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Abstract

Novel materials drive advancements in fields ranging from energy storage to electronics,
with crystal structure characterization forming a crucial yet challenging step in materials
discovery. In this work, we introduce deCIFer, an autoregressive language model designed
for powder X-ray diffraction (PXRD)-conditioned crystal structure prediction (PXRD-CSP).
Unlike traditional CSP methods that rely primarily on composition or symmetry constraints,
deCIFer explicitly incorporates PXRD data, directly generating crystal structures in the
widely adopted Crystallographic Information File (CIF) format. The model is trained on
nearly 2.3 million crystal structures, with PXRD conditioning augmented by basic forms of
synthetic experimental artifacts, specifically Gaussian noise and instrumental peak broaden-
ing, to reflect fundamental real-world conditions. Validated across diverse synthetic datasets
representative of challenging inorganic materials, deCIFer achieves a 94% structural match
rate. The evaluation is based on metrics such as the residual weighted profile (Rwp) and
structural match rate (MR), chosen explicitly for their practical relevance in this inherently
underdetermined problem. deCIFer establishes a robust baseline for future expansion toward
more complex experimental scenarios, bridging the gap between computational predictions
and experimental crystal structure determination.

1 Introduction

Characterizing the atomic structure of functional materials is essential for enabling progress in energy storage,
electronics, and other emerging technologies. Powder X-ray diffraction (PXRD), a widely employed technique
in materials science, serves as a primary characterization tool to investigate atomic-scale structures. However,
structure determination from PXRD data is inherently challenging due to limited structural resolution,
ambiguity, and experimental artifacts such as noise and peak broadening. Crystal structure prediction
(CSP) refers to the computational task of inferring the periodic atomic arrangement of a crystalline material
given a set of constraints or observations. In traditional settings, these constraints are limited to high-
level descriptors such as chemical composition or symmetry. While recent work has explored integrating
experimental data into generative models, direct PXRD-conditioned CSP remains underexplored.

In this work, we present deCIFer, an autoregressive transformer-based model designed explicitly for PXRD-
conditioned crystal structure prediction (PXRD-CSP) (Figure 1a). Unlike traditional methods, deCIFer
directly incorporates the rich structural information available from PXRD data, generating crystal struc-
tures in the Crystallographic Information File (CIF) format. To establish a practical baseline, we incorporate
basic forms of synthetic experimental artifacts into our training and validation datasets, specifically Gaus-
sian noise and instrumental peak broadening. These basic synthetic artefacts represent fundamental yet
simplified aspects of real-world PXRD variability, chosen intentionally to provide a controlled, reproducible
starting point for evaluation and for future extensions of the method. They act as a minimal simulation
of measurement noise and resolution limits, analogous to data augmentation strategies in vision or speech
domains. They do not capture more complex effects such as peak asymmetry, background drift, or preferred
orientation, which we leave for future studies.
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(a) Overview of the deCIFer model. (b) Example generations using deCIFer.

Figure 1: (a) Overview of the deCIFer model, which performs autoregressive crystal structure predic-
tion (CSP) from PXRD data, optionally guided by tokenized crystal descriptors. PXRD embeddings are
prepended to the CIF token sequence, enabling the generation of structurally consistent CIFs directly from
diffraction data. (b) Three examples from the NOMA test set showing deCIFer generations, each illustrating
a reference structure, the generated structure and their corresponding PXRD profiles.

The performance of deCIFer is demonstrated on diverse PXRD patterns from large-scale datasets represen-
tative of challenging inorganic materials. Our evaluations confirm the robustness of the approach and its
ability to produce syntactically correct and structurally meaningful CIFs that accurately reproduce target
diffraction patterns. With this, deCIFer serves as a foundational step toward bridging the gap between
computational CSP and experimental crystal structure determination workflows.

Our key contributions in this work are:

1. Integration of PXRD-based experimental conditioning into an autoregressive transformer model,
enabling direct CSP in CIF format; a capability not demonstrated previously in transformer-based
generative models.

2. Implementation of an effective conditioning mechanism to handle variable-length CIF sequences in
autoregressive modelling.

3. Simulation of fundamental PXRD experimental artefact, Gaussian noise and peak broadening, as a
practical baseline for real-world scenarios.

4. Comprehensive evaluation on two large-scale datasets: NOMA1 and CHILI-100K (Friis-Jensen et al.,
2024), including comparison to state-of-the-art CSP models and analysis of sampling consistency
under varying conditions.

These contributions aim to establish a reproducible foundation for integrating computational CSP with
experimental workflows.

2 Background and Related Work

CSP has traditionally relied on high-level descriptors, such as chemical composition or symmetry constraints,
to guide predictions. Recently, approaches termed data-informed CSP have begun integrating explicit ex-
perimental data (particularly diffraction data) into their generative processes (Kjær et al., 2023; Guo et al.,
2024; Riesel et al., 2024; Lai et al., 2025), marking a significant shift away from purely descriptor-driven
CSP. Among the many experimental modalities that could inform such models, PXRD is especially rele-
vant because it directly encodes crystallographic information in a widely accessible format. This makes it a
natural focus for the present work.

1NOMA stands for NOMAD (Draxl & Scheffler, 2019), OQMD (Kirklin et al., 2015), & MP (Jain et al., 2013b) Aggregation.
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PXRD: Powder X-ray diffraction (PXRD) is among the most widely accessible and routinely employed
structural characterization techniques in solid-state chemistry. Modern benchtop diffractometers, available
in most research and industrial laboratories, can produce high-quality diffraction patterns in minutes. PXRD
patterns consist of diffraction peaks whose positions and intensities directly encode essential information
about a material’s crystal structure; specifically atomic arrangements and symmetry. The forward simu-
lation of PXRD patterns from known crystal structures in the standard Crystallographic Information File
(CIF) format is well-established through scattering theory (West, 2014), facilitating realistic computational
modelling.

Quantitative PXRD analysis typically involves structural refinement methods, such as Rietveld refine-
ment (Young, 1995), wherein parameters of a structural model are iteratively adjusted against experimental
data. Such refinements depend heavily on the accuracy of an initial structural model, whose identification
(often termed fingerprinting) can be particularly challenging. Fingerprinting typically requires extensive
chemical intuition and exhaustive database searches. Nevertheless, structural model identification often
remains ambiguous, significantly hindering materials discovery and optimization.

CSP with LLMs: Large language models (LLMs) based on transformer architectures (Vaswani et al.,
2017) have recently been leveraged for automation tasks in chemistry, including synthesis planning (Hocky
& White, 2022; Szymanski et al., 2023; M. Bran et al., 2024), chemical data extraction (Gupta et al., 2022;
Dagdelen et al., 2024; Polak & Morgan, 2024; Schilling-Wilhelmi et al., 2025), and property prediction (Zhang
et al., 2024; Rubungo et al., 2024; Jablonka et al., 2024). Despite their growing popularity, these LLMs have
yet to become widely utilized in materials design workflows. Recent work has started adapting these models
specifically for crystal structure prediction (CSP). For instance, Gruver et al. (2024) fine-tuned Llama-2
models (Touvron et al., 2023) on text-based representations of atomistic data, enabling tasks such as the
unconditional generation of stable crystalline materials. Similarly, Mohanty et al. (2024) fine-tuned LLaMA-
3.1-8B (Dubey et al., 2024) using QLoRA (Dettmers et al., 2024) to efficiently generate CIF files conditioned
on compositional and symmetry constraints. Another recent approach, CrystaLLM (Antunes et al., 2024),
utilizes extensive pre-training on millions of inorganic crystal structures and generates CIFs using only high-
level descriptors like composition and symmetry, without explicitly incorporating experimental constraints.
While these methods represent significant advancements in generative CSP, they remain disconnected from
direct experimental observations, which are often critical for accurate and practical structure determination.

CSP with diffusion models: In parallel to transformer-based LLM approaches, diffusion- and flow-based
generative models have emerged as complementary methods for CSP (Jiao et al., 2023; Miller et al., 2024;
Zeni et al., 2025; Xie et al., 2022). These frameworks typically utilize compositional constraints or partial
structural information to guide structure generation and have shown promise in reliably predicting stable
crystalline configurations. However, like many transformer-based CSP methods, diffusion-based models
predominantly rely on purely computational constraints. The recent framework MatterGen (Zeni et al.,
2025) has made notable strides by enabling generative modeling conditioned on a variety of property-based
constraints, improving predictions for structures likely to be synthesizable. Nevertheless, direct conditioning
on experimental data, such as PXRD patterns, remains underexplored in diffusion-based CSP, underscoring
the necessity for methods that bridge computational generation with explicit experimental data conditioning.

3 Methods

Consider a crystal structure represented in the CIF format, tokenized into a sequence of length Ti: xi =
(xi

1, xi
2, . . . , xi

Ti
) (see Appendix A.3 for details). The corresponding PXRD pattern, denoted by yi, is a

continuous-valued vector encoding the intensity profile of the diffraction pattern. Our dataset thus comprises
pairs of CIF sequences and their corresponding PXRD patterns: D = [(xi, yi)]Ni=1. Our objective is to
minimize the negative conditional log-likelihood over this training data:

L(X|Y; Θ) = 1
N

N∑
i=1

(
−

Ti∑
t=1

log PΘ(xi
t|xi

<t, yi)
)

. (1)
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This is accomplished through the transformer-based conditional autoregressive model fΘ(·), termed deCIFer.
Given PXRD data, deCIFer generates crystal structures in the CIF format autoregressively.

PXRD Conditioning: PXRD data explicitly encodes structural fingerprints of crystal structures. We
leverage PXRD as a direct conditioning input to guide our CSP.

Using standard crystallographic procedures, we generate discrete diffraction peaks from CIF structures,
represented as the set P = {(qk, ik)}n

k=1, via pymatgen (Ong et al., 2013). These peaks are transformed into
continuous PXRD patterns, y, under synthetic experimental conditions. Formally, let T represent a set of
transformations applied to P.

To establish a robust baseline model, our transformations reflect simplified but fundamental experimental
artifacts: each transformation τ ∼ T consists of (1) peak broadening characterized by a full-width-at-half-
maximum (FWHM) sampled uniformly from 0.001 to 0.100, and (2) additive Gaussian noise with variance
σ2

noise uniformly sampled from 0.001 to 0.050. A new τ is sampled for each training sample on every
epoch, ensuring diverse exposure to synthetic experimental variability. For evaluation purposes, we define a
fixed transformation, τfixed, with specific parameters governed by the experiments to systematically assess
robustness, and a clean transformation τ0 (FWHM = 0.05, σ2

noise = 0) to assess similarity in context of
PXRD. Examples from T on a PXRD are shown in Figure 9 (in Appendix).

Conditioning Model: PXRD patterns are embedded into a learned vector space via a multilayer perceptron
(MLP) fΦ(y), parameterized by Φ. The resulting embedding vector e = fΦ(y) ∈ RD is prepended to the
tokenized CIF sequence, providing a direct conditioning mechanism. Joint optimization of the embedding
network fΦ and the transformer model fΘ results in our final objective: L(X|Y; Θ, Φ).

Sequence Packing and Isolation: To handle variable-length CIF sequences efficiently during training, we
employ sequence packing, inspired by recent methods in NLP (Kosec et al., 2021). Tokenized CIF sequences,
each of length Ti, are concatenated into fixed-length segments of context size C = 3076, chosen to optimize
GPU usage and throughput. Formally, a packed sequence is represented as S = [e1, t1

1, . . . , t1
T1

, e2, t2
1, . . . , tn

k ],
where each ei is the D-dimensional conditioning embedding, and ti

j are input embeddings. Long CIFs
exceeding C tokens are split between sequences inside batches, but occur infrequently (≈0.04% of sequences;
see Figure 10 in the Appendix). To reduce adverse effects from splits, data shuffling is performed each epoch.

Isolation between CIFs within a packed sequence is ensured by an attention mask M, where Mkl = 1 if tokens
k and l originate from the same CIF, and 0 otherwise, resulting in block-wise diagonal attention structures
(shown in Figure 8 in the Appendix). Additionally, positional encodings are reset at each CIF boundary,
preventing leakage of positional information across CIF sequences.

4 Dataset and Experiments

Dataset: We utilize two large-scale open-source datasets that serve as the foundation for this study. The
first, NOMA, is a synthetic dataset comprising crystal structures aggregated in CrystaLLM (Antunes
et al., 2024), sourced from the Materials Project (April 2022) (Jain et al., 2013b), OQMD (v. 1.5, October
2023) (Kirklin et al., 2015), and NOMAD (April 2023) (Draxl & Scheffler, 2019). The second, CHILI-
100K (Friis-Jensen et al., 2024), contains experimentally determined structures curated from a filtered
subset of the Crystallography Open Database (COD) (Gražulis et al., 2009). NOMA is used for both
training and testing, while CHILI-100K is used exclusively for testing. Both datasets are open-source and
available for download.2

These datasets are intentionally chosen to approximate key aspects of real-world PXRD structure determi-
nation under controlled settings. Although synthetic in nature, they represent a practical and reproducible
foundation for benchmarking models under basic structural and experimental variability. We note that these
datasets are not intended to span the full spectrum of real experimental complexity. Rather, they are used
here to establish a robust baseline for future studies that incorporate richer experimental variation and direct
measurements.

2NOMA: github.com/lantunes/CrystaLLM (CC-BY 4.0 licence), CHILI-100K: github.com/UlrikFriisJensen/CHILI
(Apache 2.0 licence).
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Preprocessing: We follow the standard CrystaLLM preprocessing pipeline and apply additional steps to
ensure consistency between NOMA and CHILI-100K. For NOMA, we select the lowest-volume structure
per composition, filter duplicates, and retain only fully occupied CIFs with standardized formatting. The
resulting dataset comprises approximately 2.3 million structures containing between 1–10 elements, up to
atomic number 94 (excluding unstable or radioactive elements). Floating point values are rounded to four
decimal places. For CHILI-100K, we retain ≈ 8,200 experimentally derived CIFs with up to 8 elements,
including atoms up to atomic number 85. Detailed statistics including space group distributions, token
lengths, and composition diversity are provided in Appendix Figures 10 and 11.

Due to the known overrepresentation of high-symmetry structures in synthetic databases (Davariashtiyani
et al., 2024; Zhang et al., 2023), we apply stratified sampling during the NOMA train/validation/test split
based on space group labels. This mitigates structural distributional biases and improves evaluation robust-
ness. For further details, see Section A.9.

Tokenization: All CIFs are tokenized using a 373-token vocabulary, including space group and element sym-
bols, CIF tags, numerics, punctuation, and conditioning tokens. See Sections A.2 and A.3 in the Appendix
for full preprocessing details.

Model Hyperparameters: deCIFer consists of two components: the PXRD encoder fΦ, a 2-layer MLP
that maps a 1000-dimensional PXRD profile into a 512-dimensional embedding; and the structure generator
fΘ, an 8-layer decoder-only transformer (Vaswani et al., 2017) with 8 attention heads per layer. The token
dimension is set to 512 for both components. The model is trained using AdamW (Loshchilov & Hutter, 2017)
with a batch size of 32 and a context length of 3076. Learning rate is linearly warmed up over the first 100
steps, followed by a cosine decay over 50,000 steps. Gradient accumulation (40 steps) and mixed-precision
training are used on a single NVIDIA A100 GPU.

The total parameter count is 27.72M: fΦ has ≈ 0.78M and fΘ has ≈ 26.94M. All components are implemented
in PyTorch (Paszke et al., 2019). Full architectural and training details are provided in Section A.9.

Evaluation: Figure 2 outlines the evaluation procedure. A reference CIF from the test set is first converted
into a discrete set of diffraction peaks, P = {(qk, ik)}n

k=1, which are then transformed into a continuous
PXRD pattern y = τfixed(P), where τfixed simulates a predefined experimental setting. This PXRD signal,
along with any optional descriptors (e.g., space group or composition), is passed to deCIFer to generate a
new CIF structure, CIF∗. All evaluations are based on a clean transformation τ0 with FWHM = 0.05 and
no added noise.

Figure 2: Evaluation pipeline: A test set CIF gener-
ates a PXRD profile, tokenized for deCIFer to produce
a new CIF, compared to the reference using a clean
transformation.

We evaluate the generated structures using three
complementary metrics:

(1) Residual Weighted Profile (Rwp) quantifies
the difference between the reference and gener-
ated PXRD profiles. It is computed as Rwp =√∑

i
(yi−y∗

i
)2∑

i
y2

i

, where all weights wi = 1, following
convention.

(2) Match Rate (MR) measures geometric similar-
ity using StructureMatcher (Ong et al., 2013).
Two CIFs are considered a match if their lattice,
atomic positions, and symmetry match within toler-
ance thresholds. MR is the fraction of matches over
the total number of test structures. Full details are
given in Appendix Section A.7.

(3)Validity (Val.) assesses whether the generated CIF is internally consistent. A structure is considered
valid only if it passes all four checks: formula balance, site multiplicity, realistic bond lengths, and symmetry
agreement. See Appendix Section A.6 for criteria.
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These metrics were chosen for their practical relevance in evaluating structure predictions from PXRD data.
While each carries limitations, they jointly capture fidelity to both diffraction signals and crystallographic
constraints.

Experiments: We designed four controlled experiments to assess deCIFer’s ability to perform PXRD-
conditioned CSP across a range of settings:

(1) Comparison with State-of-the-Art: We benchmark deCIFer against three recent CSP models that rely
solely on composition or symmetry constraints, evaluating the benefit of PXRD-based conditioning.

(2) Ablation of PXRD Conditioning: We compare deCIFer with an unconditioned variant, U-deCIFer, to
isolate the contribution of PXRD data to the quality of generated structures.

(3) Robustness to Perturbations: We apply deCIFer to PXRD data with varying levels of synthetic noise and
peak broadening, simulating more challenging, experimentally relevant conditions.

(4)Generalization to CHILI-100K: We evaluate deCIFer (trained on NOMA) on the CHILI-100K dataset to
assess generalization to more chemically and structurally diverse experimental data.

In all experiments, we generate one structure per PXRD input. Where applicable, we optionally include
crystal descriptors such as space group and composition. Since these properties are natively encoded in CIFs,
we treat them as standard tokens during both training and inference (see Section A.3). These descriptors
are inserted at the appropriate positions in the CIF, such as in the header or composition block. Unless
otherwise noted, all evaluations use the clean PXRD transformation τ0. In some experiments, we introduce
controlled variations (τfixed) to simulate in-distribution (ID) and out-of-distribution (OOD) conditions.

5 Results

Baseline Comparisons with State-of-the-art: We compare deCIFer with three state-of-the-art CSP
models: CDVAE (Xie et al., 2022), DiffCSP (Jiao et al., 2023), and CrystaLLM (Antunes et al., 2024).
Crucially, these models approach a fundamentally different version of the problem: they aim to generate
chemically plausible crystal structures conditioned only on high-level descriptors such as composition or
symmetry. Their training objective is to model the distribution of likely structures; independent of any
specific experimental observation. In contrast, deCIFer performs PXRD-CSP, which transforms the task
from unconstrained generative modelling to structure determination.

To compare these models within a shared evaluation setup, we follow the protocol used in prior work (Antunes
et al., 2024): for each test composition, a single structure is generated and evaluated using match rate and
atomic root-mean-square error (RMSE). Table 1 shows the results.

The baseline models are provided only the composition. Nevertheless, they achieve remarkably high match
rates. This performance is largely explained by strong learned priors: many of the test compositions appear
frequently during training and are associated with a dominant structure type. In such cases, the models
often succeed simply by reproducing the most statistically likely configuration.

However, this exposes an important limitation. For a given composition, there may exist multiple distinct
crystal structures (known as polymorphs) that differ in atomic arrangement but share the same elemental
makeup. In these cases, selecting the "most likely" structure does not guarantee that the chosen structure
matches the one reflected in a specific measurement. The high match rates achieved by composition-only
models therefore reflect alignment with training set frequencies, not with experimental ground truth.

deCIFer, by contrast, can only partially rely on compositional priors and is explicitly constrained by the
PXRD signal, which defines a more structurally constrained and underdetermined prediction task. As
shown in Table 1, deCIFer achieves substantially higher match rates on Perov-5 and Carbon-24, where the
PXRD patterns offer strong structural signals. On MP-20 and MPTS-52, however, the match rate drops
significantly. This performance drop may stem from the fact that the PXRD signal, when weak or ambiguous,
does not sufficiently narrow the space of plausible structures; or worse, it may mislead the model away from
the correct solution. In such cases, deCIFer appears unable to resolve the true structure from the PXRD
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Table 1: Performance comparison on four public CSP benchmarks: Perov-5 (Castelli et al., 2012a;b), Carbon-
24 (Pickard, 2020), MP-20 (Jain et al., 2013a), and MPTS-52 (Baird, 2023). Following the single-sample
evaluation protocol used in prior work (Antunes et al., 2024), one structure is generated per test composition.
We report the match rate (%) based on structural equivalence under StructureMatcher and the atomic root-
mean-square error (RMSE in Å) after alignment.

Perov-5 Carbon-24 MP-20 MPTS-52

Model Match (%)↑ RMSE↓ Match (%)↑ RMSE↓ Match (%)↑ RMSE↓ Match (%)↑ RMSE↓

CDVAE 45.31 0.1138 17.09 0.2969 33.90 0.1045 5.34 0.2106
DiffCSP 52.02 0.0760 17.54 0.2759 51.49 0.0631 12.19 0.1786
CrystaLLM-small 47.95 0.0966 21.13 0.1687 55.85 0.0437 17.47 0.1113
CrystaLLM-large 46.10 0.0953 20.25 0.1761 58.70 0.0408 19.21 0.1110
U-deCIFer 50.55 0.1177 17.33 0.1526 44.99 0.0784 11.80 0.1563

deCIFer 85.29 0.0491 37.16 0.1970 43.51 0.0763 11.44 0.1346

input, suggesting that conditioning does not always help, and in some cases might even interfere with the
model’s prior-based predictions.

Still, this failure is instructive. It highlights the genuine difficulty of structure determination in the presence
of polymorphism and non-discriminative PXRD data. Unlike traditional CSP models, which confidently
return the most likely structure according to their priors, deCIFer attempts to resolve structure conditioning
on observable data. When that data is inconclusive, the model’s uncertainty is reflected in its predictions.
This makes direct comparison with baseline models difficult: while they often outperform deCIFer on average
metrics, their success reflects the simplicity of the task they are solving. In contrast, deCIFer engages with
the more complex problem of interpreting a measurement. This is a problem that naturally includes failure
modes, ambiguity, and uncertainty, all of which are essential elements in real-world structure determination.

Importance of PXRD Conditioning: Having established the challenges of PXRD-CSP in ambiguous
cases, we now examine the effect of PXRD conditioning within a controlled synthetic setting. Specifically,
we compare deCIFer with its unconditioned variant (U-deCIFer) on the NOMA test set, using simulated
PXRD profiles with controlled noise and broadening. This ablation isolates the impact of PXRD input by
evaluating both models under identical architectural conditions, varying only in the inclusion of structural
conditioning.

We consider three descriptor settings: (i) no additional input ("none"), (ii) composition only ("comp."), and
(iii) composition plus space group ("comp. + s.g."). Figure 3 shows that deCIFer consistently outperforms
U-deCIFer across all settings in terms of Rwp, indicating a closer match between the generated and reference
PXRD profiles. While U-deCIFer benefits from access to composition and symmetry descriptors, it never
reaches the fidelity achieved by PXRD-conditioned generation.

The improvement is particularly pronounced in the absence of any crystal descriptors, where deCIFer sig-
nificantly outperforms U-deCIFer. This demonstrates that PXRD alone provides a strong structural signal,
whereas unconditioned generation collapses without access to priors. The gains persist when descriptors
are included, with PXRD further narrowing the solution space toward structures that reproduce the target
pattern.

Figure 4 further supports this, showing that performance is best for common, high-symmetry crystal systems,
while rare or low-symmetry systems remain more difficult. The three test examples illustrate the spectrum
of outcomes: from precise structural matches to clear mismatches, reflecting the varying information content
in the PXRD input.

Robustness to Perturbations in PXRD Conditioning: The improvements observed on clean synthetic
data naturally raise the question of robustness: how well does PXRD conditioning hold up under more
realistic, noisy conditions? To evaluate this, we systematically perturb the PXRD input along two key axes:
additive noise and peak broadening. These transformations mimic the most basic experimental distortions
and allow us to study deCIFer’s behaviour across increasingly challenging input scenarios, while also providing
the composition as a crystal descriptor.
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0.0 1.0 2.0 3.0
Rwp

none comp. comp.+s.g.

Desc. Model Rwp (µ ± σ) ↓ Val. (%) ↑ MR (%) ↑

none U-deCIFer 1.24 ±0.26 93.49 0.00
deCIFer 0.32 ±0.34 92.66 5.01

comp. U-deCIFer 0.82 ±0.41 93.78 49.30
deCIFer 0.25 ±0.29 93.73 91.50

comp.+s.g. U-deCIFer 0.65 ±0.36 93.72 87.07
deCIFer 0.24 ±0.29 93.90 94.53

Figure 3: Left: Distribution of Rwp for deCIFer and U-deCIFer on the NOMA test set with boxplots.
Lower Rwp indicates better CIF alignment. Right: Performance for 20K NOMA test samples using deCIFer
and U-deCIFer with different descriptors: none (no descriptors), comp. (composition), and comp.+ s.g.
(composition + space group). Metrics include validity (Val.) and match rate (MR).
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Figure 4: Left: Average Rwp by crystal system for deCIFer on the NOMA test set shows better performance
for common high symmetry systems and higher Rwp for rare low symmetry systems. Right: Examples from
the NOMA test set highlight this trend with predicted structures from PXRD and composition maintaining
reasonable matches even for low symmetry systems with higher Rwp.

As summarized in Figure 5, deCIFer remains remarkably stable under in-distribution noise and broadening
(as defined by the training set transformations, T ). Even as the PXRD signal becomes progressively de-
graded, the model maintains strong alignment with target profiles (Rwp) and structure validity. Only under
extreme out-of-distribution (OOD) conditions does performance degrade more noticeably. Importantly, this
degradation is gradual and consistent with the level of distortion, indicating that the model is not overfitting
to narrow PXRD conditions but has learned a robust mapping from signal to structure.

Unsurprisingly, as shown in Appendix Figure 15, lower-symmetry crystal systems remain more difficult to
recover under perturbation. But crucially, this behaviour is consistent across conditions, reaffirming that
structural ambiguity is a core challenge and not a side effect of noise sensitivity. This supports the view
that deCIFer is robust to experimental imperfections at the level of simulation, a critical prerequisite for
real-world deployment.

OOD Evaluation on CHILI-100K: To test whether this robustness extends beyond synthetic boundaries,
we evaluate deCIFer on the CHILI-100K dataset: a curated set of experimentally determined crystal struc-
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0.0 1.0 2.0 3.0
Rwp

ID: (0.00, 0.05)

ID: (0.05, 0.10)

OOD: (0.10, 0.20)

Dataset (σ2
noise, FWHM) Rwp (µ ± σ) ↓ Val. (%) ↑ MR (%) ↑

NOMA
ID: (0.00, 0.05) 0.25±0.29 93.73 91.50
ID: (0.05, 0.10) 0.31±0.30 93.77 89.28

OOD: (0.10, 0.20) 0.65±0.34 91.66 77.66

CHILI-100K
ID: (0.00, 0.05) 0.70±0.37 41.83 37.34
ID: (0.05, 0.10) 0.73±0.36 40.95 35.97

OOD: (0.10, 0.20) 0.87±0.33 33.62 26.09

Figure 5: Left: Distribution of Rwp for deCIFer on NOMA and CHILI-100K using PXRD conditioning and
composition (comp.) across three scenarios: clean, high noise/broadening, and out-of-distribution (OOD),
with noise and FWHM values indicated. Right: Corresponding table of performance metrics, including Rwp,
overall validity (Val.), and match rate (MR) for each scenario.

tures with significantly greater structural complexity and lower symmetry than NOMA. CHILI-100K contains
no overlap with deCIFer’s training data, and thus serves as a structurally out-of-distribution benchmark.

Importantly, while the underlying crystal structures in CHILI-100K are experimentally determined, the
PXRD patterns used for conditioning are still synthetically generated using the same fixed transformation
τfixed defined in Section 3. This ensures a controlled and consistent simulation setup, but means that
real-world experimental artifacts such as background noise, preferred orientation, or instrument-specific
distortions are not yet captured.

The results are summarized in Figure 5 and Table 2. Despite the increased difficulty, deCIFer maintains
a reasonable Rwp and match rate, with only a modest performance drop under in-distribution noise and
broadening. As expected, validity decreases due to bond length violations but remains interpretable. This
highlights the greater geometric complexity of experimental structures. The performance gap relative to
NOMA reflects the real structural diversity in CHILI-100K, not failure of conditioning. This is made appar-
rent by the results in Table 2, where PXRD conditioning leads to a clear improvement in match rate (from
25.9% to 37.3%) and a reduction in Rwp, confirming that the gain is not due to memorized compositional
priors but driven by alignment with diffraction information.

Table 2: Performance on CHILI-100K without
(U-deCIFer) and with (deCIFer) PXRD condi-
tioning.

Model Rwp ↓ Val. (%)↑ MR (%)↑

U-deCIFer 0.96 ± 0.32 43.26 25.92
deCIFer 0.70 ± 0.37 41.83 37.34

These findings reaffirm that deCIFer’s design enables it to
generalize beyond synthetic structure datasets and that
its failures reflect genuine difficulty rather than collapse.
PXRD conditioning proves beneficial not only in idealized
simulations but also in settings that approximate real-
world structure determination. We note, however, that
this evaluation focuses on structural diversity, while real-
world PXRD data may contain additional experimental
artifacts that could further challenge deCIFer’s robustness.

Consistency and Variability in CIF Generation: Building on these robustness results, we next ex-
amine deCIFer’s generative behaviour under repeated sampling from the same PXRD input. Specifically,
we investigate the consistency and variability of generated structures when the model is conditioned on a
fixed PXRD pattern but with different levels of descriptor constraint. Using a monoclinic structure from
the NOMA test set (Sr2Cd2Se4), we generate 16,000 CIFs under the three previously established settings:
no descriptors ("none"), composition only ("comp."), and composition plus space group ("comp. + s.g.").

Figure 6 illustrates the results. When no crystal descriptors are provided, deCIFer produces a wide variety of
cell parameters, compositions, and space groups, reflecting the model’s ability to explore the broader space
of PXRD-consistent structures. Interestingly, even in this unconstrained mode, the Rwp values are relatively
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Figure 6: deCIFer-sampled structures for a monoclinic Sr2Cd2Se4 PXRD profile (16K samples). a) Reference
structure. b) Distribution of Rwp for generated CIFs. c) Examples of generated structures showing best,
median, and diverse samples. d) Distribution of sampled crystal systems. e) Histograms of cell lengths (a,
b, c) and angles (α, β, γ) with reference values as dotted lines.

stable, clustering around a narrow range. This suggest that many structurally distinct outputs can yield
similar diffraction patterns.

In contrast, adding composition and space group constraints narrows the distribution of generated structural
parameters, as expected, but leads to broader Rwp distributions. This highlights the sensitivity of the Rwp
metric to subtle geometric differences, and highlights the importance of complementing it with other validity
or matching criteria. Notably, across all settings, the match rate to the reference structure remains high,
indicating that deCIFer can recover accurate solutions both in exploratory and constrained modes.

These findings support a flexible view of deCIFer: when crystal descriptors are known with confidence,
adding them improves convergence toward a precise structural solution; when exploring structural hypotheses
or navigating ambiguous PXRD signals, descriptor-free generation enables broader sampling of plausible
configurations without sacrificing physical fidelity.

6 Discussion and Outlook

PXRD-driven Structure Generation: The experiments in Section 5 demonstrate that incorporating
PXRD as a conditioning signal significantly improves the quality and relevance of generated structures,
especially when clear and informative diffraction patterns are available. On the NOMA test set, deCIFer
consistently produces structures that align closely with the PXRD target, outperforming unconditioned
or composition-only models. This supports a central claim of this work: conditioning on PXRD allows
generative models to move beyond compositional priors and directly engage with structural data.

At the same time, these results highlight that PXRD-CSP is inherently more challenging than traditional
CSP. When the diffraction signal is ambiguous or when multiple structural solutions (e.g., polymorphs)
produce similar PXRD patterns, deCIFer’s task becomes fundamentally underdetermined. In such cases
deCIFer’s performance declines.

Furthermore, our experiments show that deCIFer adapts flexibly to both constrained and unconstrained
inference scenarios. When provided with composition or space group descriptors, the model converges to
tighter solution distributions. When these are omitted, it samples a broader space of physically plausible
structures. This adaptability suggests that PXRD-CSP is not just a harder task, but also a more expressive
one, capable of supporting exploratory or targeted workflows depending on available information.

Extensibility through Conditioning: By embedding the PXRD signal y into a learnable conditioning
vector e = fΦ(y), deCIFer establishes a general and extensible mechanism for incorporating physical mea-

10



Under review as submission to TMLR

surements into generative modeling. This approach naturally generalizes: if additional data sources are
available (e.g., thermodynamic, spectroscopic, or electronic properties), they can be incorporated using sep-
arate conditioning networks. Formally, for P properties {y1, . . . , yP }, the conditional generation objective
becomes L(X|Y1, . . . , YP ; Θ, Φ1, . . . , ΦP ). This opens the door to multi-modal structure generation aligned
with experimental realities.

Limitations and Challenges: While the NOMA and CHILI-100K datasets are stratified and indepen-
dently curated, data leakage remains a nuanced concern in materials science, where structural or composi-
tional similarity can introduce implicit bias (Cheetham & Seshadri, 2024). However, rigorous preprocessing,
deduplication, and independent dataset design significantly reduce this risk.

Another key limitation lies in the nature of PXRD itself. Due to the phenomenon of homometry, where
different atomic arrangements produce indistinguishable diffraction patterns, PXRD-informed models can-
not always resolve structural degeneracy (Patterson, 1944; Schneider et al., 2010). Metrics like Rwp reflect
diffraction fit, not atomic uniqueness. Nonetheless, our results show that even partial inclusion of com-
plementary data (e.g., composition) can help disambiguate near-degenerate structures, particularly when
combined with fine-grained conditioning mechanisms (Shen et al., 2022).

Finally, while our perturbation and OOD experiments simulate realistic noise and broadening, they do
not yet capture the full complexity of experimental PXRD, such as peak asymmetry, background drift, or
instrumental artifacts. Addressing these effects will require further refinement of both data simulation and
conditioning mechanisms.

Outlook: deCIFer and the PXRD-CSP paradigm mark a step toward generative models that do not merely
recall statistically likely materials, but actively interpret physical measurements. This makes them fun-
damentally more aligned with the goals of structure determination in experimental settings. While this
approach introduces greater complexity and structural uncertainty, it also makes the generative process
more transparent, testable, and useful. Future work can expand on this foundation with richer experimental
conditioning, active-learning loops, and downstream applications in materials discovery and verification.

7 Conclusion

We introduced deCIFer, a PXRD-conditioned autoregressive language model for crystal structure predic-
tion. Unlike traditional CSP approaches that rely solely on compositional or symmetry priors, deCIFer
directly incorporates simulated PXRD profiles as conditioning input, enabling generation of CIFs that are
structurally consistent with diffraction measurements. The model is trained on large-scale synthetic datasets
and developed with lab-scale compute resources, yet demonstrates robust performance across varying noise
levels, peak broadening, and structural complexity, including out-of-distribution generalization.

deCIFer represents a foundational step toward PXRD-informed CSP: a formulation of structure prediction
that embraces physical constraints and explicitly addresses the ambiguity inherent in real-world data. While
this makes the problem harder, it also makes the model’s outputs more interpretable and testable. Our
results show that diffraction-guided conditioning substantially improves alignment with structural targets,
even when uncertainty or degeneracy is present.

In our comparison to existing state-of-the-art CSP models, we observed that composition-based methods
achieve high match rates on benchmark datasets; in large by relying on learned priors that align with
frequent structures in the training data. While these models perform well in terms of matching reference
structures, they operate under a simpler formulation that does not incorporate experimental constraints.
The comparison is therefore currently limited.

In practical terms, deCIFer is best viewed not as an end-to-end solution, but as a powerful structural
hypothesis generator. It is particularly effective when the PXRD signal is informative and we suspect that
it will be most effectively used in tandem with expert evaluation or downstream refinement. By shifting
generative modelling closer to experimental reality, deCIFer lays the groundwork for more integrated and
data-aware materials discovery pipelines.
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A Appendix

A.1 Code and Data Availability

The code for training and using the deCIFer model is open source and released under the MIT License.
Official source code will be available. An anonymized version of the repository is available here: https:
//anonymous.4open.science/r/deCIFer-2B43/.

A.2 CIF Syntax Standardization

To enhance the transformer model to process CIFs effectively, we standardized all CIFs in the dataset. In-
spired by CrystaLLM (Antunes et al., 2024), we employed similar pre-processing and tokenization strategies,
incorporating additional steps to ensure that CHILI-100K (Friis-Jensen et al., 2024) was aligned to the stan-
dardized format of NOMA, by the removal certain details such as oxidation states and partial occupancies.
We employ the following steps:

1. Uniform Structure Conversion: CIFs were converted to pymatgen.Structure (Ong et al., 2013)
objects to provide a consistent base representation.

2. Standardized CIF Regeneration: Using pymatgen.CifWriter (Ong et al., 2013), CIFs were
regenerated to ensure uniform formatting, eliminate customs headers, etc.

3. Data Tag Normalization: The reduced formula, following the data_ tag was replaced with the
full cell composition, sorted by atomic number for consistency.

4. Symmetry Operator Removal: Symmetry operators were excluded during pre-processing to
simplify the data, but reintroduced during evaluation for validating structural matches. This can
easily be done because the reintroduction process uses the space group information retained in the
pre-processed files, ensuring compatibility and accuracy.
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5. Incorporation of Extra Information: Custom properties that are easily derived from the com-
position of each CIF, such as electronegativity, atomic radius, and covalent radius, were appended
to each CIF to maximize the readily available information within each CIF.

6. Oxidation State and Occupancy Filtering: Oxidation state refers to the charge of an atom
within a compound, which can vary depending on chemical bonding. Occupancy indicates the
fraction of a particular atomic site that is occupied in the crystal structure (e.g., a value of 1.0
represents a fully occupied site, while 0.5 indicates partial occupancy). All traces of oxidation
states were removed, and only crystal structures with full occupancy were retained. This ensures
consistency by aligning CHILI-100K (Friis-Jensen et al., 2024) with the standardized format of
NOMA (Antunes et al., 2024).

7. Numerical Value Normalization: Numerical values were rounded to four decimal places.

Figure 7 shows a pre-processed and standardized CIF from the NOMA dataset alongside its corresponding
unit cell representation and a realisation of its corresponding PXRD profile, as could be input into deCIFer.

Figure 7: Illustration of a CIF after applying the pre-processing and standardization steps described. Also
shown are the corresponding unit cell representation using VESTA (Momma & Izumi, 2008) for visualiza-
tion and the simulated PXRD profile (with σ2 = 0.00 and FWHM=0.01). The red highlight in the CIF
indicates where the original symmetry operators were replaced during pre-processing and would be restored
for evaluation.

A.3 CIF Tokenization

To process CIF files effectively, we tokenized each file into a sequence of tokens using a custom vocabulary
tailored to crystallographic data in the CIF format. Each CIF was parsed to extract key structural and
chemical information, such as lattice parameters, atomic positions, and space group symbols. Numerical
values were tokenized digit-by-digit, including decimal points and special characters as separate tokens.
Table 3 shows all supported tokens.

A.4 Attention Masking Strategy

Figure 8 provides a detailed visualization of the attention masking strategy employed in our model. It
illustrates the log-mean attention weights (averaged over all heads) for a sample sequence, highlighting
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Table 3: Supported atoms, CIF tags, space groups, numbers, and special tokens.

Category Num. Tokens

Atoms 89 Si C Pb I Br Cl Eu O Fe Sb In S N U Mn Lu Se Tl Hf Ir Ca Ta Cr K Pm Mg Zn
Cu Sn Ti B W P H Pd As Co Np Tc Hg Pu Al Tm Tb Ho Nb Ge Zr Cd V Sr Ni
Rh Th Na Ru La Re Y Er Ce Pt Ga Li Cs F Ba Te Mo Gd Pr Bi Sc Ag Rb Dy
Yb Nd Au Os Pa Sm Be Ac Xe Kr He Ne Ar

CIF Tags 31 data_
loop_
_symmetry_space_group_name_H-M
_symmetry_Int_Tables_number
_cell_length_a
_cell_length_b
_cell_length_c
_cell_angle_alpha
_cell_angle_beta
_cell_angle_gamma
_cell_volume
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
_symmetry_equiv_pos_as_xyz
_chemical_formula_structural
_cell_formula_units_Z
_chemical_name_systematic
_chemical_formula_sum
_atom_site_symmetry_multiplicity
_atom_site_attached_hydrogens
_atom_site_label
_atom_site_type_symbol
_atom_site_B_iso_or_equiv
_symmetry_equiv_pos_site_id
_atom_type_symbol
_atom_type_electronegativity
_atom_type_radius
_atom_type_ionic_radius
_atom_type_oxidation_number

Space
Groups

230 P6/mmm Imma P4_32_12 P4_2/mnm Fd-3m P3m1 P-3 P4mm P4_332 P4/nnc
P2_12_12 Pnn2 Pbcn P4_2/n Cm R3m Cmce Aea2 P-42_1m P-42m P2_13 R-
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the isolation of CIFs through attention masking. The figure also demonstrates how the embeddings of the
second CIF attend to the conditioning PXRD embedding. Lighter shades in the figure correspond to stronger
attention values.

A.5 PXRD Simulation

What do the axes in PXRD mean? In a typical PXRD experiment, the x-axis corresponds to the
magnitude of the scattering vector, commonly denoted by Q (in units of Å−1), or sometimes the diffraction
angle 2θ. In this work, we use Q = 4π sin θ

λ where λ is the radiation wavelength and θ is the scattering angle.
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Figure 8: Visualization of the attention masking strategy, showing the log-mean attention weights (averaged
over all heads) for an example sequence and highlighting how CIFs are isolated using the attention mask. The
figure also illustrates how the embeddings of the second CIF attend to the conditioning PXRD embedding.
Lighter shades indicate stronger attention.

Figure 9: Simulated PXRD profiles with fixed transformation of FWHM and σ2
noise as indicated. Discrete

peaks, P = {(qk, ik)}n
k=1, are shown in red, while the convolved PXRD profiles, y, are shown in blue.

Examples with minimal and maximal noise and broadening levels are shown for a compound with composition
CdRhBr2 and space group R3m.

The y-axis represents the scattered intensity observed at each Q-value, sometimes normalized to have a
maximum intensity of 1.

Peak data and transformations. Following the methods section, we start with the discrete diffraction
peak data: P = (qk, ik)n

k=1, where each qk is the center of a reflection peak, and ik is the associated
peak intensity. To simulate experimental effects, we apply transformation τ ∼ T , which includes peak
broadening and additive noise.
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Peak broadening. For each peak k, centered at qk, we convolve an idealized delta function peak with a
pseudo-Voigt profile. At the continuous variable Q, the psuedo-Voigt profile is the mixture of a Lorentzian
L and a Gaussian G, such that

PVk(Q − qk) = ηL(Q − qk) + (1 − η)G(Q − qk), (2)

where 0 ≤ η ≤ 1 is fixed at η = 0.5 in this work.

Let FWHM denote the full width at half maximum. The Lorentzian half-width is then γ = FWHM
2 , making

L(Q − qk) = 1
1 +

(
Q−qk

γ

) . (3)

The Gaussian standard deviation is σ = FWHM
2

√
2 ln 2 , making

G(Q − qk) = exp
(

− 1
2

(
Q−qk

σ

)2
)

. (4)

Convolved PXRD. Given the peak centers qk, itensities ik, and a choice of FWHM, we obtain the
convolved PXRD profile

Iconv(Q) =
n∑

k=1
ik PVk(Q − qk). (5)

Afterwards, we normalize Iconv(Q) so that its maximum intensity is 1.

Noise addition. Let ϵ(Q) be drawn from a zero-mean Gaussian distribution with variance σ2
noise. This

yields the final transformed intensity PXRD profile:

I(Q) = Iconv(Q) + ϵ(Q). (6)

Implementation details. In practice, we use the XRDCalculator from the pymatgen library (Ong et al.,
2013) for generating the initial discrete peak data P. For training, we sample Q-values in [Qmin, Qmax] at
increments of Qstep. We then apply random transformations τ during model training. Specific parameters
for FWHM and σnoise are listed in Table 4.

A.6 Validity Metrics

To evaluate consistency and chemical sensibility of the generated CIFs, we conduct a series of validation
checks. The methodology is described below.

Formula Consistency

We check for consistency in the chemical formula printed in different locations within the CIF. Specifically,
we ensure that:

• The chemical formula in the _chemical_formula_sum tag matches the reduced chemical formula
derived from the atomic sites.

• The chemical formula in the _chemical_formula_structural tag is consistent with the composition
derived from the CIF file.

Site Multiplicity Consistency

We validate that the total multiplicity of atomic sites is consistent with the stoichiometry derived from the
composition. Specifically, we ensure:

• The atom types are specified under the _atom_site_type_symbol tag.
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Table 4: Training configuration for deCIFer and U-deCIFer.

PXRD Transformation Training Parameters Value

Wavelength (λ) Cu-Kα (1.5406 Å)
Q-grid (Qmin, Qmax, Qstep) (0.0, 10.0, 0.01)
FWHM U ∼ (0.001, 0.10)
Mixing Factor (η) 0.5
Noise Magnitude U ∼ (0.001, 0.05)
Model / Training Parameters Value
Optimizer AdamW
Learning Rate 1 × 10−3

Warmup Steps 100
Decay Steps 50,000
Minimum Learning Rate 1 × 10−6

Weight Decay 0.1
Batch Size 32
Gradient Accumulation Steps 40
Maximum Iterations 50,000
Embedding Dimension (nembd) 512
Layers (nlayer) 8
Attention Heads (nhead) 8
Conditioning Model Layers (nc-layers) 2
Conditioning Model Hidden Size 512
Sequence Length (block_size) 3076
Precision float16
Dropout 0.0

• The multiplicity of each atom is provided in the _atom_site_symmetry_multiplicity tag.

• The total number of atoms derived from these tags matches the stoichiometry derived from the
_chemical_formula_sum tag.

Bond Length Reasonability

To check the reasonableness of bond lengths:

• We use a Voronoi-based nearest-neighbour algorithm implemented in the CrystalNN module of
pymatgen (Ong et al., 2013) to identify bonded atoms.

• For each bond, the expected bond length is calculated based on the atomic radii and the electroneg-
ativity difference between the bonded atoms:

– If the electronegativity difference is greater than or equal to 1.7, the bond is treated as ionic,
and the bond length is based on the cationic and anionic radii.

– Otherwise, the bond is treated as covalent, and the bond length is based on the atomic radii.

• A bond length reasonableness score B is computed as the fraction of bonds whose lengths are within
±30% of the expected lengths.

• A structure passes this test if B ≥ cbond, where cbond = 1.0.

Space Group Consistency

We validate the space group by:
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• Extracting the stated space group from the _symmetry_space_group_name_H-M tag.

• Analyzing the space group symmetry using the SpacegroupAnalyzer class in pymatgen (Ong
et al., 2013), which employs the spglib (Togo & Tanaka, 2018) library.

• Comparing the stated space group with the one determined by the symmetry analysis.

Overall Validity

A CIF file is deemed valid if all the above checks are satisfied:

• Formula consistency (FM).

• Site multiplicity consistency (SM).

• Bond length reasonableness B ≥ cbond, where cbond = 1.0 (BL).

• Space group consistency (SG).

A.7 Match Rate

The Match Rate (MR) quantifies how many generated structures successfully match their corresponding
reference structures, as determined by StructureMatcher from the pymatgen library (Ong et al., 2013). Two
structures are considered a match if their compositions, lattice parameters, atomic coordinates, and symmetry
are sufficiently similar, according to the tolerances set in StructureMatcher. For the implementation of
deCIFer, we follow the example set by CrystaLLM (Antunes et al., 2024), using the parameter values:

• stol = 0.5: site tolerance, defined as a fraction of the average free length per atom.

• angle_tol = 10◦: maximum angular deviation tolerance.

• ltol = 0.3: fractional length tolerance, meaning the lattice parameters can differ by up to 30%
relative to the reference lattice.

StructureMatcher compares two structures by:

• Optionally reducing them to primitive (Niggli) cells.

• Verifying that the lattice parameters are within the fractional length tolerance (ltol).

• Checking that the angles are within the angle tolerance (angle_tol).

• Ensuring that atomic coordinates align within the site tolerance (stol), normalized by the average
free length per atom.

With these parameters, each generated CIF is compared against its reference CIF*. If the two structures
are deemed structurally equivalent, we count that as a successful match. MR is computed as the fraction of
structures in the dataset for which a match is found:

MR = 1
N

N∑
i=1

1
(
match(CIF, CIF∗)

)
, (7)

where N is the total number of structures and 1(·) is an indicator function that returns 1 if two structures
match (according to StructureMatcher) and 0 otherwise.

A.8 Datasets Statistics

Figure 10 illustrates the NOMA dataset. Figure 11 illustrates the statistics of the curated CHILI-100K (Friis-
Jensen et al., 2024) dataset.
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Figure 10: Statistical overview of the NOMA (Antunes et al., 2024) dataset (2,283,346 total samples), showing
the distribution of space group frequencies, the number of elements per unit cell, elemental occurrences and
CIF token lengths (indicating the percentage of CIFs with larger token sequences than the context length of
3076)

A.9 Model Architecture- and Training Details

Table 4 provides a concise overview of all hyperparameters and data augmentation settings used for training
deCIFer (and its variant U-deCIFer). Below, we describe additional implementation details.

Data-stratification We extract the space group number from each CIF (ranging from 1 to 230) and group
these into bins of size ten (e.g., 1–10, 11–20, etc.). This heuristic aims to preserve the overall symmetry
distribution across splits while reducing the risk of data leakage from structurally similar entries appearing in
multiple subsets. While this does ensures coverage across symmetry classes and even representation of crystal
systems across the splits, it does not reflect the most intuitive or principled grouping scheme. In particular,
it does not account for finer-grained biases that may be embedded in crystal symmetry or composition distri-
butions. This points to a broader issue in materials datasets: statistical artefacts, such as the "Rule of Four"
or symmetry clustering (Gazzarrini et al., 2024), can introduce shortcuts that models may learn, reducing
generalisation and interpretability (Palgrave, 2024). Future work should explore alternative stratification
strategies (e.g., stratified sampling based on structural descriptors) to better assess generalisation.

Hardware Setup All experiments were conducted on GPUs with sufficient memory to accommodate a
batch size of 32 tokenized sequences, each truncated or padded to a context length of 3076. We employed
half-precision (float16) to reduce memory usage and improve throughput, ensuring that gradient updates
remain numerically stable via built-in automatic mixed-precision.

Optimizer and Learning Rate Schedule. We adopt AdamW with a base learning rate of 1 × 10−3,
which is warmed up for 100 steps and then gradually decayed to 1 × 10−6 over 50,000 steps (Table 4).
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Figure 11: Statistical overview of the curated CHILI-100K (Friis-Jensen et al., 2024) dataset (8201 total
samples), showing the distribution of space group frequencies, the number of elements per unit cell, elemental
occurrences, and CIF token lengths (indicating the percentage of CIFs with larger token sequences than the
context length of 3076).

Weight decay is set to 0.1 to regularize model parameters, and we employ gradient accumulation (40 steps)
to effectively increase the total number of tokens processed per update.

Transformer Architectural Notes. The final transformer stack has 8 layers, each with 8 attention
heads, and a model dimension of 512 (embedding dimension). The feed-forward blocks inside each layer use
a dimension of 4 × 512, and dropout is set to 0.0 to minimize underfitting. We continue to observe stable
convergence in practice despite using no dropout.

Maximum Iterations and Convergence. We train for 50,000 iterations, at which point the model’s
cross-entropy loss stabilizes, as illustrated in Figure 12. Beyond this range, no significant improvements were
observed on validation metrics.

A.10 PXRD Embedding Space

For completeness, we examined the learned embeddings for 50K random training-set PXRD profiles and
applied principle component analysis (PCA) for visualization. As shown in Figure 13, the embeddings
form distinct gradients when colored by crystal system, cell-volumes, and constituent atomic numbers Z,
indicating that the model’s PXRD embedding captures relevant structural characteristics, such as symmetry,
scale, and elemental composition. These patterns highlight the effectiveness of the conditioning mechanism
in encoding meaningful structural information directly from the PXRD input.
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Figure 12: Cross-entropy loss curves for U-deCIFer and deCIFer over 50,000 training iterations, showing
progressive reduction in the training and validation losses.

Figure 13: 2D PCA projection of learned PXRD embeddings for 500K training-set samples from NOMA.
The three subplots are colored by crystal system, log(cell volume), and average atomic number Z, illustrating
clear gradients that correspond to structural and compositional features as indicated by the arrows.

A.11 Baseline Comparison with and without PXRD

With regards to the baseline comparison in Table 1, deCIFer is explicitly conditioned on PXRD data, while
the baseline models are conditioned only on composition or latent priors. This distinction means that the
comparisons are not direct but instead reveal the relative value of PXRD conditioning. In particular, PXRD
conditioning can improve structure prediction when the diffraction signal is rich in structural information,
but may introduce ambiguity or conflict with the model’s learned priors in cases where the PXRD pattern
is noisy or minimally informative. Perov-5 and Carbon-24 provide strong tests of PXRD conditioning due
to their polyhedral complexity and carbon-based structural diversity, where diffraction features can directly
inform the model. In contrast, MP-20 is drawn from the Materials Project, a dataset where composition-only
models may benefit from learned priors due to the high representation of standard chemistries. MPTS-52
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further challenges models with low-symmetry structures, where the PXRD signal can become ambiguous,
making it difficult for a model to resolve atomic positions purely from the diffraction pattern.

A.12 Additional Results

Figures 14, 15, and 16 provide additional insights into deCIFer’s performance. Table 5 shows a detailsed
breakdown of the validity metrics for the NOMA test set corresponding to the results in Figure 3. Table 6
shows a detailed breakdown of validity metrics for the NOMA test set and CHILI-100K test set evaluated
on two in-distribution (ID) scenarios and one out-of-distribution (OOD) scenario for the PXRD input.

A.13 Future Work

One promising area for improvement lies in exploring more advanced decoding strategies, such as beam
search, to enhance the generative model’s capabilities in downstream tasks. By maintaining multiple hy-
potheses during decoding, beam search could produce diverse candidate CIFs for a given PXRD profile,
improving structure determination accuracy by ranking outputs based on metrics like Rwp. This method
could also support optimization strategies that prioritize structural validity and relevance.

Another direction could be to integrate reinforcement learning from human feedback (RLHF) to guide the
model more directly toward generating accurate and chemically valid structures (Ziegler et al., 2019). By
defining a reward function tailored to properties such as low Rwp values, structural integrity, and adherence
to chemical constraints, and interaction with a human expert, RLHF could further refine the model’s outputs.

A complementary direction for future improvement lies in increasing the diversity of the training data. While
NOMA offers excellent scale, its distribution is skewed toward high-symmetry and well-sampled structures,
which limits model generalisation to more uncommon systems. CHILI-100K, with its broader structural com-
plexity and greater representation of low-symmetry crystals, could serve as a valuable training supplement.
Mixing synthetic and experimental data, or applying curriculum learning strategies that gradually expose
the model to under-represented symmetry groups, could improve generalisation and robustness, particularly
for monoclinic and triclinic systems, which remain challenging as seen in Figure 4.

Table 5: Validity of generated CIFs for the NOMA test set using deCIFer and U-deCIFer. Abbreviations:
Form = formula validity, SG = space group validity, BL = bond length validity, SM = site multiplicity
validity. Overall validity (Val.) is calculated as the percentage of CIFs that satisfy all four validity metrics
simultaneously. Match rate (MR) represents the percentage of generated CIFs that replicate the reference
CIF.

Desc. Model Form (%) ↑ SG (%) ↑ BL (%) ↑ SM (%) ↑ Val. (%) ↑ MR (%) ↑

none U-deCIFer 99.82 98.87 94.30 99.47 93.49 0.00
deCIFer 99.42 98.85 93.69 99.46 92.66 5.01

comp. U-deCIFer 99.87 99.09 94.40 99.46 93.78 49.30
deCIFer 99.68 99.21 94.37 99.55 93.73 91.50

comp.+s.g. U-deCIFer 99.85 98.88 94.51 99.47 93.72 87.07
deCIFer 99.74 99.26 94.38 99.58 93.90 94.53
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Table 6: Validity of generated CIFs for the CHILI-100K test set using deCIFer. Abbreviations: Form = for-
mula validity, SG = space group validity, BL = bond length validity, SM = site multiplicity validity. Overall
validity (Val.) is calculated as the percentage of CIFs that satisfy all four validity metrics simultaneously.
Match rate (MR) represents the percentage of generated CIFs that replicate the reference CIF.

Dataset (σ2
noise, FWHM) FORM (%) ↑ SG (%) ↑ BL (%) ↑ SM (%) ↑ Val. (%) ↑ MR (%) ↑

NOMA
ID: (0.00, 0.05) 99.68 99.21 94.37 99.55 93.73 91.50
ID: (0.05, 0.10) 99.64 99.18 94.39 99.55 93.77 89.28

OOD: (0.10, 0.20) 99.60 99.87 92.60 99.49 91.66 77.66

CHILI-100K
ID: (0.00, 0.05) 95.98 97.88 42.61 94.58 41.83 37.34
ID: (0.05, 0.10) 96.17 98.22 41.50 94.47 40.95 35.97

OOD: (0.10, 0.20) 95.80 98.42 34.11 93.91 33.62 26.09

0.0 1.0 2.0 3.0
Rwp

ID: (0.00, 0.05)

ID: (0.05, 0.05)

ID: (0.00, 0.10)

ID: (0.05, 0.10)

OOD: (0.10, 0.05)

OOD: (0.00, 0.20)

OOD: (0.10, 0.20)

Figure 14: Distribution of Rwp for deCIFer on the NOMA- and CHILI-100K test set, presented as violin
plots with overlain boxplots; the median is shown for each distribution. Presented are four in-distribution
transformations of the input PXRD profiles and three out-of-distribution transformations.
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Figure 15: Average metric values by crystal systems for deCIFer on the NOMA test set under two in-
distribution transformations of the input PXRD profiles and one out-of-distribution transformation. deCIFer
shows better performance for well-represented systems, while rarer, low-symmetry systems lead to worse
performance. The right-most plot shows crystal system distribution of the NOMA test set.
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Figure 16: Average metric values by crystal systems for deCIFer on the CHILI-100K test set show better
performance for well-represented systems in the training data (NOMA), while low-symmetry systems lead
to worse performance. The right-most plot shows crystal system distribution of the CHILI-100K test set,
highlighting that CHILI-100K contains a significantly higher proportion of lower-symmetry structures com-
pared to synthetic datasets like NOMA.
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