE ACCURACY

Category-wise Accuracy. In this section, we conduct a further analysis of the results from the quan-
titative analysis. Specifically, we divide the RefCOCO test dataset into 12 categories based on the
”super category” field in the COCO annotations: person, vehicle, outdoor, animal, accessory, sports,
kitchen, food, furniture, electronic, appliance, and indoor. We compared the R@1 and R@5 metrics
of GLIP-T(A), S-Prompts, MaPLe, FedTPG, and Diff-Prompt across these categories. Metrics for
Different Categories for Flickr30k is provided in Appendix G.
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Figure 11: Category-wise R@1 for RefCOCO Val Dataset

Figure 12: Category-wise R@5 for RefCOCO Val Dataset

The results are shown in Fig. 11 and 12. From the figures, we can see that, compared to the founda-
tion model, Diff-Prompt shows a more balanced improvement across all categories. This is because
the prompt generator, during the second phase of training, can provide a general range for the ob-
jects, and the generated prompts do not significantly affect the backbone network. The process of
first training the prompt generator and then aligning it helps to effectively prevent overfitting during
training. FedTPG generates prompts using a attention layers, but R@1 performance in the outdoor
and electronic categories is worse than that of GLIP-T(A). This is because the training results are
biased towards certain data, making it unable to achieve improvements across all categories. For
the S-Prompts and MaPLe methods, there is a notable performance increase in the person cate-
gory, while in other categories, their performance shows a slight increase or decrease compared to
GLIP-T(A), indicating that they mainly fit the data in the person category.

I LIMITATION

In this section, we discuss the limitations of our proposed method. First, due to the constraints of
the DiT model, our model can only process images with an input size of 224x224, which limits the
diversity of the image inputs. A solution is to perform some downsampling and interpolation oper-
ations on the image. Second, Diff-Prompt uses a diffusion model to generate prompts in multiple
steps, requiring the pretrained VAE and DiT to have strong generalization capabilities; otherwise,
performance on specific data may be particularly poor. Additionally, the multi-step generation pro-
cess of the diffusion model consumes a large amount of time and computational resources. Overall,
while Diff-Prompt generates rich, fine-grained prompt information through the diffusion model, it
is also influenced by the model itself, leading to high computational complexity.

For the prompt generator, we only concatenate visual and textual information. For future work, we
believe more in-depth research on the diffusion model could explore controlled mask generation
to produce more fine-grained prompts. As for the design of the prompt generator, exploring other
one-step, lightweight generation models to produce prompts could help address the limitations of
this paper. Meanwhile, we will explore the capabilities of Diff-Prompt on more downstream tasks,
such as PNG (Ding et al., 2022) and GQA (Hudson & Manning, 2019).
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