
Appendix: Thinned random measures for sparse

graphs with overlapping communities

A Monte Carlo Posterior Inference

We review the Gibbs sampling steps, some of which employ Metropolis-Hastings proposals rather
than exact updates, for our thinned generalized gamma process (TGGP) model. We then describe
each step in more detail.

Gibbs sampling steps: Overview

1. Update the edge counts and community assignments in the latent multigraph;
2. Update nodes’ community memberships;
3. Update the global expected value of community memberships;
4. Update nodes’ sociabilities;
5. Update the hyperparameters of the distribution of nodes’ sociabilities;
6. Update the dimension of the latent multigraph.

A.1 Updating edge counts and community assignments in the latent multigraph

We start by recalling that, in our TGGP model, the observed simple undirected graph is a binary
projection of a latent (i.e. unobserved) directed multigraph. For each edge in which a node participates
in the latent multigraph, the node is assigned to a community. Then, a given (non-self) edge is
unthinned, and therefore present in the observed simple graph, if the communities that its two
nodes are assigned to coincide; to recall this implication when describing the sampling strategy
adopted for unthinned edges, we will refer to them as within-community edges. Otherwise, if the
communities differ, the edge is thinned and therefore unobserved, and we will refer to such edges
as across-communities. We note there may be self-edges in the latent multigraph. However, since
we assume that self-edges are not observed irrespective of community assignments, no distinction is
needed between within- and across- communities, and we refer to any of them simply as self-edges.

Two nodes have an edge in the observed undirected graph if there is at least one within-community
edge between those nodes in the multigraph. Observed nodes are those that participate in at least
one within-community edge. The nodes that in the multigraph are connected only within across-
communities or self-edges are unobserved nodes. We call N the number of observed nodes and we
let i = N + 1, . . . , N↵ denote the indices of unobserved nodes.

To easily sample from the posterior of nodes’ sociabilities we need (for both observed and unobserved
nodes) each node’s total degree, which equals the total number of edges in the multigraph (both
within- and across- communities) in which the node participates. Also, to easily sample from the
posterior of nodes’ community memberships, we need their community assignment for each of the
edges that they are connected to in the multigraph (both within- and across- communities). For both
purposes, it suffices to track the entries of a single N↵ ⇥K matrix of summary statistics M , where
Mik equals the number of edges that node i participated in while being assigned to community k.
The total degree of node i may then be obtained as Mi• =

PK
k=1 Mik. We denote the counts of the

assignments of a node i to each community (that is, row i of M) by Mi = (Mi1, . . . ,MiK).

We will break down the sampling of the entries of M in three steps: first edge counts and community
assignments for within-community edges, second across-communities and self-edges between ob-
served nodes, and finally across-communities and self-edges involving unobserved nodes. See Figure
1 for an illustration.

A.1.1 Within-community edges

Recall that we assumed that an edge between two nodes is observed if and only if there is at least
one within-community edge between those nodes in the latent multigraph. Then, the presence

1

of an edge between nodes i and j in the observed graph tells us that ṅij + ṅji > 0, that is the
sum of within-community edges from i to j and from j to i in the latent directed multigraph is
strictly positive. Similarly, the absence of an edge in the observed graph tells us that there is no
within-community edge. Therefore, the number of within-community edges between two nodes
only needs to be sampled for those pairs for which Yij = 1, (i � j). An illustration is in Figure 1a.
Because a priori, the number of within-community edges from i to j and from j to i have the same
Poisson

⇣
wiwj

PK
k=1 ⇡ik⇡jk

⌘
distribution, a posteriori we have

(ṅij + ṅji) | Yij , wi, wj ,⇡i,⇡j
ind
⇠

(
0-Trunc-Poisson

⇣
2wiwj

PK
k=1 ⇡ik⇡jk

⌘
if Yij = 1,

�0 if Yij = 0.

By definition, the community assignment of the nodes involved in a within-community edge coincide.
So we need to sample a single community assignment valid for both nodes i and j for each of the
ṅij + ṅji within-community edges:

(zij1, . . . , zijK) | ṅij+ṅji,⇡i,⇡j ⇠ Multinomial

ṅij + ṅji,

✓
⇡i1⇡j1PK

k=1 ⇡ik⇡jk
, . . . ,

⇡iK⇡jKPK
k=1 ⇡ik⇡jk

◆!
,

and we increment Mi = (Mi1, . . . ,MiK) and Mj = (Mj1, . . . ,MjK) accordingly.

Computational efficiency. Note that the computational cost of sampling within-community edges
is linear in the number of observed edges.

A.1.2 Across-communities and self-edges between observed nodes

Because across-communities edges in the latent multigraph don’t affect the observed simple graph,
all pairs of observed nodes can have across-communities edges, both those pairs i and j for which
Yij = 1 and those pairs i0 and j0 for which Yi0j0 = 0.

We thus need to sample the total number n̊ij + n̊ji of across-communities edges for all pairs
i, j 2 {1, . . . , N} with i � j (see Figure 1b). Because they are independent of the observed
graph (conditional on nodes’ sociabilities and memberships), the posterior distribution of across-
communities edges is the same as their prior:

(̊nij + n̊ji) | wi, wj ,⇡i,⇡j
ind
⇠ Poisson

2wiwj

1�

KX

k=1

⇡ik⇡jk

!!
.

However, rather than considering every pair of nodes, we can leverage the properties of independent
Poisson-distributed random variables to draw (̊nij + n̊ji) for all pairs of nodes from the correct
distribution in a more efficient way. Specifically, we can first sample an auxiliary variable D̊P -
representing a proposed number of across-communities edges between observed nodes - from the
prior distribution on the total number of edges and self-edges involving only observed nodes:

D̊P | w1, . . . , wN ⇠ Poisson

0

@2
NX

i=2

X

j<i

wiwj +
NX

i=1

w2
i

1

A .

Then, we can proceed by associating each edge e = 1, . . . , D̊P to a pair of nodes based only on nodes’
sociabilities, and assigning each sampled node to a community based only on its own memberships:

xev
iid
⇠ Cat

 ✓
w1PN
i=1 wi

, . . . ,
wNPN
i=1 wi

◆!
, cev | xev,⇡xev

ind
⇠ Cat(⇡xev) for v = 1, 2.

2

(a) Within-community edges (b) Across-communities edges (ob-
served nodes)

(c) Across-communities edges (un-
observed nodes)

Figure 1: Illustration of the adjacency matrix resulting from an undirected version of the latent directed
multigraph and corresponding sampling strategies. The entry located in row i and column j has the total (from i
to j, plus from j to i) number for each of three types of edges. (a) Within-community edges: entries colored
in pink mark pairs of nodes for which an edge is observed and for which within-community edges need to be
sampled, as described in Sec. A.1.1. (b) Across-communities and self-edges between observed nodes: all entries
corresponding to observed nodes are colored in blue to emphasize that these type of edges must be sampled for
all those pairs. This can be done by proposing the total across these entries first, as described in Sec. A.1.2. (c)
Across-communities and self-edges involving unobserved nodes: three different colors are used to mark which
entries are sampled jointly according to the sequential sampling scheme described in Sec. A.1.3.

Finally, restricting to the resulting across-communities edges and self-edges, we have obtained a
sample for them from the correct distribution. Accordingly, we increment the counts (Mi1, . . . ,MiK)
of community assignments for observed nodes i = 1, . . . , N , i.e. the first N rows of M .

Computational efficiency. Note that, using the strategy described in this subsection, the computa-
tional cost for sampling across-communities and self edges depends on the cost of assigning D̊P edges
to a pair of nodes. Thanks to fast sampling techniques for sampling from discrete distributions like
the alias method [46, 47, 48], this operation can be made to require only O(N logN) computational
time for pre-processing, after which edge assignments xev may be generated in constant time.

A.1.3 Across-communities and self edges involving unobserved nodes

Let N↵ � N be the number of nodes that are active (have at least one connection) in the latent
multigraph, but not in the observed simple graph. Let the labels of the nodes be ordered so that
i = N + 1, . . . , N↵ correspond to the labels of these unobserved nodes. Conditional on these nodes
not being observed but having connections in the latent multigraph, the information that we know
is that each of them can only have across-communities or self-edges, but also that they must be
associated to at least one across-communities or self-edge in the latent multigraph. This constraint
implies that some care is required when sampling edges involving unobserved nodes. Specifically,
we must generate the edge counts and associated nodes, that is simulate how many edges each
unobserved node participates in, as well as what other nodes are associated to these edges. Given
the nodes associated to an edge involving an unobserved node, community assignments can then
be sampled quite easily, considering that they need to be discordant for non-self edges and that no
restriction is applied to self-edges.

Edge counts and associated nodes. To correctly incorporate the constraint that each unobserved
node must be associated to at least one across-communities or self-edge, the strategy that we adopt is
to sample the total number of edges and the community assignments of unobserved nodes sequentially,
starting from those involving node N + 1 with any other node (that is, the yellow entries in Figure
1c). Let si, for i = N + 1, . . . , N↵, be an auxiliary indicator variable that takes value 0 if node i has
been associated to an edge already and 1 otherwise. The variable si thus indicates if the constraint
that node i must be associated to at least one edge is still active (si = 1) or is inactive (si = 0). As
we start from node (N + 1), all constraints are active and so si = 1 for all i = N + 1, . . . , N↵. We
then sample the total number of edges n̊(N+1) between node (N + 1) and any other node from

3

n̊(N+1) | (w1, . . . , wN↵), (⇡1, . . . ,⇡N↵) ⇠ 0-Trunc-Poisson
⇣
2w(N+1)p̊(N+1) + w2

(N+1)

⌘
,

p̊(N+1) =
NX

j=1

p̊(N+1)j +
N↵X

j=N+2

p̊(N+1)j , p̊(N+1)j = wj

1�

KX

k=1

⇡(N+1)k⇡jk

!
.

Given the total number of edges associated with node (N +1), letting x(i)
e2 be the other node (possibly

node i itself) associated to edge e = 1, . . . , n̊(i) of node i, we sample:

P (x(N+1)
e2 = j) /

⇢
p̊(N+1)j if j = 1, . . . , N,N + 2, . . . , N↵,
w(N+1) if j = N + 1.

We then set s(N+1) = 0 and also si = 0 for every node i 2 {N+2, . . . , N↵} that has been associated
to some edges with node (N + 1).

Next, we can move on to sampling all the remaining edges involving node N + 2, that is those
with any other node except node N + 1 (the light green entries in Figure 1c). In general, when
we sample edges for node (N + d) for d = 2, . . . , (N↵ � N), there are two considerations we
must keep into account: (1) the edges between node (N + d) and nodes (N + 1), . . . , (N + d� 1)
have already been sampled and so those nodes should not be re-considered; (2) if s(N+d) = 0, the
constraint on node (N + d) is no longer active and we may possibly sample 0 additional edges.
Putting these considerations together and letting n̊(N+d) be the number of remaining edges to sample
when considering node (N + d), that is those with nodes {1, . . . , N,N + d, . . . , N↵}, we have

n̊(N+d) | (w1, . . . , wN↵), (⇡1, . . . ,⇡N↵), s(N+d) ⇠

8
<

:
0-Trunc-Poisson

⇣
2w(N+d)p̊(N+d) + w2

(N+d)

⌘
if s(N+d) = 1,

Poisson
⇣
2w(N+d)p̊(N+d) + w2

(N+d)

⌘
if s(N+d) = 0,

where

p̊(N+d) =
NX

j=1

p̊(N+d)j +
N↵X

j=N+d+1

p̊(N+d)j , p̊(N+d)j = wj

1�

KX

k=1

⇡(N+d)k⇡jk

!
.

Then for e = 1, . . . , n̊(N+d), we sample

P (x(N+d)
e2 = j) /

⇢
p̊(N+d)j , if j = 1, . . . , N,N + d+ 1, . . . , N↵,
w(N+d) if j = N + d.

Community assignments. For every node i = N + 1, . . . , N↵ with n̊i > 0, and for each e =

1, . . . , n̊i, we sample a community assignment c(i)e1 for node i given x(i)
e2 from

P (c(i)e1 = k | ⇡i, x
(i)
e2 ,⇡x(i)

e2
) /

(
⇡ik
⇣
1� ⇡

x(i)
e2 ,k

⌘
, x(i)

e2 6= i,

⇡ik, x(i)
e2 = i,

for k = 1, . . . ,K. For non-self-edges, we rescale ⇡ik to account for the knowledge that the
community to which the other node associated to edge e is assigned needs to differ from that to which
node i is assigned for this edge. We increment M

ic(i)e1
accordingly, and then given c(i)e1 and x(i)

e2 , we

can sample a community assignment c(i)e2 for node x(i)
e2 from

4

P (c(i)e2 = ` | c(i)e1 , x
(i)
e2 ,⇡x(i)

e2
) =

8
><

>:

⇡
x(i)
e2 `

(1� ⇡
x(i)
e2 c(i)e1

)
, x(i)

e2 6= i, ` 2 {1, . . .K}\c(i)e1 ,

⇡i`, x(i)
e2 = i, ` 2 {1, . . .K},

and then increment M
x(i)
e2 c(i)e2

. Notice that for non-self-edges, we have removed the community

sampled for node i from the range of available communities for the assignment of node x(i)
e2 , and

rescaled ⇡
x(i)
e2

accordingly.

Computational efficiency. In our TGGP model, unobserved nodes will have low sociability
parameters; otherwise, they would be likely to be linked to unthinned edges. Thus n̊(N+d) tends to
be small for all d = 1, . . . , N↵ �N . For sampling their edges and community assignments, it is just
necessary to compute a (N + 1)⇥N↵ matrix P̊ whose entries p̊ij represent the relative probability
of associating node j to an edge sampled for node i.

A.2 Updating nodes’ community memberships

Here we describe the update of ⇡i = (⇡i1, . . . ,⇡iK), the distribution over community memberships
of node i = 1, . . . , N↵. Recall the prior on ⇡i:

⇡i | �
iid
⇠ Dirichlet(⇣�1, . . . , ⇣�K),

where � = (�1, . . . ,�K) is a vector of community frequencies that itself has a Dirichlet prior, and
equals the expected value of ⇡i. For our experiments we set ⇣ = 0.5, to encourage community
memberships of individual nodes to be more polarized than � and typically only use a subset of the
available communities.

For each edge in the latent multigraph to which node i is associated, the generative model has
node i being assigned to a community sampled independently from (1, . . . ,K) with probabilities
(⇡i1, . . . ,⇡iK), like in multinomial sampling. The Dirichlet and the multinomial are conjugate
distributions, so the posterior of ⇡i is easily obtained. Indeed, conditional on the concentration
parameter � and the N↵⇥K matrix M whose rows record the number of times Mi = (Mi1, . . .MiK)
that an edge i = 1, . . . , N↵ was assigned to each community k = 1, . . . ,K, the posterior distribution
of the vectors of community memberships are obtained as:

⇡i | Mi,�
ind
⇠ Dirichlet(⇣�1 +Mi1, . . . , ⇣�K +MiK).

An advantage of this specification is that it allows sparse community memberships, in that the sample
(⇡i1, . . . ,⇡iK) may have elements that are (almost) exactly equal to zero.

A.3 Updating the global expected value of community memberships

The posterior distribution of the expected value � = (�1, . . . ,�K) of nodes’ community memberships
informs about summaries of the latent community structure of a network, such as the likely number
of active communities and the relative size of different communities. Recall the prior on �:

� ⇠ Dirichlet
⇣ �
K

, . . . ,
�

K

⌘
,

where the value of � controls the sparsity of the prior on �, with values of � ⌧ K being more
sparsity-inducing. In our experiments, we fix � = 10 but K = 50. This hierarchical prior approaches
the hierarchical Dirichlet process [6] in the limit as K ! 1.

Here we illustrate a strategy for sampling from the posterior of � = (�1, . . . ,�K) that relies on
auxiliary variables drawn according to the so-called “Chinese restaurant franchise” representation
of a hierarchical Dirichlet model [6]. We can represent each node i = 1, . . . , N↵ as a restaurant,
where every new community assignment for node i can be represented as a new customer entering

5

restaurant i and ordering a dish (community) k 2 {1, . . . ,K}. Letting T (i)
e be the number of tables

already started at restaurant i when a new customer e = 1, 2, . . . enters, customer e decides to sit at
an existing table t 2 {1, . . . , T (i)

e } with probability proportional to the number of customers currently
sitting at that table (and eat the dish k(i)t that was ordered by the first customer who sat at the table);
or, they can start a new table T (i)

e + 1 with probability proportional to ⇣ , and pick a new dish k(i)
T (i)
e +1

from the menu according to �. Let t(i)e be the table chosen when customer e enters restaurant i, or
equivalently the table chosen for the community assignment of node i for when edge e = 1, . . . ,Mi•
is associated to it. Then, letting q(i)e = (q(i)e1 , . . . , q

(i)

eT (i)
e

) be the number of customers already sitting
at each of the tables when customer e enters:

p(t(i)e = t | q(i)e) /

(
q(i)et if t 2 {1, . . . , T (i)

e },

⇣ if t = T (i)
e + 1.

Conditional on t(i)e and letting ̃(i)t be the dish served at table t in restaurant i, the dish (i)e 2

{1, . . . ,K} ordered when customer e enters restaurant i is sampled according to

p((i)e = k | t(i)e = t,�) =

8
><

>:

1 if t 2 {1, . . . , T (i)
e },(i)e = ̃(i)t ,

0 if t 2 {1, . . . , T (i)
e },(i)e 6= ̃(i)t ,

�k if t = T (i)
e + 1.

From the last sampling equation we see that the posterior distribution of � depends on how many
tables (rather than customers) are being served each dish across all restaurants in the franchise. Let
T̄ (i)
k be the number of tables serving dish k at restaurant i and let T̄•k =

PN↵

i=1 T̄
(i)
k be the total

number of tables serving dish k across all restaurants in the franchise. The summary statistics that we
need for the posterior of � is the vector T̄ = (T̄•1, . . . , T̄•K).

We then sample, for every restaurant i = 1, . . . , N↵ (i.e. for every node) and every dish k = 1, . . . ,K

(i.e. for every community), the number of tables T̄ (i)
k  Mik occupied by the Mik customers eating

dish k at restaurant i. Note that Mik is the entry in row i and column k of the N↵ ⇥K matrix M
sampled at step 1 (see Section A.1).

Because the distribution of table arrangements is invariant to the order in which customers enter, we
can assign one at a time each of the e = 1, . . . ,Mik customers eating dish k at restaurant i to either
sit at an existing table (t̃(i)ek = 0) or to start a new table (t̃(i)ek = 1) according to:

t̃(i)ek | � ⇠ Bernoulli
✓

⇣�k
(e� 1) + ⇣�k

◆
,

where we have ⇣�k since we are conditioning on the customer being served dish k and we weight ⇣�k
with respect to (e� 1) because, when considering customer e, there are already (e� 1) customers
sitting at some table serving dish k. Thus, the chances that customer e sits at one of the existing
tables is proportional to (e� 1). Finally, we set T̄ (i)

k =
PMik

e=1 t̃
(i)
ek .

After sampling the auxiliary variables, we can easily update � according to

� | T̄ ⇠ Dirichlet
⇣ �
K

+ T̄•1, . . . ,
�

K
+ T̄•K

⌘
.

A.4 Updating nodes’ sociabilities

Let Mi• =
PK

k=1 Mik be the total degree of node i (whose sampling was described in Section A.1).
Conditional on the vector of total degrees (M1•, . . . ,MN↵•) and on the hyperparameters ↵,� and ⌧ ,
the update of nodes’ sociabilities (w1, . . . , wN↵) can be done via a Hamiltonian Monte Carlo step
[49, 50] as detailed by Caron and Fox in Section 7.2 and in Appendix F.1 of [25].

6

A.5 Updating hyperparameters of sociabilities’ distribution

We assume the same improper priors on the hyperparameters ↵,�, and ⌧ as in [25]:

P (↵) /
1

↵
,

P (�) /
1

1� �
,

P (⌧) /
1

⌧
.

To update these hyperparameters we follow the approach that Caron and Fox describe in Section 7.2
and in Appendix F.2 in [25].

A.6 Updating the dimension of the latent multigraph

Even though our interest lies in the sociabilities and community memberships of observed nodes i =
1, . . . , N , to derive their exact posterior we need to also consider the unobserved nodes N+1, . . . , N↵,
that is those nodes whose edges in the latent multigraph are all thinned, being all either across-
communities or self-edges. The distribution of the number of nodes N↵ with at least one edge in the
latent multigraph is not tractable, and we thus resort to an approximate method for updating N↵.

Our update of N↵ is based on sampling Q multigraphs from the GGP prior evaluated at the current
values of ↵,� and ⌧ . For simulated graph q, let N (q) be the number of nodes associated to at least one
within-community edge, and N (q)

↵ be the number of nodes associated to at least one edge (of any type).
We then compute the average ratio rQ = 1

Q

PQ
q=1

N(q)
↵

N(q) and set the new value of N (new)
↵ = NrQ. If

the new value N (new)
↵ is smaller than the older value N (old)

↵ , we keep the N (new)
↵ unobserved nodes

that currently have the largest sociabilities, along with their current community memberships. If
N (new)

↵ > N (old)
↵ , we keep all of the current N (old)

↵ unobserved nodes, sample the sociabilities for
the remaining N (new)

↵ �N (old)
↵ nodes by resampling from the sociabilities of the current nodes, and

assign community memberships from the prior evaluated at the current value of �. Our experiments
on simulated data suggest that, by updating N↵ every 100 iterations and setting Q = 10, this method
allows MCMC chains to concentrate around the true value of N↵ and of the hyperparameters ↵,�,
and ⌧ (see Figure 4 (top left) in the manuscript).

B Additional results on simulated data

In Section 3 of the manuscript we observed that our TGGP specification is more regularized, and
thus may be more easily identified, than the compound GGP formulation of [29]. Recall that, in our
specification, the community memberships for node i are a probability vector ⇡i over K communities
generated from

⇡i | �
iid
⇠ Dirichlet(⇣�1, . . . , ⇣�K), i = 1, . . . , N↵.

In contrast, for the compound GGP the membership of node i in community k is modeled as

wik = wi0 ik, ik
ind
⇠ Gamma(ak, bk), for i = 1, . . . , N↵, k = 1, . . . ,K,

where nodes’ baseline sociabilities {wi0}
N↵
i=1 are drawn according to a ↵-truncated generalized

gamma process [37, 38, 39] with parameters ⌧ 2 (0,1), and � 2 (�1, 1). In Section 5.1 of the
manuscript, we noted how our results suggested that the TGGP model may be better at recovering
the underlying community structure of both TGGP and CGGP simulated graphs. Here we provide
additional insights into this comparison. Figures 2a and 2b show that, for a CGGP-simulated graph
with 15 communities, ak = 1/15 and bk = 1 for all k = 1, . . . , 15, the samples (a1, . . . , a15) from
the posterior estimated fitting the CGGP model are not concentrated around the true value or 1/15,

7

and several among ⌧b1, . . . , ⌧bK (which according to [29] is better identifiable than b1, . . . , bK) are
considerably larger than their true value of 1. Conversely, Figure 2c shows that the TGGP model
fitted with K = 50 correctly concentrates �k around 0 for most k = 1, . . . ,K and, for the remaining
communities, it tends to draw samples around the true value of 1/15 (the simulated graph for the
TGGP has 15 communities and a true value �k = 1/15 for each of them).

> 0.3

< 0.3

0.5 1.0 1.5 2.0

0.1 0.2 0.3
0

20

40

60

0
2
4
6
8

ak

de
ns

ity

(a) ak densities (CGGP [29])

>10

< 10

50 100 150 200

2.5 5.0 7.5
0
1
2
3
4

0.00

0.05

0.10

0.15

bkτ

de
ns

ity
(b) ⌧bk densities (CGGP [29])

0.00

0.03

0.06

0.09

1 5 10 15 20 25 30 35 40 45 50
βk

va
lu
e

(c) �k boxplots (TGGP)

Figure 2: Summaries of the posteriors of the parameters controlling the distribution of community memberships.
(a) densities of a1, . . . , aK and (b) density of ⌧b1, . . . , ⌧bK (which according to [29] is better identifiable than
b1, . . . , bK) for the CGGP-simulated graph fitted with the CGGP model. Different communities correspond
to different colors, red lines mark the true values, and the range of ak and bk are split between relatively
small and large values to facilitate the plotting. (c) boxplots of the elements of the expected value � of nodes’
community memberships for the TGGP-simulated graph fitted with the TGGP model; a red line marks the
value 1/15 that is the true value for 15 among the 50 fitted (�1, . . . ,�50), and another red line marks the value
0 that corrresponds to the true value for the remaining ones. Both the CGGP and TGGP models were fitted
by running 50,000 iterations of the respective samplers and discarding the first 40,000 iterations as burn-in.
Both the CGGP and TGGP simulated graphs had 15 underlying communities and hyperparameter values set to
↵ = 250,� = 0.1, ⌧ = 1. The CGGP model was fitted setting the number of communities K = 15 equal to the
truth, while the TGGP model was fitted with K = 50 and a sparsity-inducing prior on �.

C Real-data networks: preparation and references

The four real-data networks used in our experiments were pre-processed by extracting the main
component for the networks, by removing self-edges and by making the observed network undirected.
Summary information for each of these networks is displayed in Table 1.

Network name Type Reference Number of nodes Number of edges

Reed Online social network [51] 962 18812
Simmons Online social network [51] 1510 32984
SmaGri Co-authorship network [52] 1024 4916
Yeast Protein interaction network [53] 2224 6609

Table 1: Information on datasets used for real-data experiments

The networks Reed and Simmons were downloaded from https://archive.org/details/
oxford-2005-facebook-matrix, the network SmaGri was downloaded from https://www.
cise.ufl.edu/research/sparse/matrices/Pajek/SmaGri.html, and the network Yeast was
obtained from http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm.

8

https://archive.org/details/oxford-2005-facebook-matrix
https://archive.org/details/oxford-2005-facebook-matrix
https://www.cise.ufl.edu/research/sparse/matrices/Pajek/SmaGri.html
https://www.cise.ufl.edu/research/sparse/matrices/Pajek/SmaGri.html
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm

	Introduction
	Background: Stochastic Blockmodels for Dense and Sparse Networks
	Mixed Membership Stochastic Blockmodels
	Sparse Network Models via Completely Random Measures

	The Thinned GGP Network Model
	Monte Carlo Posterior Inference
	Experimental Results
	Simulation
	Real network data

	Discussion
	Monte Carlo Posterior Inference
	Updating edge counts and community assignments in the latent multigraph
	Within-community edges
	Across-communities and self-edges between observed nodes
	Across-communities and self edges involving unobserved nodes

	Updating nodes' community memberships
	Updating the global expected value of community memberships
	Updating nodes' sociabilities
	Updating hyperparameters of sociabilities' distribution
	Updating the dimension of the latent multigraph

	Additional results on simulated data
	Real-data networks: preparation and references

