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Multi-Granularity Hand Action Detection
Anonymous Author(s)

ABSTRACT
Detecting hand actions in videos is crucial for understanding video
content and has diverse real-world applications. Existing approaches
often focus on whole-body actions or coarse-grained action cate-
gories, lacking fine-grained hand-action localization information.
To fill this gap, we introduce the FHA-Kitchens (Fine-Grained
Hand Actions in Kitchen Scenes) dataset, providing both coarse-
and fine-grained hand action categories along with localization
annotations. This dataset comprises 2,377 video clips and 30,047
frames, annotated with approximately 200k bounding boxes and
880 action categories. Evaluation of existing action detection meth-
ods on FHA-Kitchens reveals varying generalization capabilities
across different granularities. To handle multi-granularity in hand
actions, we proposeMG-HAD, an End-to-EndMulti-Granularity
Hand Action Detection method. It incorporates two new designs:
Multi-dimensional Action Queries and Coarse-Fine Contrastive
Denoising. Extensive experiments demonstrate MG-HAD’s effec-
tiveness for multi-granularity hand action detection, highlighting
the significance of FHA-Kitchens for future research and real-world
applications. The dataset and source code will be released.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.

KEYWORDS
Hand Action Detection, Dataset, Multi-Granularity

1 INTRODUCTION
Action detection, a crucial task in video understanding, aims to
locate and recognize action instances in each video frame, with
applications in various fields [66] such as Human-Computer Interac-
tion (HCI) [27], Smart Homes [31], the Design and Control of Robot
Hands [44], and Healthcare [64]. Despite significant advancements
in action recognition regarding both large-scale benchmarks [5, 54]
and advanced algorithms [18, 40, 60], action detection remains
relatively underexplored, mainly due to the lack of datasets with
spatial action localization annotations. Moreover, existing methods
predominantly focus on whole-body actions, overlooking the fine-
grained actions of specific body parts, such as hands. However, hand
actions are integral to daily activities, underscoring the significant
research and practical importance of hand action detection.
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Figure 1: Overview of the FHA-Kitchens dataset. (a) The an-
notation of hand actions in existing relevant datasets, where
UCF101 [54] and Kinetics700 [53] are whole-body action
datasets, while MPII Cooking [47] and EPIC KITCHENS [13]
are hand action datasets. (b) The annotation of hand actions
in our dataset. The left shows some frames extracted from 8
dish categories. The right illustrates the annotation process
of hand actions in “fry vegetable”.

Pioneering datasets such as MPII Cooking Activities [47] and
EPIC-KITCHENS [13] have been developed to facilitate hand-action
research. However, they exhibit limitations including insufficient
representation of hand-action granularity, lack of annotation of
hand-action interaction regions, and neglect of the relationships
between interacting objects. As shown in Figure 1(a), they offer
only coarse-grained annotations for hand actions like “cut” rather
than the fine-grained multi-dimensional categories like “<knife,
cut slice, carrot>”. These limitations hinder the study of detecting
fine-grained hand actions and exploring their spatial relationship,
leaving challenges in hand action detection unresolved. Therefore,
establishing a large-scale benchmark with rich hand-action annota-
tions is essential for advancing research in this field.

To this end, this paper presents a novel dataset FHA-Kitchens,
focusing on rich and fine-grained localization and categorization
information of hand actions in kitchen scenes. The FHA-Kithcens
dataset encompasses a total of 2,377 video clips and 30,047 frames
from eight different dish types (Figure 1(b) left). Each frame in-
cludes meticulously annotated hand action information, featuring
high-quality annotations of hand interaction region boxes and cor-
responding coarse- and fine-grained categories. Our data were
extracted from publicly available large-scale action datasets [53],
focusing on videos relevant to hand actions. Subsequently, frames
underwent cleaning and were annotated by ten expert voluntary
annotators. To excavate more hand action information, we re-
fined the annotation process in two aspects (Figure 1(b) right):
(1) Hand interaction regions. These were subdivided into three
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sub-regions based on hand-object interaction: Left hand-Object in-
teraction region, Right hand-Object interaction region, and Object-
Object interaction region. Each sub-interaction region was anno-
tated with bounding boxes and coarse-grained categories, denoted
as “L-O”, “R-O”, and “O-O”. (2) Hand interaction actions. To
enhance the model’s understanding of hand actions, we further
refined the category of each sub-interaction region by expanding
single-dimensional action categories into multi-dimensional ones,
annotated in the format of triplets: <subject, action verb, object>, ab-
breviated as <s, a, o>, where “s-o” denotes interacting objects, and “a”
represents the interaction action between the objects. Additionally,
when annotating “s” and “o”, we considered the specific contact
area between the interacting objects, labeled as “name_contact
area” (e.g., “carrot_end”). Overall, we meticulously annotated 880
hand action categories (coarse- and fine-grained) for approximately
220k bounding boxes, with each category corresponding to a sub-
interaction region’s localization box. Fine-grained categories per
frame have nine dimensions, resulting in 877 action triplets.

Hand Action Detection (HAD) is a sub-area of Action Detection
(AD) research, which has a close relation to generic object detec-
tion (OD) in the image domain. We systematically evaluated several
representative AD methods [20, 46, 65, 71] on FHA-Kitchens, ob-
serving varied performance across different levels of granularity:
“Coarse-grained” and “Fine-grained”. Existing methods perform
significantly worse under fine-grained labels compared to coarse-
grained ones, indicating that these detection methods have a better
understanding of single-dimensional coarse-grained labels (i.e., sin-
gle verb or noun). However, real-world hand actions often involve
both coarse- and fine-grained information simultaneously. There-
fore, exploring the impact of multi-granularity action categories in
HAD tasks is both interesting and practically significant.

Among the state-of-the-art detectionmethods, DINO [65] showed
relatively strong performance across different granularity hand ac-
tions. Building upon DINO, we proposeMG-HAD, a novel baseline
for hand action detection (HAD). MG-HAD contains a backbone,
a multi-layer Transformer encoder, a multi-layer Transformer de-
coder, and multiple prediction branches. To better adapt to multi-
granularity hand actions, we propose two novel designs: (1) Multi-
dimensional information processing: To enhance the model’s
understanding of fine-grained information, we replace the origi-
nal single-dimensional content query in the decoder with multi-
dimensional content queries to focus on multiple aspects of hand
actions. Additionally, we introduce a Content Query Reorganiza-
tion (CQR) module to generate three query sets focusing on differ-
ent action dimensions as decoder inputs. (2) Multi-granularity
category processing: We observed that the DINO’s CDN (Con-
trastive DeNoising) module mainly focuses on bounding boxes for
contrastive denoising training, while the labels are not specially
designed. To enable the model to better learn and distinguish coarse-
grained and fine-grained action labels, we devise coarse-grained
and fine-grained sample queries for contrastive denoising training
of the labels, by adding noise to different granularity categories
with specified noise positions and classes. Besides, we investigate
the pre-trained ResNet50 [23] and Swin-L [39] models as backbones
to extract multi-scale visual features. During training, following the
DN-DETR [32] method, we add ground truth labels and boxes with
noises into the Transformer decoder layers to stabilize bidirectional

matching, and also adopt deformable attention [71] for improved
computational efficiency.

In summary, our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to study the problem
of multi-granularity hand action detection and establish the first
hand-action dataset FHA-Kitchens, which includes both hand
interaction region localization and multi-granularity category
annotations. This dataset can serve as a benchmark for hand
action detection tasks.

• We systematically investigated the impact of different granu-
larity hand action information in kitchen scenes on the hand
action detection task and provided insights about the evaluation
protocol, performance analysis, and model design.

• We propose a novel multi-granularity hand action detection
method named MG-HAD, which is designed from the perspec-
tives of multi-granularity and multi-dimensionality. This method
incorporates Multi-dimensional Action Queries and a Coarse-
Fine Contrastive Denoising module to address the mixed-grained
HAD problem. MG-HAD demonstrates its effectiveness in hand
action detection and could serve as a strong baseline.

2 RELATEDWORK
2.1 AR & AD Dataset
Action Recognition (AR) Dataset. Pioneering AR datasets, such
as KTH [49] and Weizmann [1], have played a pivotal role in the
advancement of this field, inspiring subsequent endeavors in con-
structing more challenging datasets. Existing studies on action
recognition datasets can be divided into two main categories based
on the types of actions: whole-body action and part-body action,
such as UCF101 [54], Kinetics [3–5], ActivityNet [24], FineGym [50],
and others [25, 28, 41, 51, 68]. These datasets primarily focus on
whole-body actions, lacking fine-grained action information from
specific body parts. Datasets like MPII Cooking Activities [47] and
EPIC-KITCHENS [13] refine the action verb part and consider in-
teracting objects, yet they do not describe the localization of action
interaction regions or the relationships between interacting objects,
crucial for HAD tasks. Representing hand actions solely with single-
dimensional verbs is insufficient given the diversity and complexity
of real-world scenarios. To address this issue, the FHA-Kitchens
dataset enriches hand action data by providing annotations for
interaction region localization and interaction action categories.

Action Detection (AD) Dataset. Compared to action recogni-
tion datasets, fewer datasets are available for action detection [22,
30]. This is due to the need to annotate the position and category
of each action instance, which requires more efforts for dataset
construction. The AVA dataset [22] focuses on human action lo-
calization, providing bounding box annotations for each person.
However, this dataset primarily focuses on whole-body actions,
providing location information for individuals rather than action
interaction regions. Moreover, the provided action categories are
mainly single-dimensional coarse-grained verbs (e.g., “sit”, “write”,
and “stand”). FHA-Kitchens dataset addresses these limitations by
providing precise bounding box annotations for each hand sub-
interaction region. Moreover, we refine the representation of action

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Multi-Granularity Hand Action Detection ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Comparison of relevant datasets. AR: Action Recognition. AD: Action Detection. HAD: Hand Action Detection. OD:
Object Detection. ACat.: Action Category. OCat.: Object Category. Dim: Action Dimension. IRBox: Interaction Region Box.

Dataset Year Ego #Clip Ave.Len #Frame #ACat. #Verb #OCat. Dim IRBox Task

Whole-body action dataset
UCF101 [54] 2012 × 13.3K ∼6s - 101 - - 1 × AR

ActivityNet [24] 2015 × 28K [5,10]m - 203 - - 1 × AR
Kinetics400 [5] 2017 × 306K 10s - 400 359 318 2 × AR
Kinetics600 [3] 2018 × 496K 10s - 600 550 502 2 × AR
Kinetics700 [4] 2019 × 650K 10s - 700 644 591 2 × AR

AVA [22] 2018 × 430 15m - 80 80 0 3 × AR,AD
AVA-kinetics [30] 2020 × 230K 15m,10s - 80 80 0 3 × AR,AD
FineGym [50] 2020 × 32K 10m - 530 530 0 3 × AR

Hand action dataset
MPII cooking [47] 2012 × 5,609 15m 881K 65 65 0 1 × AR

EPIC-KITCHENS [13] 2018 ✓ 39.6K 3.7±5.6s 11.5M 149 125 323 2 × AR,OD
FHA-Kitchens 2024 ✓ 2,377 3m 30,047 880 130 384 9 ✓ AR,AD,HAD,OD

categories and incorporate information about the interacting ob-
jects within each interaction region’s action category, thereby en-
hancing the granularity and contextual information of hand actions.
A comprehensive comparison between FHA-kitchens and existing
datasets is presented in Table 1. In contrast to existing datasets,
(1) We provide precise localization information by meticulously
annotating hand interaction regions and corresponding interaction
objects using bounding boxes. (2)We offer two granularity for hand
actions: coarse- and fine-grained. For fine-grained categories, we
use multi-dimensional triplets to represent each sub-interaction
region action, expanding the dimensionality of each frame to 9. (3)
We not only focus on the interacting objects that generate interac-
tion actions but also consider the active and passive relationships
between these objects, capturing their contact areas.

2.2 AR & AD Method
Action Recognition (AR) Method. Existing action recognition
methods can be broadly summarized into two pipelines based on
technical approaches. The first pipeline employs a 2D CNN [16,
19, 52, 61] to learn frame-level semantics and then aggregate them
temporally using 1D modules. For example, TSN [60] divides an
action instance into multiple segments, represents it with a sparse
sampling scheme, and applies average pooling to fuse predictions
from each frame. TRN [70] and TSM [34] replace pooling with
temporal reasoning and shift modules, respectively. The second
pipeline directly utilizes a 3D CNN [5, 15, 18, 40, 57, 62] to capture
spatial-temporal semantics, such as I3D [5], SlowFast [18], and
Video Swin Transformer [40]. On the other hand, AR methods can
be categorized into coarse-grained [11, 12] and fine-grained [26, 37,
42, 43] based on the granularity of the actions. Some hand actions
approaches [37, 42] use the EPIC-KITCHENS and MPII Cooking
Activities datasets, from first-person and third-person perspectives,
respectively. Another method [26] focuses on human whole-body
actions in sports scenarios using the FineGym dataset [50].

Action Detection (AD) Method.Most state-of-the-art action
detection methods [7, 17, 18, 45, 56] commonly follow a two-stage
pipeline, utilizing separate 2D and 3D backbones for localization and
video feature extraction, respectively. Since transformer [58] was
introduced for machine translation, it has become a widely adopted

backbone for sequence-to-sequence tasks [33, 59, 65]. Most recent
methods [8, 9, 21, 63, 69] utilize a unified backbone to perform
action detection. VAT [21] is a transformer-style action detector
designed to aggregate spatiotemporal context around target actors.
EVAD [8], built upon the ViT framework, offers an end-to-end ef-
ficient video action detection method. WOO [9] and TubeR [69]
are query-based action detectors that follow the detection frame-
works of [2, 55] to predict bounding boxes and action classes, while
STMixer [63] is a one-stage query-based detector that adaptively
samples discriminative features. However, we observed that these
methods primarily focus on individual human actions and overlook
action interaction regions, interacting objects, and their relation-
ships. Leveraging the advantages of transformer-based detection
models, we propose an end-to-end solution capable of simultaneous
hand action localization and recognition.

3 FHA-KITCHENS DATASET
3.1 Data Collection And Organization
Data Collection. The proposed dataset is derived from the large-
scale action dataset Kinetics 700_2020 [53], which comprises approx-
imately 650K YouTube video clips and over 700 action categories.
However, as the Kinetics dataset primarily focuses on human ac-
tions, most of the videos capture whole-body actions. To narrow our
focus to hand actions, we performed filtering and processing opera-
tions on the original videos in three steps. (1) Content Localization:
We observed that videos in kitchen scenes prominently showcase
human hands. So we sought out and extracted relevant videos set
against a kitchen backdrop. (2) Quality Selection: To ensure dataset
quality, we selectively chose videos with higher resolutions. Specif-
ically, 87% of the videos were recorded at 1,280 × 720 resolution,
while another 13% had a shorter side of 480. Additionally, 67% of
the videos were captured at 30 frames per second (fps), and another
33% were recorded at 24∼25 fps. (3) Duration Control: We imposed
a duration constraint on the videos, ranging from 30 seconds to 5
minutes, to exclude excessively long videos. This constraint aimed
to maintain a balanced distribution within the sample space. Finally,
we collected a total of 2,377 video clips, amounting to 84.22 minutes
of footage, encompassing 8 distinct types of dishes.

3
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Data Organization. The collected video data was reorganized
and cleaned to align with our annotation criteria (Section 3.2). First,
we split the collected video data into individual frames, as our anno-
tated units are frames. Subsequently, we conducted further cleaning
of the frames by excluding those that did not depict hands or ex-
hibited meaningless hand actions. This cleaning process took into
consideration factors such as occlusion, frame quality (i.e., without
significant blur, subtitles, and logos), meaningful hand actions, and
frame continuity. As a result, we obtained a total of 30,047 high-
quality candidate video frames containing diverse hand actions
for the FHA-Kitchens dataset. Compared to the initial collection,
113,436 frames were discarded during the cleaning process.

3.2 Data Annotation
We recruited 10 voluntary annotators to annotate hand actions
for each frame with high quality. Their responsibility was to an-
notate bounding boxes and multi-granularity action categories for
each hand interaction region. To enhance annotation efficiency,
we implemented a parallel annotation approach. We utilized the
LabelBee tool for annotating bounding boxes and coarse-grained
categories, while fine-grained action triplets were annotated on the
Amazon Mechanical Turk platform. To ensure annotation quality,
we conducted three rounds of cross-checking and corrections. The
annotation content and criteria are detailed below.

Bounding Box Annotation:We annotated the bounding boxes
for both interaction regions (IR) and interaction objects (IO). (1) IR:
We divided the hand’s interaction region into three sub-interaction
regions: Left hand-Object (L-O), Right hand-Object (R-O), and
Object-Object (O-O) interaction regions (Figure 1(b) middle), rep-
resenting regions where the left hand directly contacts an object,
the right hand directly contacts an object, and objects interact with
each other, respectively. The reason for focusing on O-O is that
interactions between objects also involve the participation of hands.
(2) IO: To better understand interaction actions, we also annotated
the interactive object pair within each sub-interaction region using
bounding boxes. For example, in L-O, we annotated objects directly
touched by the left hand. In O-O, we annotated the interacting
objects directly involved in hand actions (e.g., utility knife and car-
rot). However, during annotation, we may encounter overlapping
bounding boxes, i.e., the same interacting object will satisfy two
annotation definitions, for example, the utility knife in Figure 1,
which is both the object directly touched by the right hand in the
R-O and the active force provider in the O-O. In this case, we anno-
tate all the labels because the same object participates in different
interaction actions and has different roles (Annotation details can
be seen in supplementary material). Finally, we annotated a total
of 198,839 bounding boxes, including 49,746 hand boxes, 66,402
interaction region boxes, and 82,691 interaction object boxes.

Hand Action Annotation: We annotated coarse- and fine-
grained actions for each sub-interaction region. Coarse-grained
categories, denoted by the generic terms “L-O”, “R-O”, and “O-O”,
represent the coarse actions within the sub-interaction regions.
Different from existing fine-grained datasets. We annotate each
fine-grained action category in a triplet format: <subject, action
verb, object>. (1) Subject & Object: We considered the “active-
passive” relationship between objects, where the “subject ” refers to
the active force provider (e.g., utility knife) and the “object” refers

FHA
Kitchens

Figure 2: An overview of the action verbs and their parent
action categories in FHA-Kitchens.

to the passive force receiver (e.g., carrot), and annotate them in
order within the action triplet. In L-O or R-O, the subject repre-
sents the corresponding hand, while the object denotes the directly
interacting object. Furthermore, to enrich the description of each
action, we also considered the contact areas of interacting objects
within each sub-interaction region. For example, as shown in the
first green block in the middle of Figure 1(b), we labeled the sub-
ject as “hand_left” and the object as “carrot_end”. We referred to
the EPIC-KITCHENS [13] dataset to define the object noun. (2)
Action Verb: It describes the fine-grained hand action within the
sub-interaction region. We used fine-grained verbs in the annotated
action triplets and constructed the verb vocabulary by sourcing
from EPIC-KITCHENS [13], AVA [22], and Kinetics 700 [4].

3.3 Statistics of the FHA-Kitchens Dataset
Overview of FHA-Kitchens. As summarized in Table 1, we anno-
tated hand action information for 30,047 frames from 2,377 clips,
resulting in 880 action categories (including 877 action triplets), 130
action verbs, and 384 interaction object nouns. We have taken steps
to refine the dataset by focusing on hand action categories and
interaction regions, providing more precise localization bounding
boxes and rich hand action categories for the three sub-interaction
regions. Compared to the original action annotations in Kinetics
700_2020 [53], the FHA-Kitchens dataset expands the action labels
by 7 dimensions, increases the number of action categories by 52
times, and introduces 122 new action verbs. Furthermore, we pro-
vide bounding boxes for hand action regions (i.e., 66,402 interaction
region boxes). This expansion significantly enhances the diversity
of hand action annotations, provides valuable region-level contex-
tual information for each action, and facilitates future research for
a wider range of video understanding tasks. The FHA-Kitchens
dataset is then randomly divided into the disjoint train, validation,
and test sets, with a video clip-based ratio of 7:1:2.

4
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Annotation Statistics. Our annotation primarily focuses on
hand interaction regions, interaction objects, and their correspond-
ing interaction actions, resulting in a diverse array of verbs, nouns,
and bounding boxes. Following the fine-grained annotation prin-
ciples [13], we ensured minimal semantic overlap among action
verb-noun categories, rendering them suitable for multi-category
action recognition and detection. (1) Verbs: The annotated dataset
comprises 130 action verbs that have been grouped into 43 parent
verb categories (Figure 2 and Figure 3). The three most prevalent
parent verb categories, based on the count of sub-action verbs, are
Cut, Hold, and Take, representing the most frequently occurring
hand actions in kitchen scenes. Figure 3 visually depicts the dis-
tribution of all verb categories within FHA-Kitchens, ensuring the
presence of at least one instance for each verb category. (2) Nouns:
In the annotation process, we identified a total of 384 interaction
object noun categories that are associated with actions, categorized
into 17 super-categories. Figure 4 shows the distribution of noun
categories based on their affiliations with super-categories. No-
tably, the super-category “vegetables & plants” exhibits the highest
number of sub-categories, followed by “kitchenware”, which aligns
with typical kitchen scenes. (3) Bounding Boxes: We performed
a comprehensive statistical analysis on the bounding boxes of the
three sub-interaction regions and the corresponding interaction
objects. Specifically, we focused on two aspects: the box area and
the aspect ratio. Details can be found in supplementary material.
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Figure 3: The distribution of instances per action verb cate-
gory (the outer ring in Figure 2) in the FHA-Kitchens dataset.
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Figure 4: The distribution of instances per object noun cate-
gory from 17 super-categories in the FHA-Kitchens dataset.

3.4 Benchmark Setup
Methods.We benchmark several representative action recognition
methods [18, 40, 48, 59, 60] and detection methods [20, 46, 65, 71]
with different backbone networks on the proposed FHA-Kitchens
dataset based on the MMAction2 [10] and MMDetection [6] code-
bases. We establish three tracks using the provided dataset. SL-AD
Track: The aim is to evaluate the supervised learning performance

Table 2: Detection results (mAP) of hand interaction regions
with different granularity levels of action categories using
different methods, i.e., Faster-RCNN, YOLOX, Deformable
DETR, and DINO on the validation set of the SL-D track.

Method Backbone Granularity levels

Coarse-Grained Fine-Grained

Faster-RCNN [46] R-50 65.2 48.5
R-101 66.1 50.0

YOLOX [20] YOLOX-s 71.8 46.9
YOLOX-x 75.6 49.8

Deformable DETR [71] R-50 73.0 52.4
DINO [65] R-50 75.2 53.5

of different detection models on hand interaction regions with dif-
ferent granularity levels of action categories. The results of the
methods are shown in Table 2. SL-AR Track: This track primarily
evaluates the supervised learning performance of different action
recognition models on fine-grained hand actions. We trained the
models with and without pre-trained weights on the FHA-Kitchens
dataset. DG Track: It focuses on experiments for Intra- and Inter-
class Domain Generalization in Interaction Region Detection, ex-
ploring both intra-class and inter-class perspectives. All models on
the SL-AD, SL-AR, and DG tracks were trained and tested using
NVIDIA GeForce RTX 3090 GPUs. For the SL-AD and DG tracks,
we employ the mean Average Precision (mAP) [36] as the primary
evaluation metric, while for the SL-AR track, Top-1 accuracy and
Top-5 accuracy (%) are adopted. Detailed results of SL-AR and DG
can be found in supplementary material.

Results and Discussion. The results in Table 2 show that cur-
rent detection methods performwell in learning single-dimensional
coarse-grained categories like verbs or nouns. However, they strug-
gle in learningmulti-dimensional fine-grained action categories. Un-
derstanding the intricate nature of real-world hand actions, which
encompass both coarse- and fine-grained information, underscores
the significance of investigating multi-granularity action categories
in HAD tasks, an area that poses significant challenges and remains
largely unexplored. To fill this gap, we propose a novel method for
multi-granularity hand action detection.

4 A SIMPLE YET STRONG BASELINE
4.1 A Multi-Granularity Framework
Drawing inspiration from the image-based DINO [65], we pro-
pose the novel MG-HAD method with specific novel designs in the
decoder for multi-granularity hand action detection (Figure 5). MG-
HAD consists of a backbone, a multi-layer Transformer encoder, a
multi-layer Transformer decoder, and multiple prediction branch
heads. Given a video clip, for each frame, we utilize backbones
like ResNet [23] or Swin Transformer [39] to extract multi-scale
features, which are then fed into the Transformer encoder along
with corresponding positional embeddings. After enhancing fea-
tures through the encoder layers, we initialize anchors as positional
queries for the decoder using a mixed query selection strategy, fol-
lowing the design of DINO, without initializing content queries but
leaving them learnable. It’s worth noting that the original content
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Figure 5: The overall architecture of MG-HAD, a novel end-to-end hand action detection model based on DINO [65]. The
improvements mainly focus on the decoder part. Specifically, (1) we introduce a new design for the content query part,
transforming the original single-dimensional content queries into multi-dimensional ones. They are further processed by
the designed CQR module, combined with initialized anchors, and inputted into the decoder. The outputted three query sets
with different action dimensions go through the Split & Integration module to generate 𝑁 queries containing three action
dimensions. Finally, the matching process is conducted to predict hand action results (see Section 4.2); (2) we introduce a C-F
CDN training approach, which involves adding coarse- and fine-grained noise to labels to generate four types of CDN queries
for contrastive denoising training (see Section 4.3). F: Fine-grained, C: Coarse-grained, Multi-G: Multi-granularity.

queries focus on semantic information of single-dimensional cat-
egories, which is not suitable for fine-grained multi-dimensional
categories in the new task. Therefore, we modify the single-content
query to multi-content queries and introduce a Content Query
Reorganization (CQR) module to obtain query sets focusing on
three different sub-action dimensions, as detailed in Section 4.2.
Additionally, similar to DINO, we have an extra CDN branch to
perform contrastive denoising training. In contrast to the standard
CDN method, we specifically devise a novel coarse-fine granularity
contrastive denoising training approach to distinguish labels with
different granularity levels, which will be discussed in Section 4.3.

4.2 Multi-Dimensional Action Queries
Comparing the results presented in Table 2, it’s clear that existing
detection methods struggle with learning from multi-dimensional
fine-grained labels. Fine-grained hand action detection poses a
greater challenge compared to coarse-grained detection due to the
need to discern subtle differences in similar hand actions. Addi-
tionally, multi-dimensional fine-grained labels provide important
supervisory signals about subject, object, and action categories, as
well as localization information. However, effectively encoding this
information at different dimensions and leveraging these supervi-
sory signals, particularly in terms of query design within the DETR
series framework [2, 65, 71], remains unexplored.

Implementation: We observed that the current design of con-
tent queries mainly focuses on single-dimensional semantic infor-
mation, i.e., single verb or noun categories. However, in fine-grained
categories, we incorporate both verb and noun categories, generat-
ing multi-dimensional semantic information, i.e., <𝑐1, 𝑐2, 𝑐3> (𝑐1, 𝑐3

∈ nouns, and 𝑐2 ∈ verbs), or more specific <s, a, o>. If we stick to the
original design, content queries would consider <s, a, o> as a whole,
learning global information from a single-dimensional perspective.
To enhance themodel’s focus on local information of sub-categories,
we transform a set of content queries 𝑄 = {𝑞1, ..., 𝑞𝑛} originally
focusing on single dimensions into three sets of content queries,
i.e., 𝑄𝑠 , 𝑄𝑎 , and 𝑄𝑜 , focusing on different action dimensions. 𝑛
is the index of the original queries. Specifically, we first convert
each query element 𝑞𝑛 (bottom orange cubes in Figure 5) into three
sub-queries, i.e., 𝑞𝑛𝑠 , 𝑞𝑛𝑎 , and 𝑞𝑛𝑜 , expanding 𝑁 original queries
to 3 × 𝑁 sub-queries. Next, through our designed Content Query
Reorganization (CQR) module, sub-queries focusing on the same
action dimension (i.e., 𝑞1𝑠 , 𝑞2𝑠 , ..., 𝑞𝑛𝑠 ) are selected and reorganized
to obtain a query set for each action dimension. Additionally, to
ensure a comprehensive understanding of fine-grained categories,
we introduce an action dimensional hyper-parameter𝑤𝑑 (𝑑 ∈ {s, a,
o}), to add a certain proportion of weight to each query set, which
is then sum with the global information (i.e., 𝑄 = {𝑞1, ..., 𝑞𝑛}). This
process is formulated as:

𝑄𝑑 = 𝐶𝑄𝑅

({
𝑞𝑛𝑑

}𝑁
𝑛=1

)
=

𝑁∑︁
𝑛=1

𝑞𝑛𝑑 × 𝑤𝑑 +𝑄, 𝑑 = 𝑠, 𝑎, 𝑜𝑟 𝑜. (1)

After passing through the CQR module, we obtain content query
sets for the three action dimensions. These sets are then summed
with the initialized anchors to yieldmulti-dimensional action queries.
Each dimensional query set has a length of 𝑁 , resulting in a to-
tal length of 3𝑁 . Following the decoder layers, three query sets
for different action dimensions (𝑄 ′

𝑠 , 𝑄 ′
𝑎 , and 𝑄 ′

𝑜 ) are outputted.
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Subsequently, through the Split&Integration module, queries from
different action dimensions with the same index (e.g., 𝑞1𝑠 , 𝑞1𝑎 ,𝑞1𝑜 )
are integrated to generate 𝑁 queries, each of which contains infor-
mation from three action dimensions (top orange cubes in Figure 5):

{𝑞𝑛}𝑁𝑛=1 = 𝑆𝐼
(
𝑄 ′
𝑠 , 𝑄

′
𝑎, 𝑄

′
𝑜

)
=

{
𝑞𝑛𝑠 + 𝑞𝑛𝑎 + 𝑞𝑛𝑜

}𝑁
𝑛=1 , (2)

where 𝑆𝐼 represents the Split&Integration module. Finally, the
matching process is conducted to predict hand action results.

Analysis: In our design of multi-dimensional action queries,
we introduce an action dimensional hyper-parameter𝑤𝑑 (𝑑 ∈ {s, a,
o}), to control the proportion of local information (sub-categories)
fused with global information (triplet categories). In the three action
dimensions <s, a, o>, the a dimension is the most crucial for our
task. Therefore, we use 𝑤𝑎 as the central weight to dynamically
adjust the weight proportions of the three action dimensions, with
a total sum of 1. To determine the optimal weight distribution, we
conducted a total of 10 comparative experiments under different
backbones, with detailed results provided in supplement material.

4.3 Coarse-Fine Contrastive Denoising
For object detection, DINO is highly effective in stabilizing training
and accelerating convergence. With the help of DN queries, it learns
to predict “no object” for anchors without nearby objects, thereby
inhibiting confusion and selecting high-quality anchors (queries) for
predicting bounding boxes. However, in HAD tasks where hand ac-
tion categories may overlap or be similar, DINO primarily addresses
the confusion of boxes but overlooks label categories, resulting in
poor prediction capability for different granularity levels of hand
action categories. To address this issue, we propose a Coarse-Fine
granularity Contrastive DeNoising (C-F CDN) training approach
to reject anchors with “incorrect granularity labels”.

Implementation: DINO introduces two hyper-parameters 𝛾1
and 𝛾2, to control the scale of box and label noise, respectively. The
generated noises are no larger than 𝛾1 and 𝛾2, aiming to enable
the model to reconstruct the ground truth (GT) from moderately
noisy queries. We observed that DINO only designs two types of
CDN queries for the box: positive and negative queries, while the
label is set to be randomly generated. In the proposed method,
while keeping the box settings unchanged, we further generate two
types of CDN queries for the label: coarse-grained and fine-grained
queries (dark and light yellow cubes in Figure 5). Moreover, unlike
the strategy of randomly generating noisy labels, we add noise
by specifying the noise position and noise category for different
granularity labels. Specifically, coarse-grained queries add noise
containing fine-grained information, while fine-grained queries
add noise containing coarse-grained information, with the expecta-
tion of predicting the correct granularity label for each GT box. In
Figure 5, each CDN group comprises four types of queries: positive-
coarse, positive-fine, negative-coarse, and negative-fine. If a frame
has 𝑛 GT bounding boxes, a CDN group will contain 4 types of
2 × 𝑛 queries. Similar to DINO, we also utilize multiple CDN groups
to enhance the effectiveness of the method. The reconstruction loss
for bounding box regression includes l1 and GIOU losses, while
focal loss [35] is employed for classification.

Analysis:When designing the noise label generation strategy,
we replaced the “random” generation of noise with “specified”, re-
ducing randomness by specifying noise positions and categories.

Table 3: Results for MG-HAD and other DETR Series de-
tection models with the ResNet50 backbone on the FHA-
Kitchens validation set trained with 12 epochs. M-G: Mixed-
Grained, C-G: Coarse-Grained, F-G: Fine-Grained.

Method FHA-Kitchens val mAP(%)

M-G label C-G sub-label F-G sub-label

DETR [2] 42.3 72.8 41.9
Deformable DETR [71] 49.4 70.9 49.1

DAB-DETR [38] 52.1 73.1 51.8
DDQ-4scale [67] 53.8 67.8 53.7
DINO-4scale [65] 54.7 76.3 54.5
MG-HAD-4sacle 57.0(+2.3) 75.6 56.8(+2.3)

This ensures noise is added to different granularity labels, generat-
ing CDN queries encompassing various granularity. To determine
the optimal setting, we considered the noise distribution of dif-
ferent granularity categories in real-world scenarios and ensured
contrastive learning between coarse and fine-grained information.
We conducted three sets of comparative experiments (Details can
be found in supplementary material). The final selected setting,
as shown in Eq. (3), exhibits the most significant improvement.
Hence, subsequent experiments were conducted using this setting
for further investigation. Our method’s success lies in its ability
to suppress confusion at the category level and select appropriate
granularity to predict hand action categories, thus enhancing its
ability to predict multi-granularity information.

noise label =
{

fine-grained 𝑖 ∈ [0, 3)
mixed-grained 𝑖 ∈ [3,𝐶) , (3)

where 𝑖 indexes the multi-granularity action category for a specific
instance (i.e., 0∼2 denote coarse-grained categories while 3∼C-1
denote fine-grained categories), and 𝐶 is the number of categories.
“fine-grained” and “mixed-grained” denote that the noise label is
chosen randomly from the fine-grained categories and the combina-
tion of the coarse-grained and fine-grained categories, respectively.

5 EXPERIMENTS
5.1 Experiments Settings
Dataset andMetric.Due to the absence of benchmarks for this new
task, we evaluated our model and other representative detection
models solely on the FHA-Kitchens dataset. We conducted experi-
ments using two different backbones: ResNet-50 [23] pre-trained
on ImageNet-1k [14] and Swin-L [39] pre-trained on ImageNet-
22k [14]. All detection models utilize pre-trained weights on the
MS COCO object detection dataset [36]. Furthermore, we not only
report the overall validation results using mixed-grained labels but
also separately report the validation results for coarse-grained and
fine-grained sub-labels. We follow previous works and adopt mean
Average Precision (mAP) [36] as the primary evaluation metric.

Implementation Details.We trained the MG-HAD model on
the FHA-Kitchen dataset using the MMDetection [6] codebase.
Specifically, we utilized pre-trained weights on the MS COCO [36]
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Table 4: Results of MG-HAD and other SOTA detection mod-
els on the FHA-Kitchens validation set. R-50: ResNet-50, M-G:
Mixed-Grained, C-G: Coarse-Grained, F-G: Fine-Grained.

Method Epoch Backbone FHA-Kitchens val mAP(%)

M-G label C-G sub-label F-G sub-label

Faster R-CNN [46] 108 R-50 48.3 22.3 48.6
YOLOX [20] 100 YOLOX-x 50.7 70.8 50.5
DETR [2] 150 R-50 50.6 73.1 50.3

Deformable DETR [71] 50 R-50 53.7 72.6 53.4
DAB-DETR [38] 50 R-50 54.7 75.2 54.5
DINO-4scale [65] 24 R-50 56.3 74.5 56.0
DINO-4scale [65] 12 R-50 54.7 76.3 54.5
DINO-5scale [65] 12 Swin-L 56.3 76.3 56.1

MG-HAD-4scale 24 R-50 57.7(+1.4) 75.3 57.5(+1.5)
12 57.0(+2.3) 75.6 56.8(+2.3)

MG-HAD-5scale 12 Swin-L 59.4(+3.1) 77.6 59.2(+3.1)

object detection dataset and fine-tuned it on the hand action detec-
tion task on FHA-Kitchens. We trained the model under two differ-
ent settings: 4scale-R-50 and 5scale-Swin-L. Following DINO [65],
we used the Adam optimizer [29] for model training, with an initial
learning rate of 1 × 10−4 and weight decay is 10−4. The experi-
ments were conducted on the NVIDIA GeForce RTX 3090 GPUs,
with a batch size of 2 for 4scale-R-50 and 1 for 5scale-Swin-L. By
default, MG-HAD was trained for 12 epochs, taking approximately
5 hours. More details are provided in the supplement material.

5.2 Main Results
12-Epoch Setting. To demonstrate the effectiveness of our method
for the multi-granularity HAD task, we compared it with represen-
tative strong baselines from the DETR series [2, 38, 65, 67, 71] on
the FHA-Kitchens dataset under the setting of ResNet-50 backbone
and 12 epochs. In particular, our method, DINO [65], and DDQ [67]
mainly report results under the 4scale setting. As shown in Table 3,
our method achieves much better accuracy in detecting mixed-
grained hand actions, owing to the proposed C-F CDN module
and multi-dimensional action queries. Specifically, it achieves an
improvement of +2.3 AP on mixed-grained labels compared to the
current strongest baseline DINO [65] under the same setting. Fur-
thermore, compared to the classic DETR [2], our method achieves
a significant improvement of +14.7 AP. Note that our method not
only performs well for mixed-grained labels but also shows im-
provement in the validation results for fine-grained sub-labels.

Comparison with SOTA Detection Methods. To compre-
hensively and fairly validate the effectiveness of our method in
enhancing the performance of multi-granularity hand actions, we
compared it with other state-of-the-art (SOTA) detection methods
on the FHA-Kitchens dataset, utilizing their optimal settings (refer
to the MMDetection [6] codebase). DINO exhibits relatively fast
convergence, achieving good results with just 12 epochs on the
Swin-L backbone. Our method inherits the convergence capability
of DINO but yields more significant improvements. We adopted
the same settings as DINO [65], utilizing both 4scale ResNet-50
and 5scale Swin-L backbones, trained for 12 epochs and 24 (2×)
epochs, respectively. The results in Table 4 indicate the following:
(1) Our method exhibits a significant improvement compared to the
baseline [65], which can be attributed to the design of handling fine-
grained information in our model; (2) Comparing models trained

Table 5: Ablation study of the key components in MG-HAD.
C-F CDN: Coarse-Fine granularity Contrastive De-Noising
Training, Multi-DA Q: Multi-Dimensional Action Queries.

Method Algorithm Components mAP(%)

C-F CDN Multi-DA Q 4scale-R-50 5scale-Swin-L
Baseline [65] 54.7 56.3

✓ 56.6 58.2

MG-HAD
✓ 56.4 58.7

✓ ✓ 57.0 59.4

for 24 epochs and 12 epochs, the main improvement lies in the
accuracy of fine-grained action detection. Since the FHA-Kitchens
dataset contains overwhelming fine-grained categories over the
coarse-grained ones, the model’s representation capacity may be
primarily utilized for fitting fine-grained categories; (3) Under the
5-scale Swin-L backbone, our method achieves a significant im-
provement of 59.4 AP for mixed-grained hand actions with just 12
epochs. This indicates that using a more powerful backbone [39]
can improve both coarse- and fine-grained action detection accu-
racy. Specifically, the detection accuracy of fine-grained actions is
increased by +3.1 AP and the detection accuracy of coarse-grained
actions is increased by +1.3 AP. The visualization of the detection
results can be found in the supplement material.

5.3 Ablation Studies
Effectiveness of New Components: Our method utilizes the
multi-dimensional action queries for multi-dimensional informa-
tion processing, as introduced in Section 4.2, and the C-F CDN
module for multi-granularity information processing, as described
in Section 4.3. To further validate the effectiveness of these compo-
nents, we separately isolated them from the model and evaluated
the performance under two settings: 4scale ResNet-50 and 5scale
Swin-L, as shown in Table 5, where the baseline denotes the original
design proposed by DINO [65]. As can be seen, while the strong
baseline DINO [65] has already surpassed previous models, the pro-
posed MG-HAD introduces two novel designs that notably boost
performance in hand action detection. Each module significantly
enhances the baseline on both backbones, and their combined effect
further enhances performance, demonstrating their complementary
role in understanding multi-granularity hand action information.

6 CONCLUSION
In this paper, we present the first study on multi-granularity hand
action detection, aiming to understand the diverse hand actions
through localizing regions and recognizing various granularity
categories of hand actions. We establish FHA-Kitchens, the first
fine-grained hand action detection dataset, comprising 30,047 high-
quality video frames, 198,839 bounding boxes, and 880 hand action
categories. Through systematic evaluation, we identify that existing
detection methods excel in coarse-grained actions but struggle with
fine-grained ones. To address this, we propose MG-HAD, a simple
yet strong baseline model leveraging the Transformer detector with
two novel designs. It outperforms previous methods across various
granularities of hand actions. FHA-Kitchens and MG-HAD can
serve as a valuable testbed and baseline for future research.
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