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Figure 1: Comparative of the time consumed for training the
SR model against the time required for BO during the train-
ing process of our MOBOSR. The temporal measurements
were conducted on an server with NVIDIA RTX 3090 GPU
and two Intel Xeon Gold 6226R CPUs. Epochs for Ours-[a,b,c]
are labeled for clarity.

1 Time Analysis
Bayesian Optimization (BO) minimizes the number of evaluations
by substituting the actual objective function with a surrogate func-
tion and heuristically determining the most promising points for
improvement through an acquisition function for subsequent eval-
uation rounds. Consequently, this approach significantly conserves
∗Corresponding author.

Table 1: Detailed comparison of time expended for sampling
points Ours-[a,b,c] and at the optimization cessation.

Point Epoch SR Time Elapse MOBO Time Elapse

Ours-c 476 38.8h 18.6h
Ours-b 759 61.4h 72.6h
Ours-a 889 71.7h 145.2h
End 1000 80.8h 248.4h

optimization iteration compared to evolutionary algorithms. How-
ever, the BO process necessitates the computation of the covariance
matrix, resulting in a time complexity of 𝑂 (𝑛3). If the objective
function be overly intricate or the problem dimensions too high, ne-
cessitating numerous optimization rounds, this would substantially
increase the optimization time.

In the main text, the three sampling points selected from the
perceptual-distortion Pareto front, labeled as Ours-[a,b,c], were
obtained at epochs 476, 759 and 889, respectively. As shown in Table
1 and Figure 1, the time consumed to train the Super-Resolution (SR)
model with Ours-c, obtained at epoch 476, was approximately half
of that required for BO. At epoch 759, the training time for the SR
model with Ours-b was nearly identical to that for BO. However, by
epoch 889, the time expended on BO for Ours-a was roughly half of
that for training the SR model. By the designated optimization halt
at epoch 1000, the time consumption for BO had become threefold
that of the SR model.

But, after optimization up to epoch 759 (Ours-c), there were no
significant changes in the Pareto front (as shown in Figure 2). We be-
lieve that the substantial advantages brought by ourMulti-Objective
Bayesian Optimization Super-Resolution (MOBOSR), and without
introducing any additional computational load during inference,
justify the mere doubling of training duration.
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Figure 2: Changes in the perception-distortion Pareto fron-
tier obtained by our MOBOSR after epoch 759.

Table 2: Analyses ofmulti-task learning on the DIV2K [1] val-
idation set. The best and second-best results are highlighted
in bold and underline, respectively. MTL methods show sig-
nificant improvements over the manually weighted ESRGAN
[12] but are not as effective as our MOBOSR.

Methods PSNR↑ SSIM↑ LR-PSNR↑ LPIPS↓
ESRGAN [12] 27.6994 0.7610 41.2244 0.1193
CAGrad [5] 28.4434 0.7803 47.5291 0.1161
NashMTL [7] 28.1606 0.7717 43.7037 0.1168

MOBOSR (Ours) 28.5089 0.7834 44.6847 0.1145

2 Discussion on Multi-Task Learning
Focusing on a single task may overlook the information from re-
lated tasks that could improve the target task. By sharing param-
eters between different tasks (with different loss functions) to a
certain extent may achieve better generalization for the original
task. Hence, we discuss the impact of Multi-Task Learning (MTL)
in balancing the distortion and perceptual quality for SISR models.
We initially consider using MTL to optimize multiple loss functions
to address the balance issue. We compare the results of our MO-
BOSR with 2 MTL methods (CAGrad [5] and NashMTL [7]), as well
as with ESRGAN [12]. As shown in Table 2, MTL methods show
significant improvements over the manually weighted ESRGAN
[12] but are not as effective as our MOBOSR. We believe this is
because MTL approaches just seek a single compromise between
multi-task/multi-loss rather than searching for the entire Pareto
frontier as MOBO does. But, the ability to achieve these outcomes
indicates that MTL merits further investigation.

3 Metrics Recalculation Details
Due to the variations in datasets and metrics reported by the meth-
ods under comparison, as well as the differences in implementation

details during metric computation, we have adopted a uniform met-
ric calculation method to re-evaluate the metrics of other methods.
This ensures a fairer comparison. We generated SR results for all
test sets using the model weights and inference code released by
the authors, followed by calculations using our standardized metric
computation program. Our codes for metric calculation are detailed
in the GitHub repository: https://github.com/ZhuKeven/MOBOSR.
Table 3 presents the metrics we recomputed alongside those re-
ported by the authors, with most showing no significant differences
and some even surpassing the reported results. Wang et al. only
reported metrics for the RRDB-PSNR [12] model trained with L1
loss, without providing the metrics for the ESRGAN [12] model
trained using GAN [2]. Consequently, we are unable to present the
ESRGAN [12] metrics comparison in Table 3 in the same manner
as for other methods.

4 More Quantitative Results
Due to the length constraints of the main text, we have included
the complete results for Ours-[a,b,c] here, as well as the metrics
for the RRDB-PSNR [12] model trained using L1 loss. Although
RRDB-PSNR [12] exhibits superior performance in terms of PSNR
and SSIM [13] metrics, the margin by which it surpasses Ours-
a is considerably less than the extent to which Ours-a exceeds
RRDB-PSNR [12] in perceptual (LPIPS) and consistency (LR-PSNR)
metrics. Not to mention that the RRDB-PSNR [12] was trained on
a significantly larger dataset, the DF2K-OST (13774 images), which
comprises the DIV2K [1] training set (800 images), Flickr2K [10]
(2650 images), and OST [11] (10,324 images), whereas our MOBOSR
was trained solely on the DIV2K [1] training set (800 images).

5 More Visual Results
We have included more visual comparison results here, including
the visualizations on the Urban100 [3] dataset as shown in Figure
3 and Figure 4, and the visualizations on the DIV2K [1] validation
set as shown in Figure 5.

References
[1] Eirikur Agustsson and Radu Timofte. 2017. NTIRE 2017 Challenge on Single

Image Super-Resolution: Dataset and Study. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW). 1122–1131.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (oct 2020), 139–144.

[3] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. 2015. Single Image Super-
Resolution From Transformed Self-Exemplars. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 5197–5206.

[4] Jie Liang, Hui Zeng, and Lei Zhang. 2022. Details or Artifacts: A Locally Discrim-
inative Learning Approach to Realistic Image Super-Resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
5657–5666.

[5] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. 2021. Conflict-
Averse Gradient Descent for Multi-task Learning. In Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS), Vol. 34. 18878–18890.

[6] Cheng Ma, Yongming Rao, Yean Cheng, Ce Chen, Jiwen Lu, and Jie Zhou. 2020.
Structure-Preserving Super Resolution With Gradient Guidance. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
7766–7775.

[7] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal
Chechik, and Ethan Fetaya. 2022. Multi-Task Learning as a Bargaining Game. In
Proceedings of the International Conference on Machine Learning (ICML), Vol. 162.
16428–16446.

[8] JoonKyu Park, Sanghyun Son, and Kyoung Mu Lee. 2023. Content-Aware Lo-
cal GAN for Photo-Realistic Super-Resolution. In Proceedings of the IEEE/CVF

https://github.com/ZhuKeven/MOBOSR


Supplementary Materials: Perceptual Oriented Image Restoration is a Multi-Objective Optimization Problem MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 3: Comparison of metrics calculated using our uniform method versus those reported by the authors, showing minimal
difference, with some even surpassing the reported results. The higher results are highlighted in bold. The symbols ↑ and ↓
indicate that higher or lower values of the metric are preferable.
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Author Recalculated Author Recalculated Author Recalculated Author Recalculated Author Recalculated
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Urban100 27.03 26.9859 24.799 24.8063 25.498 25.4781 25.290 25.2908 24.33 25.8452
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Set14 - 50.8098 - 43.6201 - 46.2893 - 41.5963 - 51.0679
DIV2K - 51.9030 - 44.8529 - 47.9757 - 42.8611 50.80 53.5488
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Figure 3: More visual comparisons on Urban100 [3].
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Table 4: Comparison ofOurs-[a,b,c] with other artworks on 7 datasets. The best, second-best and third-best results are highlighted
in bold, underline and italic, respectively. The symbols ↑ and ↓ indicate that higher or lower values of the metric are preferable.

Metric Method Train Datasets Set5 Set14 DIV2K BSD100 Urban100 General100 Manga109

PSNR↑
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CAL-GAN [8] DIV2K 31.0475 27.3272 28.9549 26.2581 25.2908 30.0742 29.1665
SROOE [9] DF2K 31.2455 27.2561 29.0990 26.1715 25.8452 30.4723 29.9017
Ours-a DIV2K 32.3663 28.7621 30.6384 27.6546 26.5285 31.6047 30.9787
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Ours-c DIV2K 31.8272 28.1766 29.9858 27.0494 26.0764 31.1164 30.2763
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Figure 4: More visual comparisons on Urban100 [3].
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Figure 5: More visual comparisons on DIV2K [1] validation set.
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