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ABSTRACT

We discover a theoretical connection between explanation estimation and distribu-
tion compression that significantly improves the approximation of feature attribu-
tions, importance, and effects. While the exact computation of various machine
learning explanations requires numerous model inferences and becomes imprac-
tical, the computational cost of approximation increases with an ever-increasing
size of data and model parameters. We show that the standard i.i.d. sampling
used in a broad spectrum of algorithms for post-hoc explanation leads to an ap-
proximation error worthy of improvement. To this end, we introduce compress
then explain (CTE), a new paradigm of sample-efficient explainability. It relies on
distribution compression through kernel thinning to obtain a data sample that best
approximates its marginal distribution. CTE significantly improves the accuracy
and stability of explanation estimation with negligible computational overhead. It
often achieves an on-par explanation approximation error 2–3× faster by using
fewer samples, i.e. requiring 2–3× fewer model evaluations. CTE is a simple, yet
powerful, plug-in for any explanation method that now relies on i.i.d. sampling.

1 INTRODUCTION

Computationally efficient estimation of post-hoc explanations is at the forefront of current research on
explainable machine learning (Strumbelj & Kononenko, 2010; Slack et al., 2021; Jethani et al., 2022;
Chen et al., 2023; Donnelly et al., 2023; Muschalik et al., 2024). The majority of the work focuses
on improving efficiency with respect to the dimension of features (Covert et al., 2020; Jethani et al.,
2022; Chen et al., 2023; Fumagalli et al., 2023), specific model classes like neural networks (Erion
et al., 2021; Chen et al., 2024) and decision trees (Muschalik et al., 2024), or approximating the
conditional feature distribution (Chen et al., 2018; Aas et al., 2021; Olsen et al., 2022; 2024).

However, in many practical settings, a marginal feature distribution is used instead to estimate expla-
nations, and i.i.d. samples from the data typically form the so-called background data samples, also
known as reference points or baselines, which plays a crucial role in the estimation process (Lundberg
& Lee, 2017; Scholbeck et al., 2020; Erion et al., 2021; Ghalebikesabi et al., 2021; Lundstrom et al.,
2022). For example, Covert et al. (2020) mention “[O]ur sampling approximation for SAGE was run
using draws from the marginal distribution. We used a fixed set of 512 background samples [...]” and
we provide more such references in Appendix A to motivate our research question: Can we reliably
improve on standard i.i.d. sampling in explanation estimation?

We make a connection to research on statistical theory, where kernel thinning (KT, Dwivedi & Mackey,
2021; 2022) was introduced to compress a distribution more effectively than with i.i.d. sampling. KT
has an efficient implementation in the COMPRESS++ algorithm (Shetty et al., 2022) and was applied
to improve statistical kernel testing (Domingo-Enrich et al., 2023). Building on this line of work, this
paper aims to thoroughly quantify the error introduced by the current sample then explain paradigm
in feature marginalization, which is involved in the estimation of both local and global removal-based
explanations (Covert et al., 2021). We propose an efficient way to reduce this approximation error
based on distribution compression (Figure 1).
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Figure 1: Garbage sample in, garbage explanation out. Sample then explain is a conventional
approach to decrease the computational cost of explanation estimation. Although fast, sampling
is inefficient and prone to error, which may even lead to changes in feature importance rankings.
We propose compress then explain (CTE), a new paradigm for accurate, yet efficient, estimation of
explanations based on a marginal distribution that is compressed, e.g. with kernel thinning.

Contribution. In summary, our work advances literature in multiple ways: (1) Quantifying the error
of standard i.i.d. sampling: We bring to attention and measure the approximation error introduced
by using i.i.d. sampling of background and foreground data in various explanation methods. It
may even lead to changes in feature importance rankings. (2) Compress then explain (CTE):
We introduce a new paradigm of sample-efficient explainability where post-hoc explanations, like
feature attributions and effects, are estimated based on a marginal distribution compressed more
efficiently than with i.i.d. sampling. CTE is theoretically justified as we discover a connection between
explanation estimation and distribution compression. (3) Kernel thinning for (explainable) machine
learning: We show empirically that KT outperforms i.i.d. sampling in compressing the distribution
of popular datasets used in research on explainable machine learning. In fact, this is the first work to
evaluate distribution compression via KT on datasets for supervised learning, which itself is valuable.
(4) Decreasing the computational cost of explanation estimation: We benchmark compress then
explain (CTE) with popular explanation methods and show it results in more accurate explanations
of smaller variance. CTE often achieves on-par error using 2–3× fewer samples, i.e. requiring 2–3×
fewer model inferences. CTE is a simple, yet powerful, plug-in for a broad class of methods that
sample from a dataset, e.g. removal-based and global explanations.

Related work. Our work is the first to empirically evaluate KT on datasets for supervised learning,
and one of the first to reliably improve on i.i.d. sampling for multiple post-hoc explanation methods
at once. Laberge et al. (2023) propose a biased sampling algorithm to attack the estimation of feature
attributions, which further motivates finding robust improvements for i.i.d. sampling. Our research
question is orthogonal to that of how to sample perturbations around an input (Petsiuk et al., 2018;
Slack et al., 2021; Li et al., 2021; Ghalebikesabi et al., 2021; Li et al., 2023), or how to efficiently
sample feature coalitions (Chen et al., 2018; Covert & Lee, 2021; Fumagalli et al., 2023). Instead of
generating samples from the conditional distribution itself, which is challenging (Olsen et al., 2022),
we explore how to efficiently select an appropriate subset of background data for explanations (Hase
et al., 2021; Lundstrom et al., 2022). Specifically for Shapley-based explanations, Jethani et al.
(2022) propose to predict them with a learned surrogate model, while Kolpaczki et al. (2024) propose
their representation detached from the notion of marginal contribution. We aim to propose a general
paradigm shift that benefits a broader class of explanation methods including feature effects (Apley &
Zhu, 2020; Moosbauer et al., 2021) and expected gradients (Erion et al., 2021; Zhang et al., 2024).

Concerning distribution compression, the method most related to KT (Dwivedi & Mackey, 2021) is
the inferior standard thinning approach (Owen, 2017). Cooper et al. (2023) use insights from KT to
accelerate distributed training, while Zimmerman et al. (2024) apply KT in robotics. In the context
of data-centric machine learning, we broadly relate to finding coresets to improve the efficiency
of clustering (Agarwal et al., 2004; Har-Peled & Mazumdar, 2004) and active learning (Sener &
Savarese, 2018), as well as dataset distillation (Wang et al., 2018) and dataset condensation (Zhao
et al., 2021; Kim et al., 2022) that create synthetic samples to improve the efficiency of model training.
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2 PRELIMINARIES

We aim to explain a prediction model trained on labeled data and denoted by f : X 7→ R where X is
the feature space; it predicts an output using an input feature vector x. Usually, we assume X ⊆ Rd.
Without loss of generality, in the case of classification, we explain the output of a single class as
a posterior probability from [0, 1]. We can assume a given dataset {(x(1), y(1)), . . . , (x(n), y(n))},
where every element comes from X × Y , the underlying feature and label space, on which the
explanations are computed. Depending on the explanation method and scenario, the dataset could be
provided without labels. We denote such n× d dimensional dataset by X where x(i) appears in the
i-th row of X, which is assumed to be sampled in an i.i.d. fashion from an underlying distribution
p(x, y) defined on X × Y . We denote a random vector as X ∈ X . Further, let s ⊂ {1, . . . , d} be a
feature index set of interest with its complement s̄ = {1, . . . , d} \ s. We index feature vectors x and
random variables X by index set s to restrict them to these index sets. We write pX(x) and pXs

(xs)
for marginal distributions on X and Xs, respectively, and pXs|Xt

(xs|xt) for conditional distribution
on Xs|Xt. We use qX to denote an empirical distribution approximating pX based on a dataset X.

2.1 SAMPLING FROM THE DATASET IS PREVALENT IN EXPLANATION ESTIMATION

Various estimators of post-hoc explanations sample from the dataset to efficiently approximate the ex-
planation estimate (Appendix A). For example, many removal-based explanations (Covert et al., 2021)
like SHAP (Lundberg & Lee, 2017) and SAGE (Covert et al., 2020) rely on marginalizing features
out of the model function f using their joint conditional distribution EXs̄∼pXs̄|Xs=xs

[f(xs,Xs̄)] =∫
f(xs,xs̄)pXs̄|Xs=xs

(xs̄|xs)dxs̄. Note that the practical approximation of the conditional distribu-
tion pXs̄|Xs=xs

(xs̄|xs) itself is challenging (Chen et al., 2018; Aas et al., 2021; Olsen et al., 2022)
and there is no ideal solution to this problem (see a recent benchmark by Olsen et al., 2024). For
example, the default for SAGE is to assume feature independence and use the marginal distribution
pXs̄|Xs=xs

(xs̄|xs) := pXs̄
(xs̄) (Covert et al., 2020, Appendix D); so does the KERNEL-SHAP esti-

mator, i.e. a practical implementation of SHAP (Lundberg & Lee, 2017). This trend continues in more
recent work sampling from marginal distribution (Fumagalli et al., 2023; Krzyziński et al., 2023).
Definition 1 (Feature marginalization). Given a set of observed values xs, we define a model function
with marginalized features from the set s̄ as f(xs; pX) := EXs̄∼pXs̄

[f(xs,Xs̄)].

In practice, the expectation EXs̄∼pXs̄
[f(xs,Xs̄)] is estimated by i.i.d. sampling from the dataset

X that approximates the distribution pXs̄
(xs̄). This sampled set of points forms the so-called

background data, aka reference points, or baselines as specifically in case of the expected gradi-
ents (Erion et al., 2021) explanation method, which can be defined as EXPECTED-GRADIENTS(x) :=

EX∼pX,α∼U(0,1)

[
(x−X) · ∂f(X+α·(x−X))

∂x

]
. Klein et al. (2024) benchmark feature attribution

methods showing that EXPECTED-GRADIENTS is among the most faithful and robust ones.

Furthermore, i.i.d. sampling is used in global explanation methods, many of which are an aggregation
of local explanations. To improve the computational efficiency of these approximations, often
only a subset of X is considered, called foreground data. Examples include: FEATURE-EFFECTS
explanations (Apley & Zhu, 2020), an aggregation of LIME (Ribeiro et al., 2016) into G-LIME (Li
et al., 2023), and again SAGE, for which points from X require to have their corresponding labels y.

2.2 BACKGROUND ON DISTRIBUTION COMPRESSION

Standard sampling strategies can be inefficient (Dwivedi & Mackey, 2021). For example, the
Monte Carlo estimate 1

n

∑n
i=1 h(x

(i)) of an unknown expectation EX∼pX
h(X) based on n i.i.d.

points has Θ(1/
√
n) integration error

∣∣EX∼pX
h(X) − 1

n

∑n
i=1 h(x

(i))
∣∣ requiring 102 points for

10% relative error and 104 points for 1% error (Shetty et al., 2022). To improve on i.i.d. sampling,
given a sequence X of n input points summarizing a target distribution pX, the goal of distribution
compression is to identify a high quality coreset X̃ of size ñ ≪ n. This quality is measured with the
coreset’s integration error

∣∣ 1
n

∑n
i=1 h(x

(i)) − 1
ñ

∑ñ
i=1 h(x̃

(i))
∣∣ for functions h in the reproducing

kernel Hilbert space induced by a given kernel function k (Muandet et al., 2017). The recently
introduced KT algorithm (Dwivedi & Mackey, 2021; 2022) returns such a coreset that minimizes the
kernel maximum mean discrepancy (MMDk, Gretton et al., 2012).
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Definition 2 (Kernel maximum mean discrepancy (Gretton et al., 2012; Dwivedi & Mackey, 2021)).
Let k : Rd × Rd 7→ R be a bounded kernel function with k(x, ·) measurable for all x ∈ Rd, e.g.
a Gaussian kernel. Kernel maximum mean discrepancy between probability distributions p, q on
Rd is defined as MMDk(p, q) := suph∈Hk:∥h∥k≤1

∣∣EX∼pX
h(X) − EX∼qXh(X)

∣∣, where Hk is a
reproducing kernel Hilbert induced by k.

To formulate Propositions 1 & 2 in the next Section, we recall a biased estimate of maximum
mean discrepancy, which is discussed in (Chérief-Abdellatif & Alquier, 2022, remark 3.2) and
(Sriperumbudur et al., 2010, corollary 4).
Definition 3 (Biased estimator of MMDk). From (Muandet et al., 2017, section 5.1), as shown in
(Gretton et al., 2012), the L2 distance between kernel density estimates pX, qX is a special case of the

biased MMDk estimator, i.e. we have M̂MD
2

k(pX, qX) := ∥pX − qX∥22 =
∫ (

pX(x)− qX(x)
)2
dx.

An unbiased empirical estimate of MMDk can be relatively easily computed given a kernel func-
tion k (Gretton et al., 2012). COMPRESS++ (Shetty et al., 2022) is an efficient algorithm for KT that
returns a coreset of size

√
n in O(n log3 n) time and O(

√
n log2 n) space, making KT viable for

large datasets. It was adapted to improve the kernel two-sample test (Domingo-Enrich et al., 2023).

3 COMPRESS THEN EXPLAIN (CTE)

We propose distribution compression as a substitute to i.i.d. sampling for feature marginalization in
removal-based explanations and for aggregating global explanations. We now formalize the problem
and provide theoretical intuition as to why methods for distribution compression can lead to more
accurate explanation estimates. We defer the proofs to Appendix B.
Definition 4 (Local explanation based on feature marginalization). A local explanation is a func-
tion g(x; f, pX) : X 7→ Rp of input x given model f that relies on a distribution pX for feature
marginalization. For estimation, it uses an empirical distribution qX in place of pX.

Examples of such local explanations include SHAP (Lundberg & Lee, 2017) and EXPECTED-
GRADIENTS (Erion et al., 2021). We aim to provide high-quality explanations stemming from
compressed samples as measured with a given approximation error, e.g. mean absolute error.

Problem formulation. To optimize the approximation error, we propose a novel formulation of the
sample selection problem:

min
X̃

∥∥g(x; f, qX)− g(x; f, qX̃)
∥∥

s.t. |X̃| = ñ ≪ n
(1)

for a given ñ, where i.i.d. sampling, distribution compression, or for example clustering, are the
potential methods to find X̃ in an unsupervised manner. We discover a connection between distribution
compression and explanation estimation in Propositions 1 & 2.
Proposition 1 (Feature marginalization is bounded by the maximum mean discrepancy between data
samples). For two empirical distributions qX, qX̃ approximated with a kernel density estimator k, we
have

∣∣f(xs; qX)− f(xs; qX̃)
∣∣ ≤ Cf · M̂MDk(qX, qX̃), where Cf denotes a constant that bounds the

model function f , i.e. ∀x∈Rp

∣∣f(x)∣∣ ≤ Cf .

Proposition 1 provides a worst-case bound for feature marginalization, the backbone of local explana-
tions, in terms of the MMDk distance between the (often compressed) empirical data distributions.
It complements the results for input and model perturbations obtained in (Lin et al., 2023, Lem-
mas 1 & 4), which also shows how such a bound propagates to the local explanation function g.
Effectively, Proposition 1 states that an algorithm minimizing MMDk, e.g. KT, restricts the approx-
imation error of explanation estimation. This makes CTE a natural contender to improve on i.i.d.
sampling, given it was efficient and stable, which we evaluate empirically in extensive experiments.

Compress then explain globally. Local explanations are often aggregated into global explanations
based on a representative sample from data, resulting in estimates of feature importance and effects.
Definition 5 (Global explanation). A global explanation is a function that aggregates local explana-
tions g of model f over input samples from distribution pX, i.e. G(pX; f, g) := EX∼pX

[g(X; f, ·)].
For estimation, it uses an empirical distribution qX in place of pX.
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Examples of such global explanations include FEATURE-EFFECTS like partial dependence plots and
accumulated local effects (Apley & Zhu, 2020), and SAGE (Covert et al., 2020), which additionally re-
quires as an input labels y of the samples drawn from pX. Notably, the local explanation function g in
SAGE itself relies on feature marginalization leading to using pX twice, i.e. EX∼pX

[g(X; f, pX)] (see
Listing 1 for a practical implementation).

Problem formulation revisited. For global explanations, following Equation 1, we have:
min
X̃

∥∥G(qX; f, g)−G(qX̃; f, g)
∥∥

s.t. |X̃| = ñ ≪ n.
(2)

In Proposition 2, we conduct a worst-case analysis for global aggregated explanations.
Proposition 2 (Global explanation is bounded by the maximum mean discrepancy between data
samples). For two empirical distributions qX, qX̃ approximated with a kernel density estimator k, we
have

∥∥G(qX; f, g)−G(qX̃; f, g)
∥∥
2
≤ Cg · M̂MDk(qX, qX̃), where Cg denotes a constant that bounds

the local explanation function g, i.e. ∀x∈Rp

∥∥g(x; ·)∥∥
2
≤ Cg .

Analogously to Proposition 1, Proposition 2 states that an algorithm minimizing MMDk, e.g. KT,
restricts the approximation error of explanation estimation, which makes CTE a natural contender to
improve on i.i.d. sampling. It extends the bounds for total variation distance obtained in (Baniecki
et al., 2024). Moreover, in Section 4.5, we explore empirically the impact that minimizing MMDk

has on decreasing alternative distribution discrepancies in practical (explainable) machine learning
settings. It gives further intuition as to why clustering often leads to higher errors in explanation
estimation. Our insights may guide future work on tighter theoretical guarantees for improving
explanation estimation with distribution compression.

Implementation. The pivotal strength of CTE is that it is simple to plug into the current workflows
for explanation estimation as shown in Listing 1 for SAGE. We provide analogous code listings for
SHAP, EXPECTED-GRADIENTS and FEATURE-EFFECTS in Appendix C.

X, y, model = ...
from goodpoints import compress
ids = compress.compresspp_kt(X, kernel_type=b"gaussian", g=4)
X_compressed = X[ids]
import sage
imputer = sage.MarginalImputer(model.predict, X_compressed)
estimator = sage.KernelEstimator(imputer)
explanation = estimator(X, y)
# or even
y_compressed = y[ids]
explanation = estimator(X_compressed, y_compressed)

Listing 1: Code snippet showing the 3-line plug-in of distribution compression for SAGE estimation.

4 EXPERIMENTS

In experiments, we empirically validate that the CTE paradigm improves explanation estimation across
4 methods, 2 model classes, and over 50 datasets. We compare CTE to the widely adopted practice of
i.i.d. sampling (see Appendix A for further motivation). We also report sanity check results for a
more deterministic baseline – sampling with k-medoids – where centroids from the clustering define
a coreset from the dataset. We use the default hyperparameters of explanation algorithms (details
are provided in Appendix D.1). For distribution compression, we use COMPRESS++ implemented
in the goodpoints Python package (Dwivedi & Mackey, 2021), where we follow (Shetty et al.,
2022) to use a Gaussian kernel k with σ =

√
2d. For all the compared methods, the subsampled set

of points is of size
√
n as we leave oversampling distribution compression for future work. We repeat

all experiments where we apply some form of downsampling before explanation estimation 33 times
and report the mean and standard error (se.) or deviation (sd.) of metric values.

Ground truth. The goal of CTE is to improve explanation estimation over the standard i.i.d. sampling.
We measure the accuracy and effectiveness of explanation estimation with respect to a “ground truth”
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A) B)

C) D)

Figure 2: Comparison between CTE and i.i.d. sampling for the two estimators of SHAP and SAGE
explanations on the adult dataset. A) We measure mean absolute error (MAE ↓) between feature
attribution and importance values, and B) the precision in correctly identifying the 5 most important
features (Top-k ↑). C) Comparison between the computational time of distribution compression
and explanation estimation on the compressed sample, assuming the time of i.i.d. sampling is 0.
D) Comparison between the computational time of explanation estimation on the compressed sample
and on full data (in green). Analogous results for the other 4 datasets are in Appendix E. (mean ± se.)

explanation (cf. Appendix I) that is estimated using a full validation dataset X, i.e. without sampling
or compression. We consider settings where this is very inefficient to compute in practice (n := nvalid
is between 1000 and 25000 samples). For large datasets, we truncate the validation dataset to 20×
the size of the compressed dataset. Since some explanation methods include a random component in
the algorithm, we repeat their ground truth estimation 3 times and average the resulting explanations.

Accuracy. We are mainly interested in the accuracy of estimating a single explanation, measured
by the explanation approximation error. Namely, mean absolute error (MAE), where we mea-
sure 1

nvalid·d
∑nvalid

i=1

∥∥g(x(i); f, qX) − g(x(i); f, qX̃)
∥∥
1

for SHAP and EXPECTED-GRADIENTS, and
1
dG

∥∥G(qX; f, g)−G(qX̃; f, g)
∥∥
1

with dG = d for SAGE. We have dG = 100 · (d+ d2) for FEATURE-
EFFECTS, since we use 100 uniformly distributed grid points for 1-dimensional effects and 10×10
uniformly distributed grid points for 2-dimensional effects (see Appendix D). For broader context, in
Section 4.1, we also measure the precision of correctly indicating the top k features.

Efficiency. We measure the efficiency of compression and explanation estimation with CPU wall-
clock time (in seconds), assuming the time of i.i.d. sampling is 0. We rely on popular open-source
implementations of the algorithms (see Appendix C) and perform efficiency experiments on a personal
computer with an M3 chip. This is to imitate the most standard workflow of explanation estimation,
while we acknowledge that specific time estimates will vary in more sophisticated settings.

4.1 CTE IMPROVES THE ACCURACY OF ESTIMATING FEATURE ATTRIBUTIONS & IMPORTANCE

We use the preprocessed datasets and pretrained neural network models from the well-established
OpenXAI benchmark (Agarwal et al., 2022). We filter out three datasets with less than 1000
observations in the validation set, where sampling is not crucial, which results in five tasks:
adult (nvalid = 9045, d = 13), compas (nvalid = 1235, d = 7), gaussian (a synthetic dataset,
nvalid = 1250, d = 20), gmsc (Give Me Some Credit, nvalid = 20442, d = 10), and heloc (aka
FICO, nvalid = 1975, d = 23). Further details on datasets and models are provided in Appendix D.2.

We aim to show that CTE improves the estimation of feature attribution and importance explanations,
namely for SHAP and SAGE. We experiment with two model-agnostic estimators: kernel-based and
permutation-based. For example, Figure 2 shows the differences in MAE and Top-k between CTE
and standard i.i.d. sampling on the adult dataset. Analogous results for the other 4 datasets from
OpenXAI are shown in Appendix E. On all the considered tasks, CTE results in a notable decrease
in approximation error when compared to i.i.d. sampling and an increase in precision (for top-k
feature identification) with negligible computational overhead. Moreover, CTE results in explanation
estimates of significantly smaller variance on average as shown in Table 1.
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Table 1: We report the improvement in the mean absolute error of estimating four popular explana-
tions on five datasets from the OpenXAI benchmark. CTE not only improves the accuracy over i.i.d.
by 20–45%, but also leads to more stable estimates by about 50%. MAE (↓, ± sd.) values are scaled
and rounded to improve readability while detailed and extended results are reported in Appendix E.

Task Explanation estimator
KERNEL-SHAP PERMUTATION-SHAP KERNEL-SAGE PERMUTATION-SAGE

adult
(

i.i.d. diff.−−→ CTE
)

73±14
21%−−→ 58±6 65±42

37%−−→ 41±10 63±40
40%−−→ 38±10

compas 10±4
40%−−→ 6±2 11±4

45%−−→ 6±2 29±17
38%−−→ 18±9 28±16

39%−−→ 17±8

gaussian 13±2
38%−−→ 8±1 15±2

27%−−→ 11±1 52±27
42%−−→ 30±7 52±26

44%−−→ 29±7

gmsc 23±6
39%−−→ 14±3 25±5

32%−−→ 17±3 30±13
40%−−→ 18±5 28±14

43%−−→ 16±5

heloc 67±15
39%−−→ 41±7 72±13

33%−−→ 48±6 34±10
21%−−→ 27±6 29±11

28%−−→ 21±6

4.2 CTE AS AN EFFICIENT ALTERNATIVE TO I.I.D. SAMPLING IN EXPLANATION ESTIMATION

10 2 10 1 100 101

Time [s]

gaussian

compas

heloc

adult

gmsc

compress
cluster

Figure 3: Compressing a distribution
from 20k to 128 samples takes less
than 1 second to compute on a CPU.
(mean ± se.)

We find CTE to be a very efficient alternative to standard
i.i.d. sampling in explanation estimation. For example, com-
pressing a distribution from 1k to 32 samples takes less than
0.1 seconds, and from 20k to 128 samples takes less than
1 second. The exact runtime will, of course, differ based
on the number of features. Figure 3 reports the wall-clock
time for datasets of different sizes. Note that the potential
runtimes for distribution compression are of magnitudes
smaller than the typical runtime of explanation estimation.
For example, estimating KERNEL-SHAP for 9k samples us-
ing 128 background samples takes 30 minutes, which is
about 60× less than estimating the ground truth explana-
tion (Figure 2). Moreover, estimating KERNEL-SHAP or
PERMUTATION-SAGE for 1k samples using 32 background
samples takes about 10 seconds, which is about 30× less
than estimating the ground truth explanation (Appendix E).

4.3 CTE IMPROVES GRADIENT-BASED EXPLANATIONS SPECIFIC TO NEURAL NETWORKS

A)

B)

Figure 4: A) COMPRESS++ effec-
tively optimizes MMDk on unstruc-
tured IMDB and Imagenet-1k datasets.
B) Compressing a distribution from
25k–50k to 128 samples in 512–768
dimensions takes about 5–10 sec. to
compute on a CPU. (mean ± se.)

Next, we aim to show the broader applicability of CTE by
evaluating it on gradient-based explanations specific to neu-
ral networks, often fitted to larger unstructured datasets.

Sanity check. We first compress the validation sets of IMDB
and ImageNet-1k on a single CPU as a sanity check for the
viability of CTE in settings considering larger datasets. For
the IMDB dataset (nvalid = 25000, d = 768), CTE takes as
an input text embeddings from the pretrained DistilBERT
model’s last layer (preceding a classifier) that has a dimen-
sion of size 768. Similarly, for ImageNet-1k (nvalid = 50000,
d = 512), CTE operates on the hidden representation ex-
tracted from ResNet-18. Figure 4 shows the optimized
MMDk metric between the distributions and computation
time in seconds. We can see that proper compression results
in huge benefits w.r.t. MMDk (compared to i.i.d. sampling
and clustering) and only negligible computational overhead.

Accuracy and efficiency. We now study CTE together with
EXPECTED-GRADIENTS of neural network models trained
to 18 datasets (nvalid > 1000, d ≥ 32) from the OpenML-
CC18 (Bischl et al., 2021) and OpenML-CTR23 (Fischer
et al., 2023) benchmark suites. Details on datasets and models are provided in Appendix D.2.
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3× more efficient

Figure 5: Comparison between CTE, i.i.d. sampling and clustering for EXPECTED-GRADIENTS
explanations on the 4 image classification datasets. We measure mean absolute error (MAE ↓)
between feature attribution values. CTE is not only more accurate but also more stable as measured
with deviation. Analogous results for the remaining 14 datasets are in Appendix F. (mean ± sd.)

In Figure 5, we show the explanation approximation error for 4 image classification tasks, while
analogous results for the remaining 14 datasets are provided in Appendix F. Additionally here, we
vary the number of data points sampled from i.i.d. to inspect the increase in efficiency of CTE. In
all cases, CTE achieves on-par approximation error using fewer samples than i.i.d. sampling, i.e.
requiring fewer model inferences, resulting in faster computation and saved resources. The accuracy
improvements are significant, i.e. CTE decreases the estimation error for EXPECTED-GRADIENTS
by 35% on mnist 784 (Welch’s t-test: p < 1e−10), by 40% on Fashion-MNIST (p < 1e−10),
and by 21% on CIFAR 10 (p < 1e−10). Moreover, CTE provides 2–3× efficiency improvements as
measured by the number of samples required for i.i.d. to reach the error of CTE.

Model-agnostic explanation of a language model. In Appendix F, we further experiment with
applying CTE to improve the estimation of G-LIME (Li et al., 2023) explaining the predictions of a
DistilBERT language model trained on the IMDB dataset for sentiment analysis.

4.4 ABLATIONS WITH ANOTHER 30 DATASETS, AN XGBOOST MODEL & FEATURE EFFECTS

For a convincing case to use CTE instead of i.i.d. in practice, we perform additional empirical analysis
on various datasets, with a different model class, and include another global explanation method.
More specifically, we use CTE to improve FEATURE-EFFECTS of XGBoost models trained on further
30 datasets (nvalid > 1000, d < 32) from OpenML-CC18 and OpenML-CTR23. Details on datasets
and models are provided in Appendix D.2. Moreover, we include SHAP and SAGE in the benchmark
similarly to Section 4.1. As another ablation, SAGE is evaluated in two variants that consider either
compressing only the background data (a rather typical scenario), or using the compressed samples as
both background and foreground data (as indicated with “fg.”; refer to Listing 1 for this distinction).

Figure 6 shows the explanation approximation error for 3 predictive tasks, while analogous results
for the remaining explanation estimators and 27 datasets are provided in Appendix G. We observe
that CTE significantly improves the estimation of FEATURE-EFFECTS in all cases. We further confirm
the conclusions from Sections 4.1 & 4.2 that CTE improves SHAP and SAGE. Another insight is that,
on average, CTE provides a smaller improvement over i.i.d. sampling when considering compressing
foreground data in SAGE.

Conclusion from the experiments. In Figure 7, we aggregated the results from Sections 4.3 & 4.4
to conclude the main claim that CTE offers 2–3× improvements in efficiency over i.i.d. sampling.

4.5 KERNEL THINNING ON DATASETS FOR (EXPLAINABLE) MACHINE LEARNING

We have already established that distribution compression is a viable approach to data sampling,
which regularly entails a better approximation of explanations. Moreover, its computational overhead
is negligible when applied before explanation estimation. To provide more context on discovering the
theoretical justification for CTE from Section 3, we aim to show that COMPRESS++ entails a better
approximation of feature distribution on popular datasets for (explainable) machine learning. This is
out-of-the-box, without tuning its hyperparameters, which is a natural direction for future work.
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3× more efficient

4× more efficient

4× more efficient

Figure 6: CTE improves the approximation error of local and global removal-based explanations.
SAGE is evaluated in two variants that consider either compressing only the background data (default),
or using the compressed samples as both background and foreground data (as indicated with “fg.”).
Analogous results for the remaining estimators and 27 datasets are in Appendix G. (mean ± sd.)

A) B)

Figure 7: Critical difference diagrams of average ranks (lower is better) aggregated over 6 explanation
estimators and 48 dataset–model pairs: A) for MAE averaged over repeats, and B) for the sd. of
MAE over repeats that corresponds to the stability of explanation estimation. CTE often achieves
on-par explanation approximation error using 2–3× fewer samples, i.e. requiring 2–3× fewer model
inferences, which is efficient. Moreover, CTE guarantees more stable estimates than i.i.d. sampling.

Measuring distribution change. In general, measuring the similarity of distributions or datasets is
challenging, and many metrics with various properties have been proposed for this task (Gibbs & Su,
2002). Here, we report the following distance metric values between the original and compressed
distribution: the optimized MMDk, total variation distance (TV, Gibbs & Su, 2002), Kullback–Leibler
divergence (KL, Gibbs & Su, 2002), and d-dimensional Wasserstein distance (WD, Feydy et al., 2019;
Laberge et al., 2023). Since approximating d-dimensional TV and KL is infeasible in practice (see
e.g. Sriperumbudur et al., 2012, section 5), we report an average of the top-3 largest discrepancies
between the 1-dimensional distributions of features as a proxy.

Result. In Figure 8, we observe that COMPRESS++ works much better in terms of MMDk on all
five datasets from OpenXAI, compared to standard i.i.d. sampling or the clustering baseline, which
is no surprise as this metric is internally optimized by the former. Note that it also leads to notable
improvements in all other metrics. Overall, there is no consistent improvement in approximating the
distribution using clustering, which explains why it leads to higher error in explanation estimation.
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A) B)

C) D)

Figure 8: COMPRESS++ with Gaussian kernel on five datasets (rows) for the four considered
distribution change metrics (panels): A) MMDk, B) total variation distance, C) d-dimensional
Wasserstein distance, and D) Kullback–Leibler divergence. The length of the bar is the mean value ±
standard error across statistical repetitions, where color indicates the applied downsampling method.

5 DISCUSSION

We propose compress then explain as a powerful alternative to the conventional sample then explain
paradigm in explanation estimation. CTE has the potential to improve approximation error across
a wide range of explanation methods for various predictive tasks. Specifically, we show accuracy
and stability improvements in popular removal-based explanations that marginalize feature influence,
and in general, global explanations that aggregate local explanations over a subset of data. Moreover,
CTE leads to more efficient explanation estimation by decreasing the computational resources (time,
model inferences) required to achieve error on par with a larger i.i.d. sample size.

Future work on methods for marginal distribution compression other than kernel thinning and
clustering will bring further improvements in the performance of explanation estimation. Distribution
compression methods, by design, have hyperparameters that may impact the empirical results.
Although we have shown that the default COMPRESS++ algorithm is a robust baseline, exploring
the tunability of its hyperparameters is a natural future work direction (similarly as in the case
of conditional sampling methods, Olsen et al., 2024). We used the Gaussian kernel because it
is the standard in the field of distribution compression (Dwivedi & Mackey, 2022; Shetty et al.,
2022; Domingo-Enrich et al., 2023), especially in experimental analysis, and is generally adopted
within machine learning applications. Although our empirical validation shows that the Gaussian
kernel works well for over 50 datasets, exploring other kernels for which theoretical thinning error
bounds exist, like Matérn or B-spline (Dwivedi & Mackey, 2021), is a viable future work direction.
Furthermore, especially for tabular datasets, dealing with categorical features can be an issue, which
we elaborate on in Appendix D.2. Specifically for supervised learning, a stratified variant of kernel
thinning taking into account a distribution of the target feature could further improve loss-based
explanations like SAGE, or even the estimation of group fairness metrics. In concurrent work, Gong
et al. (2024) generalize KT to speed up supervised learning problems involving kernel methods. One
could also investigate how influence functions (Koh & Liang, 2017), which aim to attribute the
importance of data to the model’s prediction, can guide sampling for efficient explanation estimation.

Broader impact. In general, improving explanation methods has positive implications for humans
interacting with AI systems (Rong et al., 2024). But, specifically in the context of this work, biased
sampling can be exploited to manipulate the explanation results (Slack et al., 2020; Baniecki &
Biecek, 2022; Laberge et al., 2023). CTE could minimize the risk of such adversaries and prevent
“random seed/state hacking” based on the rather unstable i.i.d. sampling from data in empirical
research (Herrmann et al., 2024).

Code. We provide additional details on reproducibility in the Appendix, as well as the code to
reproduce all experiments in this paper is available at https://github.com/hbaniecki/
compress-then-explain.
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Nicky Zimmerman, Alessandro Giusti, and Jérôme Guzzi. Resource-aware collaborative monte carlo
localization with distribution compression. arXiv preprint arXiv:2404.02010, 2024. 1

14



Published as a conference paper at ICLR 2025

APPENDIX FOR “EFFICIENT AND ACCURATE EXPLANATION ESTIMATION WITH
DISTRIBUTION COMPRESSION”

In Appendix B, we derive proofs for Propositions 1 & 2. Appendix C provides code listings for
SHAP, EXPECTED-GRADIENTS and FEATURE-EFFECTS, analogous to Listing 1 for SAGE. Addi-
tional details on the experimental setup are provided in Appendix D. Appendices E, F & G report
experimental results for the remaining datasets. Appendix H comments on compute resources used
for experiments. Appendix I provides exemplary visual comparisons of explanations. The code to
reproduce all experiments in this paper is available at https://github.com/hbaniecki/
compress-then-explain.
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A MOTIVATION: STANDARD I.I.D. SAMPLING IN EXPLANATION ESTIMATION

We find that i.i.d. sampling from datasets is a heuristic often used (and overlooked) in various estima-
tors of post-hoc explanations. Our work aims to first quantify the approximation error introduced by
sample then explain, and then propose a method to efficiently reduce it. Below are a few examples
from the literature on explainability that motivate the shift to our introduced compress then explain
paradigm.

In (Laberge et al., 2023), we read “For instance, when a dataset is used to represent a background
distribution, explainers in the SHAP library such as the ExactExplainer and TreeExplainer will
subsample this dataset by selecting 100 instances uniformly at random when the size of the dataset
exceeds 100.”

In (Chen & Sun, 2023), we read “[Footnote 1.] We use a random subset of samples for each class in
the real implementation, to reduce the computation costs of clustering.”

In (Ghalebikesabi et al., 2021), we read “After training a convolutional neural network on the MNIST
dataset, we explain digits with the predicted label 8 given a background dataset of 100 images with
labels 3 and 8.”, as well as “Feature attributions are sorted by similarity according to a preliminary
PCA analysis across a subset of 2000 samples from the Adult Income dataset, using 2000 reference
points.”

In (Erion et al., 2021), we read “During training, we let k be the number of samples we draw to
compute expected gradients for each mini-batch. and “This expectation-based formulation lends itself
to a natural, sampling based approximation method: (1) draw samples of x′ from the training dataset
[...], (2) compute the value inside the expectation for each sample and (3) average over samples.”

In (Van Looveren & Klaise, 2021), we read “We also need a representative, unlabeled sample of the
training dataset.”, and in Algorithms 1 and 2: “A sample X = {x1, . . . , xn} from training set.”

In (Covert et al., 2020), we read “When calculating feature importance, our sampling approximation
for SAGE (Algorithm 1) was run using draws from the marginal distribution. We used a fixed set of
512 background samples for the bank, bike and credit datasets, 128 for MNIST, and all 334 training
examples for BRCA.”

In the shap Python package (Lundberg & Lee, 2017), there is a warning saying “Using 110
background data samples could cause slower run times. Consider using shap.sample(data, K) or
shap.kmeans(data, K) to summarize the background as K samples.”, and the documentation mentions
“For small problems, this background dataset can be the whole training set, but for larger problems
consider using a single reference value or using the kmeans function to summarize the dataset.”
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B PROOFS

Below, we derive proofs for Propositions 1 & 2.
Proposition 1 (Feature marginalization is bounded by the maximum mean discrepancy between data
samples). For two empirical distributions qX, qX̃ approximated with a kernel density estimator k, we
have

∣∣f(xs; qX)− f(xs; qX̃)
∣∣ ≤ Cf · M̂MDk(qX, qX̃), where Cf denotes a constant that bounds the

model function f , i.e. ∀x∈Rp

∣∣f(x)∣∣ ≤ Cf .

Proof. We derive the following inequality:(
f(xs; pXs̄)− f(xs; qXs̄)

)2
=

(
EXs̄∼pXs̄

[f(xs,Xs̄)]− EXs̄∼qXs̄
[f(xs,Xs̄)]

)2
(3)

=

(∫
f(xs,xs̄)pXs̄

(xs̄)dxs̄ −
∫

f(xs,xs̄)qXs̄
(xs̄)dxs̄

)2

(4)

(linearity) =
(∫

f(xs,xs̄)
(
pXs̄

(xs̄)− qXs̄
(xs̄)

)
dxs̄

)2

(5)

(Cauchy–Schwarz) ≤
∫ (

f(xs,xs̄)
)2
dxs̄

∫ (
pXs̄

(xs̄)− qXs̄
(xs̄)

)2
dxs̄ (6)

(boundedness) ≤ C2
f ·

∫ (
pXs̄

(xs̄)− qXs̄
(xs̄)

)2
dxs̄ (7)

(Definition 3) = C2
f · M̂MD

2

k(pXs̄ , qXs̄). (8)

Substituting with empirical distributions, we have∣∣f(xs; qX)− f(xs; qX̃)
∣∣ ≤ Cf · M̂MDk(qX, qX̃). (9)

Proposition 2 (Global explanation is bounded by the maximum mean discrepancy between data
samples). For two empirical distributions qX, qX̃ approximated with a kernel density estimator k, we
have

∥∥G(qX; f, g)−G(qX̃; f, g)
∥∥
2
≤ Cg · M̂MDk(qX, qX̃), where Cg denotes a constant that bounds

the local explanation function g, i.e. ∀x∈Rp

∥∥g(x; ·)∥∥
2
≤ Cg .

Proof. We derive the following inequality:∥∥G(pX; f, g)−G(qX; f, g)
∥∥2
2
=

∥∥EX∼pX
[g(X; f, ·)]− EX∼qX [g(X; f, ·)]

∥∥2
2

(10)

=

∥∥∥∥∫ g(x)pX(x)dx−
∫

g(x)qX(x)dx

∥∥∥∥2
2

(11)

(linearity) =
∥∥∥∥∫ g(x)

(
pX(x)− qX(x)

)
dx

∥∥∥∥2
2

(12)

(Cauchy–Schwarz) ≤
∫ ∥∥g(x)∥∥2

2
dx

∫ (
pX(x)− qX(x)

)2
dx (13)

(boundedness) ≤ C2
g ·

∫ (
pX(x)− qX(x)

)2
dx (14)

(Definition 3) = C2
g · M̂MD

2

k(pX, qX). (15)

Substituting with empirical distributions, we have∥∥G(qX; f, g)−G(qX̃; f, g)
∥∥
2
≤ Cg · M̂MDk(qX, qX̃). (16)
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C IMPLEMENTING CTE IN PRACTICE

CTE is simple to plug-into the current workflows for explanation estimation as shown in Listing 1
for SAGE, Listing 2 for SHAP, Listing 3 for EXPECTED-GRADIENTS, and Listing 4 for FEATURE-
EFFECTS. We use the goodpoints Python package (Dwivedi & Mackey, 2021, MIT license).

X, model = ...
from goodpoints import compress
ids = compress.compresspp_kt(X, kernel_type=b"gaussian", g=4)
X_compressed = X[ids]
import shap
masker = shap.maskers.Independent(X_compressed)
explainer = shap.PermutationExplainer(model.predict, masker)
explanation = explainer(X)

Listing 2: Code snippet showing the 3-line plug-in of distribution compression for SHAP estimation.

X, model = ...
from goodpoints import compress
ids = compress.compresspp_kt(X, kernel_type=b"gaussian", g=4)
X_compressed = X[ids]
import captum
explainer = captum.attr.IntegratedGradients(model)
import torch
inputs = torch.as_tensor(X)
baselines = torch.as_tensor(X_compressed)
explanation = torch.mean(torch.stack([

explainer.attribute(inputs, baselines[[i]], target=1)
for i in range(baselines.shape[0])

]), dim=0)

Listing 3: Code snippet showing the plug-in of distribution compression for EXPECTED-GRADIENTS.

X, model = ...
from goodpoints import compress
ids = compress.compresspp_kt(X, kernel_type=b"gaussian", g=4)
X_compressed = X[ids]
import alibi
explainer = alibi.explainers.PartialDependence(predictor=model.predict)
explanation = explainer.explain(X_compressed)

Listing 4: Code snippet showing the plug-in of distribution compression for FEATURE-EFFECTS.
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D EXPERIMENTAL SETUP

D.1 EXPLANATION HYPERPARAMETERS

In Section 4, we experiment with 4 explanation methods (6 estimators). Without the loss of generality,
in case of classification models, we always explain a prediction for the 2nd class. For SHAP, we use
the KERNEL-SHAP and PERMUTATION-SHAP implementations from the shap Python package (Lund-
berg & Lee, 2017, MIT license) with default hyperparameters (notably, npermutations=10 in
the latter). For SAGE, we use the KERNEL-SAGE and PERMUTATION-SAGE implementations from
the sage Python package (Covert et al., 2020, MIT license). We use default hyperparameters;
notably, a cross-entropy loss for classification and mean squared error for regression. For EXPECTED-
GRADIENTS, we aggregate with mean the integrated gradients explanations from the captum Python
package (Kokhlikyan et al., 2020, BSD-3 license), for which we use default hyperparameters; notably,
n steps=50 and method="gausslegendre". For FEATURE-EFFECTS, we implement the
partial dependence algorithm (Apley & Zhu, 2020; Moosbauer et al., 2021) ourselves for maximum
computational speed in case of 2-dimensional plots, mimicking the popular open-source implementa-
tions.1 We use 100 uniformly distributed grid points for 1-dimensional plots and 10×10 uniformly
distributed grid points for 2-dimensional plots.

D.2 DETAILS ON DATASETS AND MODELS

Table 2 shows details of datasets from the OpenXAI (Agarwal et al., 2022, MIT license) benchmark
used in Sections 4.1, 4.2 & 4.5. To each dataset, there is a pretrained neural network with an accuracy
of 92% (gaussian), 85% (compas), 74% (heloc), 85% (adult) and 93% (gmsc). We do not
further preprocess data; notably, feature values are already scaled to [0, 1].

Table 2: Datasets from OpenXAI with nvalid > 1000 used in experiments.

Dataset ntrain nvalid d No. classes
gaussian 3750 1250 20 2
compas 4937 1235 7 2
heloc 7896 1975 23 2
adult 36177 9045 13 2
gmsc 81767 20442 10 2

Table 3 shows details of datasets from the OpenML-CC18 (Bischl et al., 2021, BSD-3 license) and
OpenML-CTR23 (Fischer et al., 2023, BSD-3 license) benchmarks used in Sections 4.3 & 4.4. We
first split all datasets in 75:25 (train:validation) ratio and left 48 datasets with nvalid > 1000 for
our experiments. For the 30 smaller (d < 32) datasets, we train an XGBoost model with default
hyperparameters (200 estimators) and explain it with SHAP, SAGE, FEATURE-EFFECTS. For the 18
bigger (d ≥ 32) datasets, we train a 3-layer neural network model with (128, 64) neurons in hidden
ReLU layers and explain it with EXPECTED-GRADIENTS. We perform basic preprocessing of data:
(1) remove features with a single or n unique values, (2) target encode categorical features, (3) impute
missing values with mean, and (4) standardize features.

In general, categorical features can be an issue for clustering and distribution compression algorithms;
so are for many explanation algorithms and conditional distribution samplers. Although target
encoding worked well in our setup, we envision two additional heuristics to deal with categorical
features: (1) perform distribution compression using a dataset restricted to non-categorical features,
(2) target encode categorical features only for distribution compression.

1https://docs.seldon.io/projects/alibi/en/latest/api/alibi.explainers.
html#alibi.explainers.PartialDependence; https://interpret.ml/docs/python/
api/PartialDependence
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Table 3: Datasets from OpenML-CC18 and OpenML-CTR23 with nvalid > 1000 used in experiments.

Dataset Task ID ntrain nvalid d No. classes
phoneme 9952 4053 1351 5 2
wilt 146820 3629 1210 5 2
cps88wages 361261 21116 7039 6 –
jungle chess 167119 33614 11205 6 3
abalone 361234 3132 1045 8 –
electricity 219 33984 11328 8 2
kin8nm 361258 6144 2048 8 –
california housing 361255 15480 5160 8 –
brazilian houses 361267 8019 2673 9 –
diamonds 361257 40455 13485 9 –
physiochemical protein 361241 34297 11433 9 –
white wine 361249 3673 1225 11 –
health insurance 361269 16704 5568 11 –
grid stability 361251 7500 2500 12 –
adult 7592 36631 12211 14 2
naval propulsion plant 361247 8950 2984 14 –
miami housing 361260 10449 3483 15 –
letter 6 15000 5000 16 26
bank-marketing 14965 33908 11303 16 2
pendigits 32 8244 2748 16 10
video transcoding 361252 51588 17196 18 –
churn 167141 3750 1250 20 2
kings county 361266 16209 5404 21 –
numerai28.6 167120 72240 24080 21 2
sarcos 361254 36699 12234 21 –
cpu activity 361256 6144 2048 21 –
jm1 3904 8163 2722 21 2
wall-robot-navigation 9960 4092 1364 24 4
fifa 361272 14383 4795 28 –
PhishingWebsites 14952 8291 2764 30 2

pumadyn32nh 361259 6144 2048 32 –
GestureSegmentation 14969 7404 2469 32 5
satimage 2074 4822 1608 36 6
texture 125922 4125 1375 40 11
connect-4 146195 50667 16890 42 3
fps benchmark 361268 18468 6156 43 –
wave energy 361253 54000 18000 48 –
theorem-proving 9985 4588 1530 51 6
spambase 43 3450 1151 57 2
optdigits 28 4215 1405 64 10
superconductivity 361242 15947 5316 81 –
nomao 9977 25848 8617 118 2
har 14970 7724 2575 561 6
isolet 3481 5847 1950 617 26
mnist 784 3573 52500 17500 784 10
Fashion-MNIST 146825 52500 17500 784 10
Devnagari-Script 167121 69000 23000 1024 46
CIFAR 10 167124 45000 15000 3072 10
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E CTE SIGNIFICANTLY IMPROVES THE ESTIMATION OF FEATURE
ATTRIBUTIONS & IMPORTANCE

We report the differences in MAE and Top-k between CTE and i.i.d. sampling in Figure 9 (compas),
Figure 10 (heloc), Figure 11 (gmsc) and Figure 12 (gaussian). On all the considered tasks, CTE
offers a notable decrease in approximation error of SHAP and SAGE with negligible computational
overhead (as measured by time in seconds).
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Figure 9: Extended Figure 2 (1/4). CTE improves SHAP and SAGE estimation by using the compressed
samples as background data for the compas dataset. We measure mean absolute error (MAE ↓)
between feature attribution and importance values, as well as the precision in correctly indicating the
3 most important features (Top-k ↑). Computational resources required to compress a distribution are
negligible in the context of explanation estimation. (mean ± se.)
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Figure 10: Extended Figure 2 (2/4). CTE improves SHAP and SAGE estimation on the heloc dataset.
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Figure 11: Extended Figure 2 (3/4). CTE improves SHAP and SAGE estimation by using the
compressed samples as background data for the gmsc dataset. We measure mean absolute error
(MAE ↓) between feature attribution and importance values, as well as the precision in correctly
indicating the 5 most important features (Top-k ↑). Computational resources required to compress a
distribution are negligible in the context of explanation estimation. (mean ± se.)
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Figure 12: Extended Figure 2 (4/4). CTE improves SHAP and SAGE estimation on the gaussian
dataset.
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F CTE IMPROVES GRADIENT-BASED EXPLANATIONS

Figure 13 shows the EXPECTED-GRADIENTS approximation error for 18 datasets. In all cases, CTE
achieves on-par approximation error using fewer samples than i.i.d. sampling, i.e. requiring fewer
model inferences, resulting in faster computation and saved resources.
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Figure 13: Extended Figure 5. Comparison between CTE, i.i.d. sampling and clustering for
EXPECTED-GRADIENTS explanations on 18 datasets. We measure mean absolute error (MAE ↓)
between feature attribution values. CTE is not only more efficient and accurate, but also more stable
as measured with deviation. (mean ± sd.)
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Model-agnostic explanation of a language model. We further experimented with applying CTE to
improve the estimation of global aggregated LIME (Ribeiro et al., 2016), aka G-LIME (Li et al., 2023),
which is a more complex setup that we leave for future work. We aim to explain the predictions of a
DistilBERT language model2 trained on the IMDB dataset3 for sentiment analysis. We calculate LIME
with k = 10 for all samples from the validation set using an A100 GPU and aggregate these local
explanations into global token importance with a mean of absolute normalized values (Li et al., 2023),
which is the “ground truth” explanation. We then compress the set with i.i.d. sampling, CTE, and
clustering based on the inputs’ text embeddings from the model’s last layer (preceding a classifier)
that has a dimension of size 768. Figure 14 shows results for explanation approximation error and
an exemplary comparison between the explanations relating to Figure 1. To obtain these results, we
used 8× more samples than the typical compression scenario (still 25× fewer than the full sample)
so as to overcome the issue of rare tokens skewing the results. It becomes challenging to compute the
distance between the ground truth and approximated explanations as the latter contains significantly
fewer tokens (features), as opposed to previous experiments where these two explanations always
had equal dimensions. Thus, MAE becomes biased towards sparse explanations and popular tokens,
i.e. an explanation with a single token of well-approximated importance could have an error close
to 0. For context, we measure TV between the discrete distributions of tokens in local explanations
before the global aggregation (lower is better). We report results for different token cutoffs, where we
remove the tokens from the ground truth explanation by their rarity, which saturates at 5% tokens left.

B)

D)A)

C)

Figure 14: CTE for G-LIME of a DistilBERT model classifying IMDB reviews. A) It is not obvi-
ous how to measure the distance between global explanations containing different sets of tokens
(Token coverage in % w.r.t. ground truth, ↑). Therefore, we gradually remove rare tokens from
the measurement based on their occurrence in the ground truth explanation (Token cutoff in quan-
tiles). B) Measurement of mean absolute error (MAE, ↓) between aggregated global explanations.
C) Measurement of total variation distance (TV, ↓) between token occurrences in local explanations
before global aggregation. D) We show an exemplary “worst-case” explanation, i.e. with the lowest
MAE for cutoff 0.95 where token coverage is over 99%, for both CTE and i.i.d. sampling. For this
visualization, we only show the importance of the 5 most positive/negative tokens, and 5 tokens with
the importance closest to zero. Explanation approximation error is indicated with transparent bars.
Notably, i.i.d. sampling misses containing any input with an important token “superbly”, while CTE
misses “disgrace”. Sampling overestimates the global importance of tokens “disappointing”, “into”
and “get”, while CTE, for example, overestimates “than” and underestimates “tedious” or “delightful”.

2https://huggingface.co/dfurman/distilbert-base-uncased-imdb
3https://huggingface.co/datasets/stanfordnlp/imdb
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G ABLATIONS

Figures 15–23 report the explanation approximation error for 30 predictive tasks. We observe that
CTE significantly improves the estimation of FEATURE-EFFECTS in all cases. Another insight is that,
on average, CTE provides a smaller improvement over i.i.d. sampling when considering compressing
foreground data in SAGE.
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Figure 15: Extended Figure 6 (1/10). CTE improves the explanation approximation error of various
local and global removal-based explanations. SAGE is evaluated in two variants that consider either
compressing only the background data (default), or using the compressed samples as both background
and foreground data (as indicated with “fg.”). (mean ± sd.)
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Figure 16: Extended Figure 6 (2/10). CTE improves the explanation approximation error of various
local and global removal-based explanations. SAGE is evaluated in two variants that consider either
compressing only the background data (default), or using the compressed samples as both background
and foreground data (as indicated with “fg.”). (mean ± sd.)

26



Published as a conference paper at ICLR 2025

0.0
0.4
0.8
1.2

M
AE

1e 1 KernelSHAP

0.0
0.6
1.2
1.8

1e 1 KernelSAGE

0.0

1.5

3.0

1e1 KernelSAGE (fg.)

32 64 96 128
N samples

0

3

6

9
1e 1 Feature Effects

32 64 96 128
N samples

0.0
0.4
0.8
1.2

M
AE

1e 1 PermutationSHAP

32 64 96 128
N samples

0.0

0.5

1.0

1.5
1e 1 PermutationSAGE

32 64 96 128
N samples

0
1
2
3

1e1 PermutationSAGE (fg.)

Dataset: brazilian_houses

Method
sample
compress
cluster

0.0
2.5
5.0
7.5

M
AE

1e 3 KernelSHAP

0.0

0.4

0.8

1.2
1e 2 KernelSAGE

0.0
0.6
1.2
1.8

1e 2 KernelSAGE (fg.)

32 64 96 128
N samples

0.0
2.5
5.0
7.5
1e 2 Feature Effects

32 64 96 128
N samples

0.0
2.5
5.0
7.5

M
AE

1e 3 PermutationSHAP

32 64 96 128
N samples

0
3
6
9

1e 3 PermutationSAGE

32 64 96 128
N samples

0.0

0.6

1.2

1.8
1e 2PermutationSAGE (fg.)

Dataset: churn

Method
sample
compress
cluster

0.0
1.5
3.0
4.5

M
AE

1e 2 KernelSHAP

0

3

6

9
1e 3 KernelSAGE

0.0
2.5
5.0
7.5

1e 2 KernelSAGE (fg.)

64 128 192 256
N samples

0.0

0.4

0.8

1.2
1e 1 Feature Effects

64 128 192 256
N samples

0.0
1.5
3.0
4.5

M
AE

1e 2 PermutationSHAP

64 128 192 256
N samples

0

3

6

9
1e 3 PermutationSAGE

64 128 192 256
N samples

0.0
2.5
5.0
7.5

1e 2PermutationSAGE (fg.)

Dataset: cps88wages

Method
sample
compress
cluster

Figure 17: Extended Figure 6 (3/10). CTE improves the explanation approximation error of various
local and global removal-based explanations. SAGE is evaluated in two variants that consider either
compressing only the background data (default), or using the compressed samples as both background
and foreground data (as indicated with “fg.”). (mean ± sd.)
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Figure 18: Extended Figure 6 (4/10). CTE improves the explanation approximation error of various
local and global removal-based explanations. SAGE is evaluated in two variants that consider either
compressing only the background data (default), or using the compressed samples as both background
and foreground data (as indicated with “fg.”). (mean ± sd.)
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Figure 19: Extended Figure 6 (5/10). CTE improves the explanation approximation error of various
local and global removal-based explanations. SAGE is evaluated in two variants that consider either
compressing only the background data (default), or using the compressed samples as both background
and foreground data (as indicated with “fg.”). (mean ± sd.)
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Figure 20: Extended Figure 6 (6/10). CTE improves the explanation approximation error of various
local and global removal-based explanations. SAGE is evaluated in two variants that consider either
compressing only the background data (default), or using the compressed samples as both background
and foreground data (as indicated with “fg.”). (mean ± sd.)
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Figure 21: Extended Figure 6 (7/10). CTE improves the explanation approximation error of various
local and global removal-based explanations. SAGE is evaluated in two variants that consider either
compressing only the background data (default), or using the compressed samples as both background
and foreground data (as indicated with “fg.”). (mean ± sd.)
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Figure 22: Extended Figure 6 (8/10). CTE improves the explanation approximation error of various
local and global removal-based explanations. SAGE is evaluated in two variants that consider either
compressing only the background data (default), or using the compressed samples as both background
and foreground data (as indicated with “fg.”). (mean ± sd.)
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Figure 23: Extended Figure 6 (9/10). CTE improves the explanation approximation error of various
local and global removal-based explanations. SAGE is evaluated in two variants that consider either
compressing only the background data (default), or using the compressed samples as both background
and foreground data (as indicated with “fg.”). (mean ± sd.)
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Figure 24: Extended Figure 6 (10/10). CTE improves the explanation approximation error of various
local and global removal-based explanations. SAGE is evaluated in two variants that consider either
compressing only the background data (default), or using the compressed samples as both background
and foreground data (as indicated with “fg.”). (mean ± sd.)
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H COMPUTE RESOURCES

Experiments described in Sections 4.1, 4.2 & 4.5, and Figure 4, were computed on a personal
computer with an M3 chip as justified in the beginning of Section 4. Experiments described in
Sections 4.3 & 4.4 were computed on a cluster with 4× AMD Rome 7742 CPUs (256 cores) and
4TB of RAM for about 14 days combined.
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I VISUAL COMPARISON OF EXPLANATIONS

We provide exemplary visual comparisons between ground truth explanations and those estimated on
an i.i.d. and compressed sample in 4 experimental settings.

Figure 25 shows a comparison for KERNEL-SAGE explaining an XGBoost model trained on the
compas dataset. Figure 26 shows a comparison for PERMUTATION-SHAP explaining a neural
network trained on the compas dataset, and Figure 27 shows the same on the heloc dataset. Note
that we show all local explanations at once (not to hand-pick a single one), which might falsely look
like a good approximation “on average” when in fact the attribution values in specific cases differ
significantly. Figure 28 shows a comparison for FEATURE-EFFECTS explaining an XGBoost model
trained on the grid stability dataset, and Figure 29 shows the same on the miami housing
dataset. Figures 30 & 31 show exemplary visual comparisons for EXPECTED-GRADIENTS explaining
a convolutional neural network trained on the CIFAR 10 dataset.
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Figure 25: Comparison between KERNEL-SAGE estimated on the full (left), sampled (right top), and
compressed (right bottom) subsets of the compas dataset. MAE introduced by i.i.d. sampling equals
0.0050 for the importance values and 0.00033 for their standard deviations (error bars), by CTE is
0.0011 and 0.00007 respectively, and so the relative improvement of CTE is 78% in both cases.
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Figure 26: Comparison between all local PERMUTATION-SHAP explanations estimated on full (left),
sampled (right top), and compressed (right bottom) subsets of the compas dataset. MAE introduced
by i.i.d. sampling equals 0.0227, by CTE is 0.0032, and so the relative improvement of CTE is 86%.
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Figure 27: Comparison between all local PERMUTATION-SHAP explanations estimated on full (left),
sampled (right top), and compressed (right bottom) subsets of the heloc dataset. MAE introduced
by i.i.d. sampling equals 0.0087, by CTE is 0.0053, and so the relative improvement of CTE is 38%.

37



Published as a conference paper at ICLR 2025

1 0 1

0.00

0.02

0.04

Fe
at

ur
e 

ef
fe

ct

Feature = tau1

1 0 1

Feature = tau2

1 0 1

Feature = tau3

1 0 1

Feature = tau4

2.5 0.0 2.5

0.00

0.02

0.04

Fe
at

ur
e 

ef
fe

ct

Feature = p1

1 0 1

Feature = p2

1 0 1

Feature = p3

1 0 1

Feature = p4

1 0 1
Feature value

0.00

0.02

0.04

Fe
at

ur
e 

ef
fe

ct

Feature = g1

1 0 1
Feature value

Feature = g2

1 0 1
Feature value

Feature = g3

1 0 1
Feature value

Feature = g4

Explanation
CTE
i.i.d.
Ground truth

Figure 28: Comparison between FEATURE-EFFECTS explanation estimated on the full (Ground truth),
sampled (i.i.d.), and compressed (CTE) subsets of the grid stability dataset. MAE introduced
by i.i.d. sampling equals 0.0032, by CTE is 0.0007, and so the relative improvement of CTE is 79%.
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Figure 29: Comparison between FEATURE-EFFECTS explanation estimated on the full (Ground truth),
sampled (i.i.d.), and compressed (CTE) subsets of the miami housing dataset. MAE introduced
by i.i.d. sampling equals 49766, by CTE is 14031, and so the relative improvement of CTE is 71%.
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Figure 30: Comparison between EXPECTED-GRADIENTS explanations estimated on the full (Ground
truth), sampled (i.i.d.), and compressed (CTE) subsets of the CIFAR 10 dataset. The bottom rows
visualize the differences (MAE ↓) from the ground truth explanation. All predictions are correct.
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Figure 31: Comparison between EXPECTED-GRADIENTS explanations estimated on the full (Ground
truth), sampled (i.i.d.), and compressed (CTE) subsets of the CIFAR 10 dataset. The bottom rows
visualize the differences (MAE ↓) from the ground truth explanation. All predictions are wrong.
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