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6.1 Details for Comparison with Stable
Diffusion Baseline

For HAGRID evaluation, in the experiment with ‘Gesture Prompt’,
we use the prompt “a/an {ethnicity} {gender} facing the camera,
making a/an {gesture}, indoor", where “{gender}" can be man or
woman, “{ethnicity}" can be asian, black or white, and they follow
the frequency distribution of gender and ethnicity in HAGRID.
For “{gesture}" we use the following category-to-prompt mapping:
“call": “gesture of calling", “dislike": “thumbs down gesture", “fist":
“fist", “four": “hand gesture of four", “like": “thumbs up gesture",
“mute": “hush gesture", “ok": “ok gesture", “one": “hand gesture of
one", “palm", “hello gesture", “peace": “victory hand sign", “peace
inv.": “victory hand sign", “rock": “rock and roll gesture", “stop": “stop
hand sign", “stop inv.": “stop hand sign", “three": “hand gesture of
three", “three 2": “hand gesture of three", “two up": “hand gesture of
two", “two up inv.": “hand gesture of two". In the experiment without
‘Gesture Prompt’, we use the same prompt except the “{gesture}" is
replaced with generic “hand gesture".

For FreiHAND evaluation, since the hands in the FreiHAND
dataset have light skin tones, and most hand gestures are free poses
that can’t be described by gesture categories, we use the following
prompt “an/a asian/white man/woman making a hand gesture,
indoor". We crop around the hand regions in each generated image
so that each crop has a centered hand.

For the user survey, we use the prompt “a/an asian/black/white
man/woman making a hand gesture" to ensure the diversity of
characters. So different hand shapes and skin tones are covered in
the generated images.

6.2 Additional Details for Method
As a boundary case omitted from the main method section, we also
apply the same masking strategy to the initial random initialized
noise vector 𝑥noise similar to Eq. 2:

𝑥𝜏𝑇 =𝑚 ⊙ 𝑥noise + (1 −𝑚) ⊙ 𝑥known𝜏𝑇
, (5)

So 𝑥𝜏𝑇 is the starting noise vector for the iterative sampling proce-
dure.

6.3 Procedure for MPJPE Calculation
Given the 3D hand mesh vertices 𝑉 ∈ R778×3 fitted on a mal-
formed hand, we use a sparse linear regressor J [27] to obtain
the 3D coordinates of 21 hand keypoints. We project these key-
points onto image space through a projective function Π using
a pinhole camera model, resulting in 2D ground truth keypoints
𝐾 = {(𝑥1, 𝑦1), ...(𝑥21, 𝑦21)}. Then, after the conditional generation
of the rectified hand, we apply the same mesh reconstruction model
again on the rectified hands, and obtain another set of keypoints
𝐾 ′ = {(𝑥 ′1, 𝑦

′
1), ...(𝑥

′
21, 𝑦

′
21)} using the same procedure. Then MPJPE

can be computed by comparing 𝐾 and 𝐾 ′. The process can be for-
mulated as below:

𝐾 = Π(J𝑉 ) (6)
𝐾 ′ = Π(J𝑉 ′) (7)

Figure 1: Screenshot of a survey question in the user survey
4.2

𝑀𝑃𝐽𝑃𝐸 (𝐾,𝐾 ′) = 1
21

21∑︁
𝑖=1



𝐾𝑖 − 𝐾 ′
𝑖



 (8)

MPJPE for an image then can be computed by averaging the errors
of all hands present in the image.

6.4 Example of a survey question
Figure 1 shows a screenshot of a survey question. Note the positions
of images are randomized between the original set and the rectified
set.

6.5 Additional Experiment Results

Fine-
tuned

Control
Strength

Negative
Prompt

Inpainting
Loss FID ↓ MPJPE ↓

✗ 1.0 ✗ 23.470 14.328
✓ 0.55 ✓ ✓ 13.977 7.878

Table 4: Results of an additional baseline

In the same setting of Ablation Studies 4.3, we also measure the
performance of the HandRefiner using un-finetuned depth Con-
trolNet with control strength set to 1.0 (instead of 0.55 as in the
1𝑠𝑡 row of Table 3). This can serve as an additional baseline, given
that no specific techniques have been applied to the model. Table
4 shows its comparison with the finetuned model employing the
fixed strength strategy. It demonstrates the finetuned model still
greatly outperforms the baseline in both visual quality and pose
accuracy, i.e., 9.493 FID and 6.450 MPJPE improvement. This further
highlights the effectiveness and necessity of the range of techniques
adopted to improve hand generation.
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6.6 Further Examples of Phase Transition

Figure 2: Illustration of Phase Transition. The hand shape and pose change to match the depth map when applied control
strength is small, while the hand wrinkles and textures disappear at high control strength.
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6.7 Further Rectification Examples
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Figure 3: Stable Diffusion generates malformed hands (left in each pair), e.g., incorrect number of fingers or irregular shapes,
which can be effectively rectified by our HandRefiner (right in each pair).

Figure 4: SDXL generates malformed hands (left in each pair), e.g., incorrect number of fingers or irregular shapes, which can
be effectively rectified by our HandRefiner (right in each pair).

6.8 Depth Map Rendering
To magnify the depth signal, We apply normalization to the depth map of each hand in both training sets and the HandRefiner pipeline. On a
scale of 0 (black) to 1 (white), the closest surface is given the value of 1.0, and the furthest surface is given the value of 0.2.
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